Supporting Information

Photocatalytic Generation of Nitrenes for Rapid Diaziridination

Ramij Raja Mondal^a, Saikat Khamarui^b and Dilip K. Maiti*^a

^aDepartment of Chemistry, University of Calcutta, University College of Science, 92, A. P. C. Road, Kolkata-700009, India ^bDepartment of Chemistry, Government General Degree College at Kalna-1, Burdwan-713405

*Corresponding author. Fax: 91-33-2351 9755, Tel: 91-33-2350 1014

dkmchem@caluniv.ac.in

Serial	No. Content	Page Number
1.	Materials and methods	S-2
2.	General procedure for the synthesis of diaziridines	S-2
3.	Preparation of 1,2-dibenzyldiaziridine (6a) (detailed synthetic procedure)	S-2
4.	Characterization data of 1,2 di-substituted diaziridine (6a-l)	S-3
5.	Characterization data of optically active diaziridines using chiral amines (7a-h)	S-7
6.	Characterization data of 1,2, 3-trisustituted diaziridines (8a-i)	S-10
7.	Detection of isotope labeled product (6b-D ₂), intermediates and by-product (9)	S-13
8.	¹ H and ¹³ C-NMR spectra of the compounds (6a-l , 7a-h , 8a-i , 9)	S-15
9.	Crystal summary data of compound 6d (CCDC 1525569)	S-47

1. Materials and methods

All reagents were purchased from commercial suppliers and used without further purification, unless otherwise specified. Commercially supplied ethyl acetate and petroleum ether were distilled Before use.Petroleum ether used in our experiments was in the Boiling range of 60°-80° C. Column chromatography was performed on silica gel (60-120 mesh, 0.120 mm-0.250 mm). Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. Reportedmelting pointsare uncorrected. ¹H NMR and ¹³C NMR spectra (Bruker Advance 300) were recorded at ambient temperature using 300 MHz spectrometers (300 MHz for ¹H and 75 MHz for ¹³C). Chemical shift is reported in ppm from internal reference tetramethylsilane and coupling constant in Hz. Proton multiplicities are represented as s (singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), and m (multiplet). Infrared spectra were recorded on FT-IR spectrometer (Perkin Elmer Spectrum 100) in thin film. HR-MS data were acquired by electron spray ionization technique on a Q-tof-micro quadriple mass spectrophotometer (Bruker). Optical rotation of the chiral compounds was measured in a polarimeter using standard 10 cm quartz cell in sodium-D lamp at amBient temperature.Electronic absorption spectrum were recorded using a Hitachi U-3501 spectrophotometer. XPS analysis with the reaction mixture were performed in a JEOL instrument.

2. General procedure for the synthesis of diaziridines

A mixture of amine (1/3, 4 mmol), 1,2-diol (2/4, 1 mmol) and rose bengal (1 mol %) were taken in a 25 mL RB flask under blue LED light (5 W, λ_{max} = 475 nm), and 5 mL dichloromethane was added under cold condition. After stirring for 5 minutes iodobenzene diacetate (4 mmol) was added portion wise. After addition was complete, the ice bath was removed in order to allow the reaction mixture to achieve room temperature. The progress of the reaction was monitored by performing thin layer chromatography (TLC). After the completion of the reaction, the solvent was removed in rotary evaporator under reduced pressure. Then the reaction mixture was extracted with ethyl acetate (25 mL) and the combined organic layer was washed successively with saturated sodium bicarbonate solution (1 x 10 mL) and brine (1 x 10 mL). It was then dried over anhydrous Na_2SO_4 , filtered and evaporated in a rotary evaporator under reduced pressure at room temperature. The crude mass was column chromatographed with $\sim 5\%$ ethyl acetate- petroleum ether to get the corresponding product with considerable yield. Thus, the reaction with benzylamine (1a, 2.0 mmol, 214 mg), 1,2-ethanediol (2, 0.5 mmol, 31 mg) and PhI(OAc)₂ (2.0 mmol, 645 mg) afforded 1,2-dibenzyldiaziridine (6a) after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:25, v/v) as an eluent in an yield of 95% (213 mg, 0.95 mmol). The synthesized diaziridines (6a-6l, 7a-7h and 8a-8i) were characterized by means of NMR (¹H and ¹³C), FT-IR, melting point (solid compounds only), mass (HR-MS) spectral analyses and X-ray diffractometric analysis of **6d**.

3. Detailed Synthetic Method for 1,2-Dibenzyldiaziridine (6a):

A mixture of benzylamine (1a, 4.0 mmol, 428 mg), 1,2-ethanediol (2, 1.0 mmol, 62 mg) and rose bengal (1 mol %) were taken in a 25 mL RB containing 10 mL dichloromethane. It was then irradiated with blue LED light (5 W, $\lambda_{max} = 475$ nm) under cold condition. After stirring for 5 minutes iodobenzene diacetate (4 mmol, 1290 mg) was added portion wise. After addition was complete, the ice bath was removed in order to allow the reaction to achieve room temperature. The progress of the reaction was monitored by performing thin layer chromatography (TLC) and it took only 20 minutes to complete. After the completion of the reaction, the solvent was removed in a rotary evaporator under reduced pressure. The post reaction mixture was extracted with ethyl acetate (2x25 mL) and the combined organic layer was washed successively with saturated aqueous sodium bicarbonate solution (1 x 10 mL) and brine (1 x 10 mL). It was then dried over anhydrous Na₂SO₄, filtered and evaporated in a rotary evaporator under

reduced pressure at room temperature. The crude mass was column chromatographed on silica gel (60-120 mesh) with ethyl acetate-hexane (1:25, v/v) and the desired 1,2-dibenzyldiaziridine (**6a**) was obtained with an yield of 95% (426 mg, 1.90 mmol). The synthesized 1,2-dibenzyldiaziridine (**6a**) was characterized by means of NMR (¹H and ¹³C), FT-IR and mass (HR-MS) spectral analyses.

4. Characterization data of 1,2 di-substituted diaziridine (6a-l)

4.1. 1,2-Dibenzyldiaziridine (6a)

Yield: 95% (213 mg, 0.95 mmol).

Characteristic: Colourless oil.

¹H NMR (300 MHz, CDCl₃): δ 2.69 (2H, s), 3.49 (2H, d, *J* = 12.9 Hz), 3.66 (2H, d, *J* = 13.2 Hz), 7.23-7.31 (10H, m).

¹³C NMR (75 MHz, CDCl₃): δ 56.2, 64.8, 127.2, 128.3, 128.6, 137.6. FT-IR (neat, cm⁻¹): 1224, 1268, 1360, 1445, 1520, 1675, 1714, 2451, 2553.

HR-MS (m/z) for C₁₅H₁₆N₂ (M⁺): Calculated 224.1313, found 224.1317.

4.2. 1,2-Bis(4-methylbenzyl)diaziridine (6b)

Yield: 92% (232 mg, 0.92 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 2.36 (6H, s), 2.68 (2H, s), 3.43 (2H, d, *J* = 12.6 Hz), 3.67 (2H, d, *J* = 12.9 Hz), 7.12 (4H, d, *J* = 8.1 Hz), 7.21 (4H, d, *J* = 7.8 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 21.2, 56.1, 64.6, 128.6, 129.0, 134.5, 136.8. FT-IR (neat, cm⁻¹): 1227, 1272, 1361, 1447, 1521, 1678, 1715, 2096, 2446, 2552. HR-MS (m/z) for C₁₇H₂₀N₂ (M⁺): Calculated 252.1626, found 252.1625.

4.3.1,2-Bis(4-fluorobenzyl)diaziridine (6c)

Yield: 90% (235 mg, 0.90 mmol). Characteristic: Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 2.59 (2H, s), 3.28 (2H, d, *J* = 13.2 Hz), 3.46 (2H, d, *J* = 12.9 Hz), 6.80-6.85 (4H, m), 7.08-7.16 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ 56.1, 64.1, 114.9, 115.1, 130.2, 130.3, 133.4, 160.5, 163.8. FT-IR (neat, cm⁻¹): 1219, 1268, 1361, 1437, 1523, 1676, 1711, 2093, 2443, 2552. HR-MS (m/z) for C₁₅H₁₄F₂N₂ (M⁺): Calculated 260.1125, found260.1127.

4.4. 1,2-Bis(2-nitrobenzyl)diaziridine (6d)

Yield: 92% (289 mg, 0.92 mmol). Characteristic: Yellow solid. Melting point: 137 °C ¹H NMR (300 MHz, CDCl₃): δ 2.73 (2H, s), 3.39 (2H, d, *J* = 15.0 Hz), 4.21 (2H, d, *J* = 15.0 Hz), 7.19-7.27 (2H, m), 7.35 (2H, t, *J* = 7.5 Hz), 7.43 (2H, d, *J* = 7.5 Hz), 7.75 (2H, d, *J* = 8.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 56.7, 61.0, 124.3, 127.9, 130.9, 132.8, 133.0, 148.5. FT-IR (KBr, cm⁻¹): 1264, 1354, 1439, 1536, 1611, 1712, 1745, 2279, 2521. HR-MS (m/z) for C₁₅H₁₄N₄O₄ (M⁺): Calculated 314.1015, found314.1016.

4.5. 1,2-Bis(naphthalen-1-ylmethyl)diaziridine (6e)

Yield: 95% (308 mg, 0.95 mmol).

Characteristic: Brown oil.

¹H NMR (300 MHz, CDCl₃): δ 2.73 (2H, s), 3.79 (2H, d, J = 13.5 Hz), 4.06 (2H, d, J = 13.5 Hz), 7.21-7.26 (2H, m), 7.32 (2H, d, J = 6.9 Hz), 7.26-7.43 (4H, m), 7.65 (2H, d, J = 8.1 Hz), 7.73-7.76 (2H, m), 8.10-8.13 (2H, m).

¹³C NMR (75 MHz, CDCl₃): δ 56.9, 62.5, 124.3, 125.2, 125.5, 125.9, 126.8, 128.0, 128.4, 131.9, 133.7. FT-IR (neat, cm⁻¹): 1132,1170, 1223, 1268, 1354, 1441, 1527, 1676, 2089, 2437, 2548. HR-MS (m/z) for $C_{23}H_{20}N_2$ (M⁺): Calculated 324.1626, found 324.1629.

4.6. 1,2-Diphenethyldiaziridine (6f)

Yield: 85% (214.5 mg, 0.85 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 2.36 (2H, s), 2.41-2.49 (2H, m), 2.66-2.75 (2H, m), 2.87 (4H, t, *J* = 7.5 Hz), 7.10-7.26 (10H, m). ¹³C NMR (75 MHz, CDCl₃): δ 35.1, 56.8, 62.4, 125.9, 128.2, 128.5, 139.6. FT-IR (neat, cm⁻¹): 1122,1159, 1224, 1265, 1352, 1434, 1522, 2055, 2089, 2441, 2552. HR-MS (m/z) for C₁₇H₂₀N₂ (M⁺): Calculated 252.1626, found 252.1623.

4.7. Tert-butyl 2,2'-(diaziridine-1,2-diyl)diacetate (6g)

$$\downarrow_0^{\circ}$$
 \land_{N-N}° \downarrow_0°

Yield: 80% (218 mg, 0.80 mmol).

Characteristic: Brown oil.

¹H NMR (300 MHz, CDCl₃): δ 1.35 (18H, s), 2.60 (2H, s), 2.94 (2H, d, J = 16.2 Hz), 3.28 (2H, d, J = 16.2 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 28.0, 56.4, 61.9, 81.5, 168.6.

FT-IR (neat, cm⁻¹): 1153, 1268, 1366, 1431, 1535, 1739, 2288, 2528.

HR-MS (m/z) for C₁₃H₂₄N₂O₄ (M⁺): Calculated 272.1736, found 272.1735.

4.8. 1,2-Dibutyldiaziridine (6h)

Yield: 95% (148.5 mg, 0.95 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 0.87 (6H, t, *J* = 7.5 Hz), 1.20-1.41 (4H, m), 1.47-1.57 (4H, m), 2.12-2.14 (2H, m), 2.37-2.46 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ 13.8, 20.2, 30.5, 56.5, 60.8. FT-IR (neat, cm⁻¹): 1268, 1371, 1432, 1463, 1712, 2531. HR-MS (m/z) for C₉H₂₀N₂ (M⁺): Calculated 156.1626, found 156.1628.

4.9. 1,2-Didecyldiaziridine (6i)

Yield: 82% (266 mg, 0.82 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 0.77 (6H, t, *J* = 6.6 Hz), 1.16 (28H, s), 1.46 (6H, q, *J* = 7.2 Hz), 2.08-2.17 (2H, m), 2.31-2.39 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.6, 27.3, 28.6, 29.2, 29.5, 31.8, 56.7, 61.3. FT-IR (neat, cm⁻¹): 1268, 1369, 1436, 1466, 1715, 2532. HR-MS (m/z) for C₂₁H₄₄N₂ (M⁺): Calculated 324.3504, found 324.3507.

4.10. 1,2-Didodecyldiaziridine (6j)

Yield: 80% (304.5 mg, 0.80 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 0.79-0.83 (6H, m), 1.21 (36H, s), 1.52 (4H, q, *J* = 6.3 Hz), 2.12-2.20 (2H, m), 2.35-2.43 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.6, 27.3, 28.7, 29.3, 29.5, 31.9, 56.7, 61.3. FT-IR (neat, cm⁻¹): 1176, 1221, 1263, 1372, 1437, 1470, 1715, 2533. HR-MS (m/z) for C₂₅H₅₂N₂ (M⁺): Calculated 380.4130, found 380.4128.

4.11. 1,11-Diazabicyclo[9.1.0]dodecane (6k)

Yield: 65% (109.5 mg, 0.65 mmol).

Characteristic: Colourless oil.

¹H NMR (300 MHz, CDCl₃): δ 1.18-1.28 (8H, m), 1.54 (6H, b), 1.80 (2H, q, J = 6.0 Hz), 2.36 (2H, s), 2.69-2.74 (2H, m).

¹³C NMR (75 MHz, CDCl₃): δ 27.3, 27.4, 28.6, 29.1, 29.5, 29.7, 29.7, 56.5, 56.6, 61.4.

FT-IR (neat, cm⁻¹): 1175, 1210, 1231, 1258, 1380, 1436, 1447, 1471, 1543, 1717, 2533.

HR-MS (m/z) for C₁₀H₂₀N₂ (M⁺): Calculated 168.1626, found 168.1623 (one of the major peaks).

4.12. tert-Butyl-2-(2-(4-methylbenzyl)diaziridin-1-yl)acetate (6l)

Yield: 28 % (73.5 mg, 0.28 mmol).

Characteristic: Brown oil.

¹H NMR (300 MHz, CDCl₃): δ 1.36(9H, s), 2.23(3H, s), 2.49 (1H, d, *J* = 4.5 Hz), 2.64 (1H, d, *J* = 4.5 Hz), 2.98 (1H, dd, *J* = 16.2, 0.9 Hz), 3.13 (1H, dd, *J* = 16.2, 0.9 Hz), 3.22 (1H, d, *J* = 13.2 Hz), 3.79 (1H, d, *J* = 12.9 Hz), 7.03 (2H, d, *J* = 7.5 Hz), 7.12-7.16 (2H, m).

¹³C NMR (75 MHz, CDCl₃): δ 21.1, 28.0, 56.2, 62.3, 64.3, 81.3, 128.6, 129.1, 134.3, 137.0, 168.7.

FT-IR (neat, cm⁻¹): 1156, 1268, 1372, 1538, 1742, 2290, 2528.

HR-MS (m/z) for $C_{15}H_{22}N_2O_2$ (M⁺): Calculated 262.1681, found 262.1679.

4.13. 3,3-D₂-1,2-Bis(4-methylbenzyl)diaziridine (6b-D₂)

Yield: 81% (206 mg, 0.81 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 2.27 (6H, s), 3.34 (2H, d, *J* = 12.3 Hz), 3.58 (2H, d, *J* = 12.3 Hz), 7.02(4H, d, *J* = 7.8 Hz), 7.12 (4H, d, *J* = 7.8 Hz). FT-IR (neat, cm⁻¹): 1225, 1274, 1443, 1522, 1681, 1714, 2097, 2448, 2549. HR-MS (m/z) for C₁₇H₁₈D₂N₂ (M⁺): Calculated 254.1752, found 254.1756.

5. Characterization data of optically active diaziridines using chiral amines (7a-h)

5.1. 1,2-bis((R)-1-phenylethyl)diaziridine (7a)

Yield: 78% (197 mg, 0.78 mmol). Characteristic: Brown oil. $[\alpha]_{\mathbf{D}}^{25} = +36.70^{\circ}$ (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.27 (6H, dd, J = 6.6, 0.9 Hz), 2.70 (2H, s), 2.76 (2H, q, J = 6.9Hz), 6.92-7.03 (10H, m). ¹³C NMR (75 MHz, CDCl₃): δ 20.7, 55.5, 69.6, 126.3, 126.7, 127.6, 143.2. FT-IR (neat, cm⁻¹): 1211, 1267, 1364, 1437, 1522, 1673, 1714, 2441, 2554. HR-MS (m/z) for C₁₇H₂₀N₂ (M⁺): Calculated 252.1626, found 252.1628.

5. 2. 1,2-Bis{(S)-1-cyclohexylethyl}diaziridine (7b)

Yield: 74% (196 mg, 0.74 mmol). Characteristic: Yellow oil. $[\alpha]_D^{25} = +2.30^{\circ}$ (c 0.375, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.83 (6H, d, *J* = 6.0 Hz), 0.89-1.28 (10H, m), 1.36 (2H, d, *J* = 12.6 Hz), 1.45 (2H, d, *J* = 6.6 Hz), 1.61-1.77 (8H, m), 1.97 (2H, d, *J* = 12.3 Hz), 2.34 (2H, s). ¹³C NMR (75 MHz, CDCl₃): δ 12.0, 26.1, 26.5, 26.9, 27.0, 30.7, 41.5, 55.4, 69.8. FT-IR (neat, cm⁻¹): 1209, 1264, 1377, 1411, 1452, 1717, 2150, 2445, 2552. HR-MS (m/z) for C₁₇H₃₂N₂ (M⁺): Calculated 264.2565, found 264.2567.

5.3. (2S, 2'S)-Diethyl-2,2'-(diaziridine-1,2-diyl)bis(3-phenylpropanoate) (7c)

Yield: 72% (285.5 mg, 0.72 mmol). Characteristic: Colourless oil. [α] $_{D}^{25}$ = -39.30° (c 0.285, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.98 (6H, t, *J* = 7.2 Hz), 2.76-2.82 (4H, m), 3.13 (4H, d, *J* = 7.2 Hz), 3.90-4.00 (4H, m), 7.06-7.19 (10H, m). ¹³C NMR (75 MHz, CDCl₃): δ 13.9, 38.0, 55.7, 60.9, 73.5, 126.5, 126.7, 128.3, 128.4, 129.1, 129.3, 136.8, 170.3. FT-IR (neat, cm⁻¹): 1223, 1268, 1369, 1432, 1454, 1725, 1742, 2062, 2443, 2552. HR-MS (m/z) for C₂₃H₂₈N₂O₄ (M⁺): Calculated 396.2049, found 396.2053.

5.4. (2S,2'S)-Diethyl-2,2'-(diaziridine-1,2-diyl)bis(4-methylpentanoate) (7d)

Yield: 74% (243 mg, 0.74 mmol). Characteristic: Colourless oil.

 $[\alpha]_{\mathbf{D}}^{25} = -19.50^{\circ} (c \ 0.375, CHCl_3).$

^TH NMR (300 MHz, CDCl₃): δ 0.88 (12H, dd, J = 14.7, 6.0 Hz), 1.23 (6H, t, J = 7.2 Hz), 1.56-1.75 (4H, m), 1.82-1.91 (2H, m), 2.58 (2H, dd, J = 9.15, 3.9 Hz), 4.15 (4H, q, J = 6.9 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.9, 23.4, 24.9, 40.6, 54.6, 60.7, 70.5, 171.4.

FT-IR (neat, cm⁻¹): 1438, 1452, 1723, 1737, 2053, 2223, 2447, 2550.

HR-MS (m/z) for C₁₇H₃₂N₂O₄ (M⁺): Calculated 328.2362, found 328.2363.

5.5. (2S,2'S)-Diethyl-2,2'-(diaziridine-1,2-diyl)bis(3-methylbutanoate) (7e)

Yield: 75% (225.5 mg, 0.75 mmol). Characteristic: Light yellow oil. $[\alpha]_D^{25} = -67.00^\circ$ (c 0.585, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.01-1.03 (12H, m),1.21-1.26 (6H, m), 2.09-2.12 (2H, m), 2.64 (2H, d, *J* = 4.8 Hz), 2.74 (2H, s), 4.12-4.18 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 17.6, 19.6, 30.7, 53.7, 60.4, 76.4, 170.4. FT-IR (neat, cm⁻¹): 1371,1442, 1461, 1725, 1742, 2053, 2442, 2552. HR-MS (*m*/*z*) for C₁₅H₂₈N₂O₄ (M⁺): Calculated 300.2049, found 300.2045(M⁺+H).

Yield: 76% (186 mg, 0.76 mmol). Characteristic: Colourless oil. [α] $_{D}^{25} = -44.9^{\circ}$ (c 0.55, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.27 (6H, t, *J* = 7.2 Hz), 1.46 (6H, d, *J* = 6.9 Hz), 2.53 (2H, q, *J* = 6.9 Hz), 2.86 (2H, s), 4.15-4.22 (4H,m). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 17.1, 57.5, 60.9, 67.2, 171.5. FT-IR (neat, cm⁻¹): 1354,1437, 1452, 1721, 1743, 2045, 2445, 2549. HR-MS (*m*/*z*) for C₁₁H₂₀N₂O₄ (M⁺): Calculated 244.1423, found 244.1425.

5.7. (2R,2'R,3R,3'R)-Dimethyl-2,2'-(diaziridine-1,2-diyl)bis(3-methylpentanoate) (7g)

Yield: 73% (220 mg, 0.73 mmol). Characteristic: Colourless oil. [α] $_{D}^{25}$ = -5.31° (c 0.32, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.89 (6H, t, *J* = 7.5 Hz), 1.02 (6H, d, *J* = 6.9 Hz), 1.22-1.34 (2H, m), 1.41-1.51 (2H, m), 1.80-1.88 (2H, m), 2.67 (2H, d, *J* = 4.2 Hz), 2.73 (2H, s), 3.67 (6H, s). ¹³C NMR (75 MHz, CDCl₃): δ 11.9, 14.6, 26.7, 37.8, 51.4, 55.0, 75.3, 170.9. FT-IR (neat, cm⁻¹): 1032, 1248, 1371,1442, 1452, 1723, 1741, 2445, 2554. HR-MS (*m*/*z*) for C₁₅H₂₈N₂O₄ (M⁺): Calculated 300.2049, found 300.2054.

5.8. (2S,2'S)-Isopropyl-2,2'-(diaziridine-1,2-diyl)bis(4-methylpentanoate) (7h)

Yield: 78% (278 mg, 0.78 mmol). Characteristic: Colourless oil. $[\alpha]_{D}^{25} = -20.70^{\circ}$ (c 0.40, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 0.82-0.90 (12H, m), 1.17-1.21 (12H, m), 1.55-1.69 (4H, m), 1.79-1.87 (2H, m), 2.53-2.70 (2H, m), 2.71 (2H, s), 4.96-5.02 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 21.6, 21.7, 21.9, 23.4, 24.9, 40.5, 54.2, 68.1, 70.4, 170.9. FT-IR (neat, cm⁻¹): 1010,1276, 1437, 1452, 1725, 1733, 2053, 2441, 2550. HR-MS (*m*/*z*) for C₁₉H₃₆N₂O₄(M⁺): Calculated 356.2675, found 356.2671.

6. Characterization data of 3-Substituted diaziridine (8a-i)

6.1. 1,2-Bis(4-methylbenzyl)-3-phenyldiaziridine (8a)

Yield: 65% (214 mg, 0.65 mmol).

Characteristic: Brown oil.

¹H NMR (300 MHz, CDCl₃): δ 2.24 (6H, d, J = 7.5 Hz), 3.17 (1H, d, J = 13.5 Hz), 3.34 (1H, d, J = 13.5 Hz), 3.54 (1H, d, J = 13.2 Hz), 3.84 (1H, d, J = 12.3 Hz), 3.86 (1H, s), 6.92 (3H, dd, J = 15.4, 8.1 Hz), 7.02 (2H, d, J = 7.8 Hz), 7.17 (3H, d, J = 8.7 Hz), 7.29 (3H, d, J = 0.9 Hz), 7.40 (2H, d, J = 3.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 21.0, 55.9, 64.6, 65.8, 127.9, 128.5, 128.6, 128.7, 128.9, 129.0, 129.3,

133.3, 134.7, 135.2, 136.3, 136.6.

FT-IR (neat, cm⁻¹): 1229, 1272, 1381, 1407, 1447, 1521, 1679, 1715, 2086, 2446, 2551.

HR-MS (m/z) for C₂₃H₂₄N₂(M⁺): Calculated 328.1939, found 328.1943.

6.2. 1,2-Bis(4-fluorobenzyl)-3-methyldiaziridine (8b)

Yield: 63% (173 mg, 0.63 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 1.36 (3H, d, J = 5.4 Hz), 2.82 (1H, q, J = 5.4 Hz), 3.29 (1H, d, J = 13.2 Hz), 3.42 (1H, d, J = 13.8 Hz), 3.51 (1H, d, J = 4.2 Hz), 3.55 (1H, d, J = 4.2 Hz), 6.78-6.85 (4H, m), 7.05-7.11 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 12.4, 55.4, 60.6, 64.1, 114.8, 115.1, 130.1, 130.2, 130.3, 133.7, 134.3, 163.7, 164.2.

FT-IR (neat, cm⁻¹): 1268, 1372, 1436, 1532, 1666, 1714, 2094, 2446, 2552. HR-MS (m/z) for C₁₆H₁₆F₂N₂ (M⁺): Calculated 274.1282, found 274.1277.

6.3. Methyl-1,2-bis(4-methylbenzyl)diaziridine-3-carboxylate (8c)

Yield: 70% (218 mg, 0.70 mmol).

Characteristic: Colourless oil.

¹H NMR (300 MHz, CDCl₃): δ 2.23 (6H, s), 3.21 (1H, s), 3.53 (2H, s), 3.63 (1H, d, J = 14.7 Hz), 3.66 (3H, s), 3.77 (1H, d, J = 13.2 Hz), 6.97 (4H, d, J = 7.5 Hz), 7.02-7.08 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 21.1, 52.4, 57.4, 60.1, 64.2, 128.7, 128.9, 129.5, 133.5, 134.2, 136.8, 137.0, 167.2.

FT-IR (neat, cm⁻¹): 1182, 1212, 1264, 1365, 1443, 1518, 1715, 1753, 2047, 2439, 2532.

HR-MS (m/z) for C₁₉H₂₂N₂O₂ (M⁺): Calculated 310.1681, found 310.1677.

6.4. Ethyl-1,2-bis(4-methylbenzyl)diaziridine-3-carboxylate (8d)

Yield: 68% (221 mg, 0.68 mmol).

Characteristic: Colourless oil.

¹H NMR (300 MHz, CDCl₃): δ 1.17 (3H, t, J = 7.2 Hz), 2.09 (6H, s), 3.21 (1H, s), 3.55 (2H, d, J = 5.4 Hz), 3.67 (1H, d, J = 13.2 Hz), 3.80 (1H, d, J = 13.2 Hz), 4.15 (2H, q, J = 7.2 Hz), 6.99 (4H, d, J = 7.5 Hz), 7.05-7.19 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 20.8, 21.0, 57.3, 60.3, 61.6, 64.2, 126.6, 127.8, 128.7, 128.9, 129.0, 129.2, 129.3, 129.6, 129.9, 133.6, 134.4, 136.7, 136.9, 166.7.

FTHR-MS (m/z) for C₂₀H₂₄N₂O₂ (M⁺): Calculated 324.1838, found 324.1841.

6.5. Methyl-1,2-bis(4-fluorobenzyl)diaziridine-3-carboxylate (8e)

Yield: 62% (198 mg, 0.62 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 3.24 (1H, s), 3.64-3.70 (7H, m), 6.77-6.83 (4H, m), 7.03-7.10 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 52.4, 56.8, 60.1, 63.6, 114.7, 115.0, 130.2, 130.3, 130.7, 130.8, 132.1, 132.2, 132.8, 132.8, 160.3, 160.4, 163.6, 163.7, 166.8.

FT-IR (neat, cm⁻¹): 1221, 1265, 1371, 1443, 1522, 1723, 1751, 2437, 2530.

HR-MS (m/z) for C₁₇H₁₆F₂N₂O₂ (M⁺): Calculated 318.1180, found 318.1182.

6.6. 1,2-Dibutyl-3-phenyldiaziridine (8f)

Yield: 71% (165 mg, 0.71 mmol).

Characteristic: Colourless oil.

¹H NMR (300 MHz, CDCl₃): δ 0.76 (3H, t, *J* = 7.5 Hz), 0.90 (3H, t, *J* = 7.5 Hz), 1.15-1.25 (2H, m), 1.32-1.50 (4H, m), 1.54-1.64 (2H, m), 2.10 (2H, t, *J* = 7.5 Hz), 2.53-2.59 (2H, m), 3.62 (1H, s), 7.30 (2H, dd, *J* = 4.9, 1.8 Hz), 7.38-7.41 (2H, m).

¹³C NMR (75 MHz, CDCl₃): δ 13.9, 14.0, 20.4, 20.5, 30.6, 30.8, 52.0, 61.1, 65.9, 127.8, 128.2, 129.0, 133.7.

FT-IR (neat, cm⁻¹): 1264, 1380, 1406, 1454, 1715, 2152, 2532.

HR-MS (m/z) for C₁₅H₂₄N₂ (M⁺): Calculated 232.1939, found 232.1936.

6.7. Ethyl 1,2-didecyldiaziridine-3-carboxylate (8g)

Yield: 65% (258 mg, 0.65 mmol). Characteristic: Colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 0.80-0.82 (6H, m), 1.18-1.26 (30H, m), 1.46-1.55 (5H, m), 2.17-2.25 (1H, m), 2.49-2.58 (3H, m), 3.01 (1H, s), 4.19 (2H, q, *J* = 7.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 22.6, 27.1, 28.3, 28.7, 29.3, 29.5, 31.9, 53.9, 61.2, 61.6, 166.9. FT-IR (neat, cm⁻¹): 1172, 1217, 1263, 1365, 1438, 1520, 1715, 1751, 2439, 2533. HR-MS (*m/z*) for C₂₄H₄₈N₂O₂ (M⁺): Calculated 396.3716, found 396.3718.

6.8. tert-Butyl-2,2'-(3-methyldiaziridine-1,2-diyl)diacetate (8h)

Yield: 66% (189 mg, 0.66 mmol).

Characteristic: Brown oil.

¹H NMR (300 MHz, CDCl₃): δ 1.33 (3H, d, J = 5.4 Hz), 1.40-1.45 (18H, m), 2.81 (1H, q, J = 5.4 Hz), 3.01 (1H, d, J = 16.2 Hz), 3.15 (1H, d, J = 16.8 Hz), 3.39 (2H, d, J = 16.5 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 21.1, 27.6, 27.9, 28.0, 42.1, 54.1, 60.5, 62.2, 81.5, 168.8, 169.2. FT-IR (neat, cm⁻¹): 1142, 1264, 1368, 1443, 1541, 1729, 2292, 2530.

HR-MS (m/z) for C₁₄H₂₆N₂O₄ (M⁺): Calculated 286.1893, found 286.1892.

6.9. 1,2-Bis{(S)-1-cyclohexylethyl}-3-phenyldiaziridine (8i)

Yield: 62% (211mg, 0.62 mmol).

Characteristic: Colourless oil. $[x_1]^{25} = (2.20)^{\circ} (2.0.280)$ CUCL)

 $[\alpha]_{\mathbf{D}}^{25} = +2.20^{\circ} (c \ 0.280, \text{CHCl}_3).$

¹H NMR (300 MHz, CDCl₃): δ 1.05-1.19 (9H, m), 1.26-1.31 (8H, m), 1.47-1.52 (2H, m), 1.66-1.89 (9H, m), 2.02 (2H, q, *J* = 6.6 Hz), 4.54 (1H, s), 7.40 (6H, b).

¹³C NMR (75 MHz, CDCl₃): δ 17.1, 26.1, 26.2, 26.3, 26.6, 28.4, 29.6, 30.0, 41.9, 71.3, 71.6, 82.0, 127.4, 127.5, 128.4, 129.9, 134.9.

FT-IR (neat, cm⁻¹): 1624, 1590, 1573, 1499, 1456, 1344, 1127, 1053, 855, 817, 760, 711, 698.

HR-MS (m/z) for C₂₃H₃₆N₂ (M⁺): Calculated 340.2878, found 340.2874.

7. Detection of isotope labeled product (6b-D₂), intermediates and by-product (9)

7. A. HRMS data of $6b-D_2$

7. B. HRMS data of some intermeditates (HRMS was performed taking aliquat from reaction mixture at 10 min)

7. C. Isolation of by-product **9** (*N*-benzylbenzamide)

7.C.1. *N*-Benzylbenzamide (9)

Yield: 4% (9 mg, 0.04 mmol). Characteristic: Colourless solid. Melting range: 101-102 °C. ¹H NMR (300 MHz, CDCl₃): δ 4.65 (2H, d, *J* = 5.7 Hz), 6.42 (1H, brs), 7.28-7.53 (8H, m), 7.79 (2H, d, *J* = 6.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 44.1, 126.9, 127.6, 127.9, 128.6, 128.8, 131.5, 134.4, 138.1, 167.3. FT-IR (KBr, cm⁻¹): 1260, 1314, 1454, 1546, 1578, 1604, 1643, 2854, 2930, 3325. HR-MS (*m*/*z*) for C₁₄H₁₃NO (M⁺): Calculated 211.0997, found 211.0998.

8. ¹H and ¹³C-NMR spectra of the compounds (6a-l, 7a-h, 8a-i, 9)

SI Figure 1: ¹H and ¹³C-NMR spectra of compound 6a

SI Figure 4: ¹H and ¹³C-NMR spectra of compound 6d

SI Figure 8: ¹H and ¹³C-NMR spectra of compound 6h

SI Figure 11: ¹H and ¹³C-NMR spectra of compound 6k

SI Figure 12: ¹H and ¹³C-NMR spectra of compound 6I

SI Figure 13: ¹H spectrum of compound 6b-D₂

SI Figure 17: ¹H and ¹³C-NMR spectra of compound 7d

SI Figure 20: ¹H and ¹³C-NMR spectra of compound 7g

SI Figure 21: ¹H and ¹³C-NMR spectra of compound 7h

SI Figure 25: ¹H and ¹³C-NMR spectra of compound 8d

SI Figure 26: ¹H and ¹³C-NMR spectra of compound 8e

S-41

SI Figure 28: ¹H and ¹³C-NMR spectra of compound 8f

SI Figure 31: ¹H and ¹³C-NMR spectra of compound 9

9. Crystal Summary Data of Compound 6d (CCDC 1525569)

- Chemical formula and formula weight (M): C15 H14 N2 O4and 314.10
- Crystal system: Monoclinic Unit-cell dimensions (angstrom or pm, degrees) and volume, with edges: a 8.006(14) b 12.99(2) c 14.70(2), 90.00, 100.16(2), 90.00, 1504(5)
- ✤ Temperature: 296 K
- Space group symbol: P2(1)/n
- ✤ No. of formula units in unit cell (Z): 4
- Number of reflections measured and/or number of independent reflections, Rint: 1864
- ✤ Final R values (and whether quoted for all or observed data): 0.0506