# Watch out for Drop-Bears!

# **Enhancing Citizen Science Technology to Improve Conservation Outcomes**

#### Alan Stenhouse<sup>1</sup>, Prof. Lian Pin Koh<sup>1</sup>, Dr. Philip Roetman<sup>2</sup> <sup>1</sup>University of Adelaide, <sup>2</sup>University of South Australia

We can improve some aspects of Citizen Science monitoring programs by:

- gathering better data using built-in mobile phone sensors combined with easy-to-use software
- improving our analysis of this data using novel visualisation tools
- enabling more standardised, repeatable and consistent sampling

This will lead to better conservation outcomes as well as engaging, educating and enthusing citizens who help with the scientific studies.

#### Issues

People go where they want, record what they want when they want, which can lead to

- temporal (weekend) bias and
- spatial bias observations mostly along defined paths, streets, near home

The Great Koala Count held in 2012 in South Australia identified 3 issues that lead to large variances in species population modelling:

- effort data was questionable each person provided an estimate
- absence data lacking people recorded what they observed, not what they didn't
- observer error unknown

# Project 1: Improving Technology for Citizen Science Conservation Projects

### Aim

Address lack of absence data and the uncertain observer effort data to improve the species population distribution and abundance model by:

- recording paths that citizen scientists follow
- inferring absence records & getting more accurate observer effort data



- Developed a mobile app for iOS & Android
- Recorded observational data including photoRecorded user location (path) every 5s









# Results

285 participants over 2 days
1801 observations of koalas
470 hours of volunteer time
111 koalas recorded by 1 person

Modelling of results is currently being done.



# Project 2: Visualisation Tools to Improve Analysis of Citizen Science Data

### Aims

- Improve data quality by using more sensors
- Use GPS, gyroscope and compass with camera to record the orientation and direction of camera
- Build software to detect possible duplicate observations
- "Realtime" upload to server for management of CitSci program



Are these 2 observations of the same koala?

# **Project 3: Guided Paths for Citizen Science Programs**

### Aims

- Scientist creates paths/transects using either mobile device to record path directly or by drawing on a map
- Paths are distributed or selected by participants to follow
- Device prompts user where, when, what to do/record on path
- Enable repeated and consistent sampling

Observations in SA, around Adelaide, and some paths in Belair NP.

## Lessons

- Train/educate users
- Make system as foolproof as possible
- Gather device metadata
- "Redundant" data can be useful
- Feedback/management

- Improve standardisation
- Reduce location and temporal biases



Spatial bias shown in the Great Koala Count 2 with the southern half of Cleland CP not covered.



Alan Stenhouse, PhD Candidate alan.stenhouse@adelaide.edu.au Ecology & Environmental Science School of Biological Sciences University of Adelaide

