Supporting Information

Novel D–A– π –A Type Organic Dyes

Containing a Ladder-Like Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells

Liping Zheng^{†,⊥}, Qunfang Cao^{†,⊥}, Jinfeng Wang[‡], Zhaofei Chai[‡], Guosheng Cai[†], Zhongyun Ma[†], Hongwei Han[§], Qianqian Li^{‡,*}, Zhen Li[‡], Huajie Chen^{†,*}

[†]Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China

[‡]Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, P. R. China

[§]Michael Gräzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430072, P. R. China

Content

1.	Measurements	S2
2.	Fabrication procedure for DSSCs	S2
3.	Detailed synthetic procedures for the dyes C1–C3	S3
4.	References	S9
5.	Molar extinction coefficient (ε) of the dyes C1–C3	S 9
6.	UV-vis absorption and PL spectra of the dyes C1–C3	S10
7.	The CV curve of Fc/Fc^+ in $CHCl_3$ solution	S10
8.	NMR and MADI-TOF spectra of the new compoundsS	11 - S26

Measurements. ¹H NMR and ¹³C NMR spectra of samples were recorded on a Bruker Avance 400 instrument (400 MHz) using tetramethylsilane as the internal standard. Matrix-assisted laser desorption/ionization time of Flight mass spectrometry (MALDITOF-MS) was performed on Bruker Autoflex III instrument. UV-vis absorption spectra of the dyes in a chloroform solution and on dye-soaked TiO₂ films were obtained on a Perkin-Elmer Lambda 25 spectrometer. The photoluminescence (PL) spectra were measured by using Perkin-Elmer LS-50 luminescence spectrometer. Cyclic voltammetry (CV) experiments were carried out on an electrochemical workstation (CHI660A, Chenhua, Shanghai) by using a conventional three-electrode system, which is composed of a Pt working electrode, a Pt wire counter electrode, an Ag/AgCl reference electrode in a saturated KCl solution. 0.1 M tetrabutylammonium hexafluorophosphate(TBAPF₆) in CHCl₃ was used as the supporting electrolyte. The photocurrent density-voltage (J-V) curves were obtained by recording the generated photocurrent upon applying an external potential bias to the cell using a Keithley model 2400 digital source meter under standard global AM 1.5G illumination condition (100 mW cm⁻²) using a Si solar cell as a reference. The action spectrum of monochromatic incident photo-to-current conversion efficiency (IPCE) was recorded on a DC Power Meter (Model 2931-C equipped with a 300W xenon arc lamp, Newport Co.) under irradiation with a motorized monochromator (Oriel). The electrochemical impedance spectroscopy (EIS) was conducted on a CHI660E electrochemical workstation, which was performed in complete darkness with a forward bias of -0.70 V and a frequency region at 0.01-100 KHz, respectively.

Fabrication Procedure for DSSCs. The DSSCs were fabricated on the basis of a previously reported procedure.¹ Before the deposition of the TiO₂ paste, fluorine-doped SnO₂ conducting glass (FTO, 2.2 mm thickness, 7–8 Ω/\Box) were cleaned and immersed in a solution of TiCl₄ (40 mM) at 70 °C for 30 min, then washed with water and ethanol. The photoanodes (thickness 16 mm; area 0.25 cm²) were prepared using the screen printing technique containing a 12 μ m layer of mesoporous TiO₂ (18NR-T, Dyesol) and a 4 μ m scatter layer (18NR-AO, Dyesol). The TiO₂-coated FTO glass was calcined under airflow at 325 °C for 5 min, 375 °C for 5 min, 450 °C for 15 min, and 500 °C for 1h. After cooling to room temperature, they were treated with TiCl₄ (40 mM) solution at 70 °C for 30 min again, and then annealed at 500 °C for 30 min. After cooling again, the obtained TiO₂ films were

immersed in a dye solution (0.3 mM in CH₂Cl₂/C₂H₅OH = 1:1 mix solvents) and maintained in the dark for 16 h at room temperature. The sensitized electrodes were washed with CH₂Cl₂ and dried in air. The Pt counter electrode was prepared by spreading a 10 mM solution of H₂PtCl₆ in isopropyl alcohol onto the FTO glass (2.2 mm thickness, 7–8 Ω/\Box) with a small hole to allow the injection of the liquid electrolyte under vacuum, followed by heating at 400 °C for 30 min. The dye-covered TiO₂ electrode and Pt-counter electrode were assembled into a sandwich type cell and sealed with a hot–melt gasket of 25 μ m thickness made of the ionomer Surlyn 1702 (DuPont). The electrolyte is composed of 0.6 M dimethylpropyl imidazolium iodide, 0.1 M lithium iodide, 0.03 M iodine, 0.5 M tert-butylpyridine in acetonitrile/3-methoxypropionitrile (1:1, v/v). The effective area of the DSSCs is ca. 0.2823 cm².

Detailed synthetic procedures for the dyes C1–C3.

All the starting chemicals were purchased from Chem Greatwall and Alfa Aesar, and used without any further purification. Tetrahydrofuran (THF) was distilled from a blue solution of sodium and diphenylmethanone prior to use. The materials 4,7-dibromobenzo[c][1,2,5]thiadiazole (6), 4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (7) and 4,7-dibromo-[1,2,5]thiadiazolo[3,4-c]-pyridine (8) were purchased from Chemical Greatwall. 9-octyl-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboro-lan-2-yl)-9*H*-carbazole (1),² ethyl 2-bromothiophene-3-carboxylate (2),³ ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzoate (5)⁴ were synthesized according to the previous reported literatures.

Synthesis of Compound 3. In a dried 250 mL three-neck round-bottom flask, 9-octyl-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9*H*-carbazole 1 (2.71 g, 5.1 mmol), ethyl 2-bromothiophene -3-carboxylate 2 (3.6 g, 15.3 mmol), anhydrous K₂CO₃(13.8 g, 100 mmol), Aliquant 336 (2 drops), and Pd(PPh₃)₂Cl₂ (0.4 g, 0.57 mmol) were dissolved in deoxygenated toluene/H₂O (150 mL, 2:1, v/v). The reaction mixture was refluxed at 90 °C for 24 h and then extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/ethyl acetate, v/v = 20/1) as the eluent and then recrystallized by petroleum ether to give a light yellow product (2.25 g, 75%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.08 (d, 2H),

7.54 (dd, 4H), 7.36 (dd, 2H), 7.27 (s, 1H), 7.24 (s, 1H), 4.29 (t, 2H), 4.19 (q, 4H), 1.84–1.90 (m, 2H), 1.22–1.39 (m, 10H), 1.13 (t, 6H), 0.83 (t, 3H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 163.59, 151.79, 140.60, 131.04, 130.08, 128.41, 124.02, 122.76, 121.29, 119.87, 110.26, 60.49, 43.29, 31.81, 29.38, 29.19, 29.06, 27.31, 22.62, 14.11, 14.07; MS (MADI-TOF): m/z [M]⁺ calcd for (C₃₄H₃₇NO₄S₂): 587.216; found: 587.182.

Synthesis of Compound 4 (DTCC). To a stirred solution of 1-bromo-4-(octyloxy)benzene (4.85 g, 17 mmol) in dry THF (100 mL) was added dropwise a 2.5 M solution of *n*-butyllithium in hexane (6 mL, 15 mmol) at -78 °C under a nitrogen atmosphere. After being stirred at -78 °C for 2 h, compound 2 (1.0 g, 1.7 mmol) in dry THF (15 mL) was then added to the mixture by syringe. The mixture was stirred for 30 min at -78 °C and then refluxed at 70 °C overnight. After cooling to room temperature, the mixture was extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the brown crude product was obtained and then used in the next step without further purification. To a stirred solution of the brown crude product mentioned above was added 120 mL of acetic acid dropwise 1.0 mL of concentrated H₂SO₄. The reaction mixture was stirred at 85 °C for 4 h under a nitrogen atmosphere. After cooling to room temperature, the mixture was extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent as the eluent (petroleum ether/ethyl acetate, v/v = 20/1) to give a pale yellow solid (1.59 g, 73%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.80 (s, 2H), 7.37 (s, 2H), 7.28 (d, 2H), 7.18 (d, 8H), 7.01 (d, 2H), 6.74 (d, 8H), 4.32 (t, 2H), 3.88 (t, 8H), 1.92 (t, 2H), 1.69–1.76 (m, 12H), 1.26–1.47 (m, 46H), 0.85–0.88 (m, 15H); 13 C NMR (100 MHz, CDCl₃), δ (ppm): 157.87, 156.93, 145.84, 141.45, 140.67, 137.66, 135.04, 129.04, 127.53, 123.17, 121.28, 117.66, 114.16, 99.43, 67.93, 61.53, 43.43, 31.91, 31.85, 29.47, 29.39, 29.36, 29.26, 29.08, 27.38, 26.11, 22.68, 14.13; MS (MADI-TOF): m/z [M]⁺ calcd for (C₈₆H₁₀₉NO₄S₂): 1283.780; found: 1284.368.

Synthesis of Compound 9. In a 250 mL three-necked round-bottom flask, ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (3.0 g, 10.86 mmol), 4,7-dibromobenzo[*c*]- [1,2,5]thiadiazole (3.3 g, 11.23 mmol), anhydrous K_2CO_3 (11.0 g, 79.7 mmol), Aq336 (1 drop), and Pd(PPh₃)₂Cl₂ (0.4 g, 0.57 mmol) were dissolved in deoxygenated THF/H₂O (150 mL, 2:1, v/v). The

reaction mixture was refluxed at 90 °C for 0.5 h and then extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/ethyl acetate, v/v = 20/1) as the eluent, and then recrystallized by petroleum ether and dichloromethane to give a luminous yellow product (2.75 g, 70%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.21 (dd, 2H), 7.95–7.99 (m, 3H), 7.64 (d, 1H), 4.43 (q, 2H), 1.43 (t, 3H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.29, 153.92, 152.93, 140.85, 132.89, 132.22, 130.54, 129.92, 129.15, 128.75, 114.23, 61.19, 14.41.

Synthesis of Compound 10. In a 100 mL three-necked round-bottom flask, ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzoate (0.84 g, 3.03 mmol), 4,7-dibromo-5,6-difluorobenzo[*c*][1,2,5]thiadiazole (1.0 g, 3.03 mmol), anhydrous K₂CO₃ (4.15 g, 30.0 mmol), Aq336 (1 drop), and Pd(PPh₃)₂Cl₂ (0.15 g, 0.21 mmol) were dissolved in deoxygenated toluene /H₂O (45 mL, 2:1, v/v). The reaction mixture was refluxed at 90 °C for 0.5 h and then extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/dichloromethane, v/v = 5/1) as the eluent, and then recrystallized by ethyl alcohol and dichloromethane to give a ivory white product (0.87 g, 72%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.23 (dd, 2H), 7.85 (dd, 2H), 4.44 (q, 2H), 1.43 (t, 3H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.99, 153.49, 153.29, 151.52, 151.33, 150.92, 149.95, 149.07, 148.99, 148.74, 133.92, 131.22, 130.43, 129.69, 118.50, 118.36, 99.33, 99.11, 61.25, 14.34.

Synthesis of Compound 11. In a 100 mL three-necked round-bottom flask, ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzoate (0.92 g, 3.32 mmol), 4,7-dibromo-[1,2,5]-thiadiazolo[3,4-*c*]pyridine (1.0 g, 3.4 mmol), anhydrous K₂CO₃ (11.0 g, 79.7 mmol), Aq336 (1 drop), and Pd(PPh₃)₂Cl₂ (0.15 g, 0.21 mmol) were dissolved in deoxygenated THF /H₂O (120 mL, 2:1, v/v). The reaction mixture was refluxed at 90 °C for 0.5 h and then extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/ethyl acetate, v/v = 20/1) as the eluent, and then recrystallized by petroleum ether and dichloromethane to give a bright yellow product (0.82 g, 68%). ¹H NMR (400 MHz, CDCl₃), δ

(ppm): 8.87 (s, 1H), 8.67 (d, 2H), 8.24 (d, 2H), 4.44 (q, 2H), 1.44 (t, 3H); ¹³C NMR (100 MHz, CDCl₃), *δ* (ppm): 166.15, 156.71, 151.37, 149.36, 145.74, 139.79, 132.20, 129.78, 129.74, 110.71, 100.00, 61.28, 14.36.

Synthesis of Compound 12. In a 100 mL three-necked round-bottom flask, compound 4 (1.22 g, 0.94 mmol), compound 9 (0.34 g, 0.93 mmol), Cesium Carbonate (0.73 g, 2.24 mmol), PivOH (0.06 g, 0.59 mmol), tris(2-methoxyphenyl)phosphine (0.34 g, 0.96 mmol), Palladium acetate (0.12 g, 0.53 mmol) were stirred in toluene (50 mL) at 110 °C for 4 h under a nitrogen atmosphere. After cooling to room temperature, the mixture was extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/ethyl acetate, v/v = 20/1) as the eluent, and then recrystallized by ethyl alcohol and dichloromethane to give a deep red product (0.56 g, 38%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.20 (d, 2H), 8.09 (s, 1H), 8.05 (d, 1H), 7.95 (d, 1H), 7.84 (d, 1H), 7.76 (d, 1H), 7.46 (s, 1H), 7.38 (s, 1H), 7.28-7.30 (m, 8H), 7.19 (d, 3H), 7.01 (d, 1H), 6.77 (dd, 8H), 4.43 (q, 2H), 4.32 (t, 2H), 3.87–3.90 (m, 8H), 1.93 (t, 3H), 1.69–1.76 (m, 9H), 1.25–1.45 (m, 48H), 0.84–0.89 (m, 18H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.42, 158.01, 157.89, 156.98, 153.75, 152.45, 145.78, 144.10, 141.57, 141.43, 140.85, 140.75, 137.65, 137.46, 130.75, 129.95, 129.80, 129.17, 129.05, 129.01, 127.91, 114.28, 114.16, 99.85, 99.45, 67.97, 62.01, 61.53, 61.06, 43.36, 31.92, 31.83, 29.51, 29.38, 29.36, 29.25, 26.10, 22.67, 14.41, 14.15, 14.11; MS (MADI-TOF): m/z [M]⁺ calcd for (C₁₀₁H₁₁₉N₃O₆S₃): 1565.826; found: 1566.414.

Synthesis of Compound 13. In a 100 mL three-necked round-bottom flask, compound 4 (1.0 g, 0.78 mmol), compound 9 (0.31 g, 0.79 mmol), Cesium Carbonate (0.6 g, 1.84 mmol), PivOH (0.04 g, 0.39 mmol), tris(2-methoxyphenyl)phosphine (0.28 g, 0.79 mmol), Palladium acetate (0.09 g, 0.4 mmol) were stirred in toluene (60 mL) at 110 °C for 4 h under a nitrogen atmosphere. After cooling to room temperature, the mixture was extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/ethyl acetate, v/v = 20/1) as the eluent, and then recrystallized by ethyl alcohol and dichloromethane to give a deep red product (0.51 g, 43%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.30 (s, 1H), 8.23 (d,

2H), 7.91 (d, 2H), 7.85 (d, 2H), 7.51 (s, 1H), 7.39 (s, 1H), 7.29–7.31 (m, 6H), 7.19 (d, 3H), 7.01 (d, 1H), 6.77 (dd, 8H), 4.44 (q, 2H), 4.34 (t, 2H), 3.87–3.91 (m, 8H), 1.94 (t, 3H), 1.71–1.75 (m, 9H), 1.25–1.45 (m, 51H), 0.84–0.89 (m, 15H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.17, 158.03, 157.90, 157.05, 146.02, 141.39, 140.94, 140.72, 137.61, 137.36, 135.49, 134.25, 130.70, 130.60, 129.59, 129.13, 129.05, 127.80, 122.38, 121.08, 117.76, 114.28, 114.17, 100.18, 99.47, 67.96, 62.00, 61.53, 61.19, 43.39, 31.93, 31.84, 29.74, 29.52, 29.39, 29.36, 29.26, 26.11, 22.68, 14.39, 14.12; MS (MADI-TOF): m/z [M]⁺ calcd for (C₁₀₁H₁₁₇F₂N₃O₆S₃): 1601.807; found: 1602.335.

Synthesis of Compound 14. In a 100 mL three-necked round-bottom flask, compound 4 (1.0 g, 0.78 mmol), compound 9 (0.28 g, 0.79 mmol), Cesium Carbonate (0.6 g, 1.84 mmol), PivOH (0.05 g, 0.49 mmol), tris(2-methoxyphenyl)phosphine (0.28 g, 0.79 mmol), Palladium acetate (0.1 g, 0.45 mmol) were stirred in toluene (60 mL) at 110 °C for 4 h under a nitrogen atmosphere. After cooling to room temperature, the mixture was extracted with dichloromethane. The collected organic layer was dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (petroleum ether/ dichloromethane, v/v = 2/1) as the eluent, and then recrystallized by ethyl alcohol and dichloromethane to give a deep purple product (0.45 g, 37%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 9.01 (s, 1H), 8.72 (d, 2H), 8.23 (d, 2H), 8.18 (s, 1H), 7.84 (d, 2H), 7.44 (s, 1H), 7.36 (s, 1H), 7.28-7.30 (m, 6H), 7.19 (d, 3H), 7.01 (d, 1H), 6.78 (dd, 8H), 4.44 (q, 2H), 4.29 (t, 2H), 3.87-3.91 (m, 8H), 1.90–1.92 (m, 2H), 1.69–1.76 (m, 8H), 1.26–1.46 (m, 53H), 0.84–0.88 (m, 15H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.38, 158.08, 157.92, 157.66, 156.89, 154.61, 149.40, 145.91, 145.75, 141.47, 140.83, 140.62, 138.70, 137.70, 137.36, 134.23, 131.44, 129.66, 129.48, 129.19, 129.09, 122.44, 120.97, 114.30, 114.15, 100.01, 99.49, 67.98, 67.94, 62.00, 61.51, 61.20, 43.16, 31.97, 31.86, 29.57, 29.41, 29.38, 29.28, 27.39, 26.13, 22.70, 14.42, 14.15; MS (MADI-TOF): m/z [M]⁺ calcd for (C₁₀₀H₁₁₈N₄O₆S₃): 1566.821; found: 1567.336.

Synthesis of C1. In a 100 mL three-necked round-bottom flask, compound 12 (0.39 g, 0.25 mmol) and KOH (0.28 g, 5.0 mmol) were dissolved in a mixed solvent of THF/H₂O (60 mL, 3/1, v/v) under a nitrogen atmosphere. The reaction mixture was refluxed at 80 °C for 12 h and then extracted with dichloromethane. The collected organic layer was washed with brine over three times, and then dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was

purified by column chromatography on silica gel using a mixture solvent (chloroform/methanol=10/1, v/v) as the eluent to give a deep red product (0.28 g, 73%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.23 (d, 2H), 8.06 (d, 2H), 7.90 (d, 1H), 7.84 (d, 2H), 7.72 (d, 1H), 7.32 (d, 8H), 7.21 (d, 4H), 7.00 (d, 1H), 6.79 (dd, 8H), 4.16 (br, 2H), 3.87–3.91 (m, 8H), 1.85 (br, 3H), 1.70–1.76 (m, 9H), 1.26–1.41 (m, 48H), 0.84–0.88 (m, 15H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 171.61, 158.09, 157.92, 153.50, 152.19, 149.81, 145.76, 144.94, 143.35, 141.64, 140.56, 137.84, 137.70, 134.67, 130.30, 129.29, 129.15, 128.83, 127.80, 122.94, 121.76, 120.90, 117.20, 114.32, 114.18, 103.00, 99.84, 99.42, 68.01, 61.88, 61.46, 42.96, 31.87, 29.43, 29.39, 29.28, 29.25, 26.15, 26.11, 22.70, 22.66, 14.13, 14.10; MS (MADI-TOF): m/z [M]⁺ calcd for (C₉₉H₁₁₅N₃O₆S₃): 1537.795; found: 1538.413.

Synthesis of C2. In a 100 mL three-necked round-bottom flask, compound 13 (0.44 g, 0.27 mmol) and KOH (0.3 g, 5.4 mmol) were dissolved in a mixed solvent of THF/H₂O (60 mL, 3/1, v/v) under a nitrogen atmosphere. The reaction mixture was refluxed at 80 °C for 12 h and then extracted with dichloromethane. The collected organic layer was washed with brine over three times, and then dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture solvent (chloroform/methanol=10/1, v/v) as the eluent to give a deep red product (0.39 g, 91%). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.31 (s, 1H), 8.28 (d, 2H), 7.95 (d, 2H), 7.85 (d, 2H), 7.52 (s, 1H), 7.39 (s, 1H), 7.29–7.31 (m, 6H), 7.19 (d, 3H), 7.01 (d, 1H), 6.78 (dd, 8H), 4.34 (br, 2H), 3.89 (br, 8H), 1.94 (br, 3H), 1.69–1.75 (m, 9H), 1.26–1.43 (m, 48H), 0.84–0.89 (m, 15H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 171.18, 158.04, 157.89, 156.89, 145.83, 141.47, 140.79, 140.52, 137.70, 137.47, 135.42, 134.15, 130.62, 130.05, 129.16, 129.06, 122.97, 120.84, 117.48, 114.26, 114.12, 106.55, 100.17, 99.41, 67.97, 67.94, 61.88, 61.44, 31.93, 31.81, 29.70, 29.55, 29.37, 29.35, 29.26, 29.23, 29.10, 29.00, 27.36, 26.08, 24.74, 22.65, 22.64, 14.11, 14.09, 14.08; MS (MADI-TOF): m/z [M]⁺ calcd for (C₉₉H₁₁₃F₂N₃O₆S₃): 1573.776; found: 1574.311.

Synthesis of C3. In a 100 mL three-necked round-bottom flask, compound 14 (0.33 g, 0.21 mmol) and KOH (0.24 g, 4.2 mmol) were dissolved in a mixed solvent of THF/H₂O (60 mL, 3/1, v/v) under a nitrogen atmosphere. The reaction mixture was refluxed at 80 °C for 12 h and then extracted with dichloromethane. The collected organic layer was washed with brine over three times, and then dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was

purified by column chromatography on silica gel using a mixture solvent (chloroform/methanol=10/1, v/v) as the eluent, and then recrystallized by acetone and dichloromethane to give a deep purple product (0.27 g, 84%). ¹H NMR (400 MHz, CD₂Cl₂), δ (ppm): 8.72 (s, 1H), 8.56 (d, 2H), 8.06 (d, 2H), 7.96 (s, 1H), 7.90 (d, 2H), 7.43 (d, 4H), 7.27 (d, 4H), 7.21 (s, 1H), 6.99 (s, 1H), 6.90 (d, 4H), 6.81 (d, 6H), 3.92 (br, 8H), 3.46 (br, 2H), 1.72–1.74 (m, 9H), 1.22–1.42 (m, 51H), 0.83–0.87 (m, 15H); ¹³C NMR (100 MHz, CD₂Cl₂), δ (ppm): 158.25, 158.06, 156.63, 156.20, 153.29, 148.77, 145.45, 141.66, 140.43, 140.26, 137.80, 137.57, 129.80, 129.23, 129.06, 122.59, 121.96, 121.65, 120.45, 116.78, 114.27, 114.06, 100.00, 99.43, 68.09, 68.03, 61.72, 61.33, 31.98, 31.84, 31.82, 29.65, 29.40, 29.36, 29.32, 29.26, 29.25, 28.76, 27.24, 26.06, 22.69, 22.67, 22.65, 13.90, 13.88, 13.86; MS (MADI-TOF): m/z [M]⁺ calcd for (C₉₈H₁₁₄N₄O₆S₃): 1538.790; found: 1539.198.

References

[1] Joly, D.; Pellej à, L.; Narbey, S.; Oswald, F.; Chiron, J.; Clifford, J.; Palomares, E.; Demadrille, R. *Sci. Rep.* **2014**, *4*, 4033.

[2] Blouim, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.

[3] Pomerantz, M.; Amarasekara, A.; Dias, H. J. Org. Chem. 2002, 67, 6931.

[4] Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P. Energy Environ. Sci. 2013, 6, 2944.

Figure S1. UV-vis absorption spectra and the corresponding molar extinction coefficient (ε) of the dyes C1–C3 in CHCl₃ solution (10⁻⁵ M).

Figure S2. Normalized UV-vis absorption spectra and normalized PL spectra of the dyes C1–C3.

Figure S3. The CV curve of Fc/Fc^+ in $CHCl_3$ solution.

Figure S7. ¹³C NMR spectrum of compound 4 in CDCl₃

Figure S13. ¹³C NMR spectrum of dye C1 in CDCl₃

8.24 8.24 8.22 7.36 7.38 7.38

4.46 4.44 4.43 4.41 00.0-

Figure S17. ¹³C NMR spectrum of compound 13 in CDCl₃

Figure S18. ¹H NMR spectrum of dye C2 in CDCl₃

S19

Figure S22. ${}^{1}H{-}^{1}H$ Nuclear Overhauser Effect spectroscopy data for compound 11 with mixing times of 0.3 seconds (a) and 0.8 seconds (b), no cross correlation peaks can be observed between the PT (H₁) and phenyl group (H₂ and H₃) protons, indicating that the proposed regionegular structure of compound 11 is right.

Figure S28. MS (MADI-TOF) spectrum of compound 4

Figure S30. MS (MADI-TOF) spectrum of compound 13

Figure S32. MS (MADI-TOF) spectrum of dye C1

