Supporting Information

A Green Method to Prepare Oxindole-Fused Spirotetrahydrofuran Scaffolds through Methanesulfonic Acid Catalyzed Cyclization Reactions of 3-Allyl-3-hydroxy-2-oxindole in Water

Jie-Huan Zhang,^{†,§} Ru-Bing Wang,^{‡,§} De-Feng Li,[†] and Li-Ming Zhao^{*,†}

[†]School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116,

Jiangsu, China

[‡]State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,

Beijing 100050, China

<u>lmzhao@jsnu.edu.cn</u>

Table of Contents

1. Copies of ¹ H and ¹³ C NMR Spectra for Compounds 2a-w	2-S24
2. Copies of ¹ H and ¹³ C NMR Spectra for Compound 5	S25
3. Copies of ¹ H and ¹³ C NMR Spectra for Compound 7	S26
4. Crystal structure of Compound 20	S27

Figure S2. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2a

Figure S3. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2b

Figure S4. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2b

Figure S6. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S8. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2d

Figure S9. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2e

Figure S10. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2e

Figure S11. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2f

Figure S12. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2f

Figure S14. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2g

Figure S15. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2h

Figure S16. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2h

Figure S17. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2i

Figure S18. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2i

Figure S20. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2j

Figure S21. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2k

Figure S22. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2k

Figure S23. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 21

Figure S24. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 21

Figure S26. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2m

-0.008

Figure S27. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2n

Figure S28. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2n

Figure S31. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2p

Figure S32. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2p

Figure S34. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2q

Figure S35. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2r

Figure S36. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2r

 $\begin{array}{c} 7.4\,0.9\\ 7.7\,3.83\\ 7.7\,3.83\\ 7.7\,3.83\\ 7.7\,3.73\\ 7.7\,3.73\\ 7.7\,3.73\\ 7.7\,3.83\\ 7.7\,3.84\\ 7.7\,3.84\\ 7.7\,3.85\\ 7.2\,3.85\\$

Figure S38. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2s

Figure S39. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 2t

Figure S40. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2t

Figure S42. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2u

Figure S44. $^{13}\mathrm{C}$ NMR Spectrum (100 MHz, CDCl₃) of Compound 2v

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S46. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 2w

Figure S47. ¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 5

Figure S48. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 5

Figure S50. ¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 7

Figure S51. Crystal Structure of Compound **20** (Color scheme: C, gray; H, white; N, blue; O, red; Br, dark red)

Formula	C ₁₄ H ₁₆ BrNO ₂
Formula weight	205.45
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a = 9.2162(18)$ Å, $\alpha = 90$ deg.
	$b = 11.9031(18)$ Å, $\beta = 95.002(15)$ deg.
	$c = 12.665(2)$ Å, $\gamma = 90$ deg.
Volume	1236.7(2) Å ³
Ζ	6
Density (calculated)	1.479 Mg / m ³
Absorption coefficient	2.963 mm ⁻¹
F(000)	624
Theta range for data collection	2.802 ° to 29.172°
Limiting indices	-11<=h<=6, -14<=k<=15, -16<=l<=17
Reflections collected	6157
Independent reflections	3147 [R(int) = 0.0452]
Data / restraints / parameters	3147 / 8 / 166
Goodness-of-fit on F^2	1.034
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0914, wR_2 = 0.2174$
R indices (all data)	$R_1 = 0.1689, wR_2 = 0.2791$
Largest diff. peak and hole	1.739 and -1.082 e. Å ⁻³

Table S1. Crystal Data for Compound 20