
 Supporting Information for: 

 

3D Imaging of a dislocation loop at the onset of plasticity 

in an indented nanocrystal 

Maxime Dupraz 1,*, Guillaume Beutier 1, Thomas W. Cornelius 2, Guillaume Parry 1, 

Zhe Ren 2, Stéphane Labat 2, Marie-Ingrid Richard 2,3, Gilbert A. Chahine 1, Oleg 

Kovalenko 4, Marc De Boissieu 1, Eugen Rabkin 4, Marc Verdier 1, Olivier Thomas 2 

 
* Current address: Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, 

Switzerland 

E-mail: maxime.dupraz@psi.ch 

 
 

1. Univ. Grenoble Alpes, CNRS, Grenoble-INP, SIMAP, F-38000 Grenoble, 

France 

 

2. Aix Marseille Univ., Université de Toulon, CNRS, IM2NP UMR 7334, F-13397 

Marseille Cedex 20, France 

 
 

3. ID01/ESRF, 71 Avenue des Martyrs, CS40220, F-38043, Grenoble Cedex 9, 

France 

 

4. Department of Materials Science and Engineering, Technion – Israel Institute 

of Technology, 32000 Haifa, Israel 



Supporting information S1: Sample preparation and experimental details  

 
The gold particles were obtained employing solid state dewetting of a 30 nm thick Au 
film on the c-plane oriented polished sapphire substrate. The film was deposited 
using an electron-beam evaporator (Airco Temescal FC 1800) on a lithographically 
patterned substrate of 2’’ in diameter (Gavish Inc.). The substrate was ultrasonically 
cleaned in acetone, ethanol, isopropanol, and DI water prior to the resist coating. 

The pattern consisted of holes of ~1-2 μm in size in the marked 50 μm pitch grid 

obtained by standard photolithography procedure including: vapor prime with 
Hexamethyldisilazane (HMDS), spin coating of resist, soft bake, contact printing 
exposure using mercury lamp source mask aligner (KARL SUSS MA-6), post bake, 
development, and hard bake. The lift-off procedure after film deposition was 
performed at 70 °C in 1-methyl-2-pyrrolidone (NMP) for 3 min, followed by rinsing in 
acetone, ethanol, isopropanol and DI water. The samples were annealed in the tube 
resistance furnace in ambient air for 24 h at 900 °C, resulting in agglomeration of the 
patterned film and formation of single crystalline faceted Au particles of different 
sizes (100-500 nm in height and 200-2000 nm in lateral size). Some fraction of the 
isolated center gold islands evolved into single isolated particles which were imaged 
and mapped by scanning electron microscopy (HR-SEM, Zeiss Ultra Plus) for the 
later BCDI experiment (Fig. S1a-b). The lithographic/mask processing route ensured 
that only one crystallite is irradiated by the incoming X-ray beam. This was important 
since any partial illumination of neighboring crystallite would cause interferences in 
the measured CXD patterns.  
The obtained crystallites exhibited the same well-defined out-of-plane orientation as 
the original thin Au film, with the Au [1 1 1] direction being normal to the (0 0 0 1) 
sapphire surface. The crystallites also exhibited a low degree of in-plane ordering, 
the preferred orientation corresponding to the lowest energy of Au-sapphire interface 
1. Precise localization of the sample was achieved by Scanning X-ray Diffraction 
Microscopy (SXDM) in a continuous scanning mode, allowing the fast acquisition of 
two-dimensional real space maps at the vicinity of the sample of interest 2. 
 
 



Figure S1 SEM images of the solid state dewetted gold particles. The mask used for 
the deposition of the gold thin film allows obtaining a regular array of crystals with a 
single and isolated particle at the centre of each square. (b) Zoom of the gold particle 
that was selected for the in-situ nanoindentation experiment. (c) Comparison 
between a low resolution SEM image of the sample and the reconstructed electron 
density drawn at 25% of the maximum of density. (d) Schematics of the crystal. The 
(101) crystallographic plane containing the dislocation loop is indicated in green. The 
loop itself is highlighted in red. 

 

  



Supporting information S2: Details on the AFM tip  

 

The AFM cantilever is actually a so-called Akiyama-probe (Fig. S2) that was 
provided by NanoAndMore company. Its specifications are listed in Table S2. The 
radius of curvature of the AFM-tip of less than 15 nm ensures that the surface area 
over which the force is applied remains relatively small. Applied forces by the AFM 
are estimated from the cantilever elastic stiffness (5 N/m) times the chosen imposed 
vertical displacement (10-100nm) considering that the indentation depth is much 
smaller than the displacement. 
 

Tab. S1 Cantilever and tip specifications 

Cantilever Length: 310 μm, Thickness: 3.7 μm, 
Width: 30 μm each 

Material: n+ silicon (0.01-0.25 Ohm.cm) 

Tip Tip radius < 15 nm, height: 28 μm 

Force constant 5 N/m (Si cantilever) 

Resonant frequency 50 kHz 

 

 

Figure S2 Left: Picture of the cantilever, right: SEM image of the tip (from Akiyama) 

 
  



 
Supporting information S3: Bragg Coherent Diffraction Imaging: experimental 
set-up and methods 
 
The experiment was performed at beamline ID01 of the ESRF, with a 
monochromatic beam of 8 keV. Transverse coherence was enforced by high-
precision slits matching the transverse coherence lengths (70 μm H x 300 μm V) just 
before the focusing optics. The coherent beam was focused down to 700 x 400 nm2 
(HxV), using a tungsten Fresnel zone plate (FZP) with a diameter of 300 μm and an 
outer zone width of 70 nm. To ensure a full illumination of the crystal of interest, it 
was placed 1 mm behind the focus. The diffracted X-rays were recorded using a two-
dimensional detector (Maxipix, 516 x 516 pixels of 55μm) mounted 1.02 m 
downstream from the sample position. The 3D diffraction patterns around the Au 1 1 
1 Bragg reflection are built by stacking 250 slices of the 2D detector collected by 
rocking the sample across the Bragg reflection over a +/-0.5° range with a step size 
of 0.004° (for a total acquisition time of the order of 20 min). The resolution in 
reciprocal space is 2.2 μm -1 x 2.2 μm -1 x 1.9 μm -1 , hence an oversampling of the 
order of 3 in each dimension for an object of the order of 1 μm. 
Due to the Bragg geometry (θBragg=19.2° at 8 keV), the natural frame of the 3D data 
sets is not orthogonal (the scan direction is not orthogonal to the detector plane). It 
was thus interpolated onto an orthogonal frame with approximately the same voxel 
size, where the subsequent analysis is performed. The 3D dataset was then cropped 
in each of the two pixel detector directions and subsequently binned by a factor of 2 
along all three dimensions, resulting in a 200x200x200 pixels dataset which was 
used for the reconstruction.  
To avoid any linear phase ramp in the complex sample density, ρ(r) induced by a 
mis-centering of the reciprocal space data, its Fourier transform F(q) was re-centred 
to the nearest pixel using the centre of mass of |A(q)|4   3. Sub pixel shifting was 
achieved by multiplying ρ(r) by the appropriate phase ramp calculated from the 
centre of mass. The maximum phase shift accounting from refraction effects was 
calculated 4 to a value of 0.45 radians, much smaller than the phase variations at the 
vicinity of the defects, and was thus neglected. The particle was illuminated with a 
beam size of 700x400 nm2 (HxV), slightly larger than the size of the particle 
(550x550x275 nm3). For a sample positioned exactly in the focal spot of the Fresnel 
zone plate, the phase of the wave front is expected to be flat in the focus 5–7, 
however under such experimental conditions, Diaz et al. reported distortions of the 
wave front of as much as 0.5 radians 8. Here, the sample was placed out of the focus 
of the Fresnel Zone plate by 1 mm, where the distortions of the wave front were 
expected to be even larger. Linear phase variations observed at the vicinity of the {1 
1 1} and {0 0 1} facets (Fig. S4) can be ascribed to the variations in the phase of the 
illumination wavefront. In order to disentangle the contribution of the strain and of the 
illumination wavefront in the overall phase variations, the latter would need to be 
reconstructed by performing a 2D ptychographic scan of the particle 9. Such 
reconstruction has not been performed during the experiment; therefore the phase 
variations observed in the sample originate from both contributions.  
To quantify the phase variations induced by the illumination wavefront, we performed 
a simulation of the illumination wavefront with the experimental parameters listed in 
Tab. S3. In good agreement with our experimental observations, the phase is mostly 
flat vertically over 400 nm, which is slightly more than the height of the crystal (Fig. 
S3a). On the other hand, it appears that the phase is not constant over the full width 



of the crystal, explaining the phase ramp observed on one side of the crystal (Fig. 
S4). As a comparison, we also included the reconstruction of the wavefront 
performed during a subsequent experiment with a similar experimental setup (Fig. 
S3b).The reconstruction was performed in transmission geometry on a well-known 
reference object using the PyNX code 10. The phase profile is in reasonably good 
agreement with our simulations.  In conclusion, the phase variations induced by the 
wave front are significantly smaller than the phase variations caused by strain and 
crystal defects, and the presence of these phase inhomogeneities do not affect the 
result and conclusions presented in this work.  
 
Tab. S2 Experimental parameters used for the simulation of the wavefront 

Beamstop diameter 50 μm 

OSA diameter 50 μm 

FZP diameter / thickness / width of the 
outer ring 

300 μm / 1.8 μm / 70 nm 

Opening of the coherence slits 70(H) x 300(V) 

Distance coherence slits-FZP 10.4 cm 

Distance FZP - OSA 11.1 cm 

 
 

 

Figure S3 a) Simulated wavefront 1mm behind the focal plane using the 
experimental parameters listed in Tab. S3 b) Reconstructed wavefront during a 
subsequent experiment using a similar experimental set-up (courtesy of Steven 
Leake, ID01 beamline, ESRF) 

 
The reconstruction of the CDI data was carried-out using standard phase retrieval 
algorithms namely the error-reduction (ER) 11, hybrid input-output (HIO) 12 and 
shrink-wrap (SW) algorithms 13. In the phase retrieval procedure, both reciprocal 
space and real space are updated at each step of the algorithm and constraints are 
applied on both sides. Inputs of the algorithms are the measured intensity and a 
finite size 3D support in which all the complex sample density is constrained. Here 



this support was given by the Patterson function (autocorrelation of the diffracted 
intensity), threshold to 2% of its maximal value 13. The latter gives a good estimation 
of the size of the object for weakly strained objects. The procedure for the phase 
retrieval consisted of an alternation of 50 ER and 100 HIO repeated 100 times. The 
HIO feedback parameter β was set to a typical value of 0.9 14. Shrinkwrapping of the 
support was done at the end of every series of (50 ER + 100 HIO) via convolution of 
the reconstruction with a Gaussian function with a threshold of 10%. The method 
was used over 50 random starts for each dataset. The best solutions were selected 
according to their metric error (which quantifies the agreement between the retrieved 
and experimental intensities) and to the homogeneity of their electron density 15. To 
reduce the noise inherent to experimental data, the 10 best reconstructions were 
averaged to produce the final image of the sample. 
 
The spatial resolution of the experiment was estimated from the phase retrieval 
transfer function (PRTF) 16: 

 

PRTF(q) =
|⟨F(q)⟩|′

√I(q)
 

 
The resolution is given at the point to where the PRTF drops to a particular value. 
We used a value of PRTF = 0.5, considered as a conservative estimate, to 
determine the spatial resolution. This gives us a resolution of ~ 13 nm, comparable 
with values found in the literature 15,17,18. 
 
 
 

 

Figure S4 Slices of the reconstructed displacement field in the (1 -1 0) (a), (1  1 -2) 
(b) and (1 1 1) (c) planes.  

 
 
 



The cross-correlation 𝐶𝐶(𝑚, 𝑛) between two images 𝐼𝑚 and 𝐼𝑛 presented in Fig. 3 of 

the manuscript is calculated as 𝐶𝐶(𝑚, 𝑛) =
 ∑ 𝐼𝑚∗𝐼𝑛𝑝𝑖𝑥𝑒𝑙𝑠

√∑ 𝐼𝑚
2

𝑝𝑖𝑥𝑒𝑙𝑠 ∗∑ 𝐼𝑛
2

𝑝𝑖𝑥𝑒𝑙𝑠

. 𝐶𝐶 = 1 for identical 

images and lower otherwise. 

 

  



Supporting information S4: Simulation of nanoindentation on a nickel thin film 
 
To facilitate the identification of the crystal defects nucleated during the indentation 
experiment, the reconstruction of a dislocation arrangement, resulting from a 
molecular dynamics simulation of plastic indentation on a nickel thin film was carried 
out 19. The simulation cell shown in Fig. S5a contains 521642 atoms and measures 
173x196x162 Å3. An EAM potential 20 was employed to describe the interactions 
between the nickel atoms. The indenter was modelled by a repulsive sphere with a 
radius of 120 Å. The indentation was carried out by gradually moving the sphere into 
the crystal in steps of 0.1 Å along the [-1 -1 -1] direction, while holding fixed the 
bottom atomic layer of the crystal (non-deformable substrate assumption). Periodic 
boundary conditions were applied along the [1 0 -1] and [1 -2 1] directions of the cell. 
Between each increment, the potential energy of the cell was minimized using a 
Conjugate Gradient algorithm to obtain a succession of quasi-equilibrium states with 
increasing indentation depths. The indentation resulted in the nucleation of three 
equivalent variants of interstitial prismatic loops that plastically accommodate the 
displacement along the [-1 -1 -1] direction of indentation. Their Burgers vectors of the 
dislocation loops are shown in Fig. S5a 
The simulated diffraction data used for the reconstruction was calculated at the 
vicinity of several 1 1 1 peaks in the kinematic approximation by summing the 
amplitudes scattered by each atom with its phase factor 10. The 3D dataset in the 
reciprocal space consists of 128x128x128 pixels, with a step size of 1/128 reciprocal 
lattice units (0.022 nm-1). The extent of the reciprocal space gives a real space pixel 
size of 0.28 nm.  
The reconstruction procedure is similar to the one described in Supporting 
Information S1, without the need of averaging the best reconstructions to reduce the 
noise on the experimental data.  
 
Determination of the slip system of the prismatic loops: 
 
A reliable and efficient way to determine the Burgers vectors of the prismatic 

dislocation loops relies on the use of the well-known invisibility conditions: g.b = 0 21–

23. This approach was used in our previous work to identify crystal defects from their 

signature on diffraction patterns 21. It can also be applied on real space 
reconstructions. Figure S5.b-d shows an isosurface rendering of the reconstructed 
electron density (35% threshold of the maximum density) for several 1 1 1 reflections. 
The dips in the electron density at the vicinity of the loops can be used to confirm the 
spatial arrangement and Burger vectors of the dislocations. For g = 1 1 1, none of 
the invisibility conditions are satisfied, and all the dislocation loops are visible (Figure 
S5b). On the other hand, for g = 1 -1 1, g = 1 1 -1 and g = -1 1 1, only one variant is 
visible since the other two fulfill the invisibility conditions (Figure S5c-d). 
Independently of the reflection chosen, the position of the dislocation loops in the 
crystal matches perfectly with the atomistic configuration. Provided that 2 or 3 
equivalent 1 1 1 reflections are reconstructed, this approach can thus be used to 
determine the Burgers vectors of the loops within an isolated crystal in a very reliable 
way. If a single 1 1 1 Bragg peak is measured, one can deduce the Burgers vector of 
the loop from its crystallographic orientation, as described in the body of the 
manuscript.  



Finally, the simulation allows to confirm the prismatic nature of the dislocation loops  
nucleated during the nanoindentation experiment  The profile of the phase shift 
around the defect is indeed very consistent with the one observed experimentally:  

- A pair of vortex-antivortex of phase can be evidenced in the (1 1 1) plane that 
intercept the loop in two loci (Fig. S5f) 

-  A π phase jump between the region inside and outside the loop is observed 
in the (0 1 1) plane normal to the glide cylinder of the prismatic loop.   

 

 
 

Figure S5 (a) Atomistic configuration of the nickel thin film. (b)-(d) 35% isosurface of 
the reconstructed electron density which reveals the visibility of the loops for various 

g. (e) Simulated 𝜑11̅1 phase fields in the (0 1 1) plane normal to the glide cylinder of 
the prismatic loop. (f) 𝜑11̅1 phase field in the (1 1 1) plane intercepting the prismatic 
loop in two loci. 

  



 
Supporting Information S5: Evolution of εzz for consecutive indentations with 
increasing load.  
 
We provide here all the measured states of the crystal, after successive indentations 
of increasing load. The retrieved outer shape of the particle is found to be 
consistently the same, with sizes matching the AFM and SEM observations, and the 
internal density does not show any particular feature, except for the void of density 
observed with the dislocation loop after the 3rd

 indentation. Here we present the 
strain component εzz, which is obtained from the retrieved phase. 
 

 

Figure S6 Reconstructed εzz strain field in the (x,y), (x,z) and (y,z) planes 
corresponding to the (1 1 1), (1 1 -2 and (1 -1 0) planes respectively in the pristine 
crystal (a) and after 3, 4 and 5 iterative loadings (b-d). Isosurface of the strain drawn 
for εzz < 7.10-4 (blue) and for εzz > 7.10-4  (orange) in the pristine crystal (e) and after 
3,4 and 5 iterative loadings (g-h). 

  



Supporting Information S6: Details of FEM calculations 
 
Here is a more detailed presentation of our FEM calculations: 

 
 

- A linear anisotropic elasticity law is used. The stiffness tensor of Au is using the 
following elastic constants in Voigt notation: C11 = 192.34 GPa, C12 = 163.14 
GPa and C44 = 42.26 GPa 25 
 
- The crystallite geometry is a polyhedral volume defined only by {111} and {100} 
facets as in a Wulff equilibrium shape, see fig.5. The extent and location of each 
facet are obtained from a best fit to the outer shape of the experimental 
reconstructed data. 

 
- The characteristic size of the FEM mesh is slightly larger than the size of the 
regular spacing of uz 3D array obtained from reconstruction. Under those 
conditions, any finer mesh would not improve the results. 

 
- Quadratic interpolation tetrahedral elements are used in order to best perform 
gradient calculations from nodal data. 
 
- Surface boundary conditions: two extreme cases are studied. The first one is to 
consider all surfaces as free surfaces (traction free) but the crystallite-substrate 
one is considered as rigid (no displacement). The second one considers the 
crystallite-substrate interface as completely relaxed by some atomic 
rearrangement so that it behaves also as a free surface. 
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