Supporting Information to

N-Heterocyclic Olefin-Based (Co)polymerization of a Challenging Monomer: Homopolymerization of ω-Pentadecalactone and Its Copolymers with γ-Butyrolactone, δ-Valerolactone, and ε-Caprolactone

Patrick Walther and Stefan Naumann

University of Stuttgart, Institute for Polymer Chemistry, 70569 Stuttgart, Germany E-Mail: <u>Stefan.naumann@ipoc.uni-stuttgart.de</u>

Contents

Experimental	;
Materials and Synthesis	;
General Polymerization Procedures	ŀ
Homopolymerization of PDL	ŀ
General Procedure for the Copolymerization Reactions	ŀ
Characterization and Analysis	ŀ
Control Reactions (no dual catalysis)	;
Homopolymerization of PDL	;
Correlation of M_n and conversion)
Correlation of M_n (GPC) and M_n (NMR) in PDL homopolymerization)
Copolymerization reactions	_
Copolymerization of PDL/VL	_
Copolymerization of PDL/GBL)
Representative ¹ H-NMR analysis of a copolymer13	;
Copolymerization of GBL with CL and VL15	;
Representative GPC traces resulting from GBL-CL/VL copolymers16	;
¹³ C NMR analysis	,
DSC analysis of synthesized copolymers)
Complexation experiments analyzed via ¹ H-NMR spectroscopy24	ŀ
References	ŀ

Experimental

Materials and Synthesis

ε-Caprolactone (CL), δ-Valerolactone (VL) and γ-Butyrolactone (GBL) were stirred over CaH₂ overnight, distilled under nitrogen, degassed twice and subsequently stored under inert conditions (glove box, LabMaster, *MBraun*, Germany). ω-Pentadecalactone was dissolved in toluene and stirred over molecular sieves (3 Å) overnight. After exchanging the molecular sieves and additional stirring overnight, toluene was removed under reduced pressure. THF and toluene used in polymerizations were taken from a solvent purification system (*MBraun*, Germany) and stored inside the glove box over molecular sieves (3 Å). LiCl (*Sigma Aldrich*, powder, ≥ 99.99 % trace metals basis), MgCl₂ (*Alfa Aesar*, "ultra dry", 99.99 %), MgI₂ (*ABCR*, "ultra dry", 99.996 %, beads, ampouled under argon), YCl₃ (*Alfa Aesar*, "ultra dry", 99.99 %, ampouled under argon) and ZnI₂ (*Acros*, "extra pure", 99.999 %) were used as received and stored inside the glove box under exclusion of light.

For characterization of NHOs 1 – 3, see published literature.¹⁻⁴ The thus received NHOs were stored inside the glove box under nitrogen at -36 °C.

Figure S1. General procedure for the preparation of NHOs 1 – 3 used in this work.

General Polymerization Procedures

Prior to setting up the individual polymerization reactions, a 1.0 M stock solution of the corresponding monomer (ω -Pentadecalactone) in the respective solvent (THF or toluene) was prepared. Reactions at room temperature were conducted inside the glove box, whereas reactions at elevated temperatures were performed under inert atmosphere (N₂) using standard Schlenk techniques. The polymerizations were stopped by precipitation from high-boiling petroleum ether, affording a colorless precipitate, except for reactions where Lewis Acids containing iodide (MgI₂, ZnI₂) were employed. In these cases, the precipitate exhibited off-white to yellow discoloration. Proton NMR spectroscopy was used to determine the conversion, by monitoring the $-C\underline{H}_2$ -O- signal of the applied monomers (PDL: δ = 4.13 ppm, CL: δ = 4.22 ppm, VL: δ = 4.34 ppm, GBL: δ = 4.31 ppm) and resulting polymers (PPDL: δ = 4.08 ppm, PGBL: δ = 4.07 ppm). Heat-dried glass pipettes (110 °C, overnight) were used to draw aliquots from reactions outside the box, while applying N₂ – flow. For determination of M_n via NMR end group analysis, the C<u>H</u>₂-unit of the initiator (BnOH) was used (δ = 5.05 ppm, CDCl₃).

Homopolymerization of PDL

After providing the respective Lewis Acid (0.125 mmol) inside a suited reaction vessel, 2.5 mL of the stock solution was added with an Eppendorf syringe and stirred vigorously to afford a clear solution. Subsequently, the initiator BnOH (0.05 mmol) and the corresponding *N*-Heterocyclic Olefin (0.025 mmol) were added to result in a total molar ratio of NHO/BnOH/M_x/PDL = 1:2:5:100 in the reaction solution.

General Procedure for the Copolymerization Reactions

Copolymerization reactions were assembled analogously to the procedure mentioned above, to give a resulting molar ratio of NHO/BnOH/LA/Co(1)/Co(2) of 1:2:5:100:100 and an initial monomer concentration (total of both lactones) of 2 mol/L. Prior to setting up the reaction, the accuracy of the stock solution was controlled using proton NMR spectroscopy. Analyzing the above mentioned triplets of both respective comonomers and resulting copolymers (PPDL-PCL: δ = 3.97 - 4.11 ppm, PPDL-PVL: δ = 3.95 - 4.05 ppm, PGBL-PCL: δ = 4.00 - 4.13 ppm, PGBL-PVL: δ = 3.99 - 4.10 ppm), the conversion was followed by 'H NMR spectroscopy. Isolation of the copolymers was realized by precipitation from highboiling petroleum ether to yield colorless to yellowish (MgI₂ and ZnI₂) solids for copolymers incorporating PPDL, or colorless, oily liquids when the copolymers contained GBL-derived repeating units. The molecular weight of the isolated and dried copolymers was investigated using GPC (CHCl₃).

Characterization and Analysis

¹H/¹³C NMR spectra were recorded on a *Bruker* Avance III 400 spectrometer, with the chemical shifts being reported relative to reference peaks of the applied deuterated solvents (CDCl₃: δ = 7.26/77.16 ppm for proton and carbon spectra, respectively). GPC (CHCl₃, 40 °C) was used to determine the molecular weight of synthesized (co)polymers, calibrated with a polystyrene standard. A chromatographic assembly comprising a *PSS* SDV 5 µm 8*50mm guard column, three *PSS* SDV 100 000 Å 5 µm 8*50mm columns and an *Agilent* 1200 Series G1362A detector (RI) was used. The concentration of the prepared samples amounted to 2.5 mg/mL, and a flow-rate of 1 mL/min was applied during the analyses. For Differential Scanning Calorimetry (DSC), a Perkin Elmer DSC 4000 was used (scanning rate 5 K/min, 20 mL/min nitrogen flow, temperature range 0°C to 100°C and 30°C to 130°C, respectively). Thermograms were analyzed using the second heating/cooling cycle.

Figure S2. Schematic representation of enamine formation (= deoxy Breslow intermediate) in lactone polymerization using $=CH_2$ -bearing NHOs. These compounds can directly ring-open the monomer, forming a zwitterionic intermediate. This structure displays acidified protons (red). Supposedly, a proton transfer can occur with several basic species present in the polymerization setup, including deprotonation by growing anionic chain ends (intra- and intermolecular) or by free NHOs. In either case, one equivalent of catalyst is deactivated. This side reaction cannot occur with substituted NHOs (= CR_2).

Control Reactions (no dual catalysis)

NHO	Lewis Acid (MX _n)	NHO/BnOH/MX _n /PDL	Time [min]	Conversion ^a [%]
1	-	1:2:0:100	240	0
1	-	1:0:0:100	240	0
2	-	1:2:0:100	240	0
2	-	1:0:0:100	240	0
3	-	1:2:0:100	240	40 ^{b)}
3	-	1:0:0:100	240	0

Table S1. Control reactions for PDL polymerization in the absence of Lewis acid.

Polymerization conditions: 110 °C in toluene, $[M]_o = 1.0 \text{ M}$. ^{*a*}Monomer conversion determined *via* ¹H-NMR spectroscopy. ^{*b*}molecular weight of the polymer determined *via* GPC (CHCl₃) to be 15000 g/mol, with $\mathcal{D}_M = 1.52$.

Homopolymerization of PDL

Table S2. Homopolymerization of PDL using NHO/metal halide LPs (THF).

NHO	Lewis Acid	Time	Conversion ^a	M_n^b	${\cal B}_{\sf M}{}^b$
		[min]	[%]	[g·mol]	
		60	89	34200	1.35
2	MgI ₂	120	94	31000	1.61
		240	96	24000	2.0
2		60	10	1800	1.52
	ZnI ₂	120	17	2200	1.95
		240	28	8200	1.43
2		60	13	2500	1.26
	YCl ₃	120	19	4900	1.23
		240	33	8700	2.2

Polymerization conditions: 100 °C in THF, $[M]_o = 1.0 \text{ M}$. ^{*a*}Monomer conversion determined *via* ¹H-NMR spectroscopy. ^{*b*}molecular weight determined *via* GPC (CHCl₃).

Table S3. Homopolymerization of PDL using NHO/metal halide LPs (toluene).

		15	14	3000	(1.22)
		60	47	6700	(1.66)
2	YCl ₃	120	68	10000	1.69
		240	85	12200	1.78
		15	35	10500	1.51
	LiCl	60	72	20600	1.51
	LICI	120	83	24300	1.54
		240	86	26600	1.52
		15	14	5600	1.46
	MaCl	60	42	14500	1.57
	Wigel ₂	120	60	22100	1.48
3		240	75	26500	1.49
J		15	57	17000	1.47
	Mal	60	87	21500	1.60
	IVIGI2	120	94	22100	1.65
		240	95	20900	1.58
	ZnI ₂	240	14	3700	1.61
		60	32	7900	1.68
	YCl ₃	120	55	11700	1.95
		240	74	18200	1.61

Polymerization conditions: 110 °C in toluene, $[M]_o = 1.0 \text{ M}$. ^{*a*}Monomer conversion determined *via* ¹H-NMR spectroscopy. ^{*b*}molecular weight determined *via* GPC (CHCl₃).

Figure S3. Correlation of molecular weight (determined by GPC (CHCl₃)) vs. conversion for PDL homopolymerization using **2** with ZnI_2 and YCl_3 . Conditions: **2**/BnOH/MX_n/PDL = 1:2:5:100, [M]₀ = 1.0 mol/L, toluene, T = 110 °C.

Correlation of M_n (GPC) and M_n (NMR) in PDL homopolymerization

Table S4. Comparison of molecular weights determined *via* GPC (CHCl₃, PS, data from Table S2) and end group analysis ('H NMR spectroscopy).

		time	Conversion ^{<i>a</i>)}	${{ m M_{n,GPC}}^{b)}}$	M _{n,NMR} ^{c)}
NHO	MA _n	[min]	[%]	[g/mol]	[g/mol]
1	LiCl	240	6	2900	¹ 575
1		15	26	7400	6300
	- MgCl	60	84	26200	21150
1		120	94	25200	24525
	-	240	94	30000	24975
		15	77	19200	18675
1	MgI.	60	95	22900	21150
1	8-2 -	120	96	20700	24300
	-	240	96	17100	31725
1	ZnL	60	13	2300	2700
-		120	20	4000	4950
		15	12	2900	3150
1	YCl.	60	49	13300	12150
-		120	72	18800	17775
	-	240	86	20500	23175
		15	37	6600	7650
2	MgCl ₂	60	86	12400	17550
	-	120	92	13800	17550
2	MgI ₂	60	92	10700	9900
		60	5	2200	1575
2	ZnI ₂	120	15	3600	2250
	-	240	22	4600	5400
2	YCl.	15	14	3000	3600
-	3	бо	47	6700	10350
		15	35	10500	9900
3	LiCl	60	72	20600	19800
	-	120	83	24300	21600

		240	86	26600	24300
3	MgCl ₂	15	14	5600	4050
3	MgCl ₂	60	42	14500	10125
		15	57	17000	13725
3	MgI,	60	87	21500	23175
		120	94	22100	30375
		240	95	20900	25425
3	Znl ₂	240	14	3700	4050
		60	32	7900	8550
3	YCl ₃	120	55	11700	13275
	_	240	74	18200	18675

^{*a*)} conversion determined *via* ¹H NMR analysis (CDCl₃); ^{*b*)} molecular weight determined *via* GPC (CHCl₃, PS); ^{*c*)} molecular weight determined *via* ¹H NMR endgroup analysis (multiplied by a correctional factor of 2.25).

Copolymerization reactions

Copolymerization of PDL/VL

Table S5. Copolymerization of PDL/VL using various NHO/Lewis Acid combinations.^{*a*}

no.	NHO	Lewis Acid	time [min]	conv. ^b [%]	M_{n}^{c} [g·mol ⁻¹]	${\cal D}_{M}{}^{c}$
1	2	LiCl	240	41	3800	1.99
2	2	MgI2	240	38	6100	1.79
3	2	ZnI ₂	240	36	10000	1.35
4	2	YCl ₃	240	78	15900	1.87

^{*a*}Conditions: molar ratio of NHO/BnOH/M_x/PDL/VL = 1:2:5:100:100, $[M]_{0,total}$ = 2.0 M in toluene, 110 °C. ^{*b*}Monomer conversion determined *via* NMR spectroscopy. ^{*c*}Determined *via* GPC analysis (CHCl₃).

Copolymerization of PDL/GBL

no.	Lewis Acid	time [min]	conv. ^b [%]	M_n^c [g·mol ⁻¹]	${\cal D_M}^c$
		240	18	6900	1.43
1	LiCl	20 h	19	7600	1.43
		24 h	19	7900	1.45
		240	10	2700	1.12
2	MgCl ₂	24 h	11	4100	1.28
		27 h	21	5000	1.31
		240	11	4800	1.27
2	7.1	20 h	25	13900	1.52
3	ΣIII_2	24 h	27	14500	1.68
		48 h	35	14600	1.80
		15	5	-	-
4		60	10	2000	1.45
	YCl ₃	120	11	3600	1.55
		240	17	7100	1.59
		86 h	58	20900	1.79

Table S6. Copolymerization of PDL with GBL using 2 and various Lewis Acids.^{*a*}

^{*a*}Conditions: molar ratio of NHO/BnOH/M_x/PDL/VL = 1:2:5:100:100, $[M]_{o,total}$ = 2.0 M in THF, 100 °C. ^{*b*}Monomer conversion determined *via* NMR spectroscopy. ^{*c*}Determined *via* GPC analysis (CHCl₃).

Figure S4. ¹H-NMR spectrum (CDCl₃, 400 MHz) of an aliquot drawn from a copolymerization using $2/MgI_2$. Conditions: $2/BnOH/MgI_2/GBL/CL = 1:2:5:100:100$ °C, THF, T = r.t., [M]_{0,total} = 2.0 mol/L, t = 2 h, 41 % conversion. In order to fully preclude evaporation of GBL, the sample was not dried *in vacuo* prior to ¹H NMR analysis.

Figure S5. ¹H-NMR spectrum (CDCl₃, 400 MHz) of an aliquot drawn from a copolymerization using $2/YCl_3$. Conditions: $2/BnOH/YCl_3/PDL/GBL = 1:2:5:100:100$, toluene, $[M]_{0,total} = 2.0 \text{ mol/L}$, 58 % conversion, after 8 h at 50 °C and 16h at 10 °C. In order to fully preclude evaporation of GBL, the sample was not dried *in vacuo* prior to ¹H NMR analysis. ¹H-NMR (400 MHz, CDCl₃) $\delta = 5.08$ (Ph-<u>CH2</u>-O-), 4.32 (t, *J* = 7.1 Hz, GBL-<u>CH2</u>-O-(C=O)-), 4.15 - 4.00 (m, Poly-<u>CH2</u>-O-), 2.47 (t, *J* = 8.2 Hz, GBL-<u>CH2</u>-(C=O)-), 2.38 - 2.16 (m, Poly-<u>CH2</u>-(C=O)-), 1.59 - 1.56 (m), 1.22 (m).ppm.

Copolymerization of GBL with CL and VL

Table S7. Full data set of GBL copolymerization with CL and VL, using 2 in combination with various Lewis acids.

	Comon-			b	26.6		Dya	ad sequen	ce distributi	on [%]
no.	omer	Lewis	time	conv.°	M_n^{-1}	${\cal D}_{\rm M}{}^c$	Co-	Co-	GBL-	GBL-
	(Co)	intra	[]	[/0]	[B mor]		GBL	Co	Co	GBL
1	CL	LiCl	120	52	6900	1.49	11	74	11	4
2	CL	MgCl ₂	120	36	4100	1.09	16	68	16	-
3	CL	MgI ₂	120	42	5900	1.12	11	78	11	-
4	CL	ZnI ₂	120	55	8000	1.13	10	8 0	10	-
5	CL	YCl ₃	120	61	4600	1.18	15	70	15	-
6	VL	LiCl	120	24	2200	2.2	9	82	9	-
7	VL	MgCl ₂	120	16	2700	1.13	8	84	8	-
8	VL	MgI ₂	120	37	5300	1.14	6	88	6	-
9	VL	ZnI ₂	120	9	4900	1.22	4	91	4	1
10	VL	YCl ₃	120	37	3900	1.24	12	76	12	-
11^d	CL	LiCl	24 h	66	6600	2.4	22	56	22	-
12 ^d	CL	MgCl ₂	24 h	33	600	1.34	-	-	-	-
13 ^d	CL	ZnI ₂	24 h	39	4800	1.06	10	73	10	7
14 ^d	CL	YCl ₃	24 h	57	1200	2.0	15	70	15	-
15 ^d	CL	-	24 h	3	-	-	-	-	-	-
16 ^d	VL	LiCl	24 h	46	5400	1.45	9	82	9	-
17 ^d	VL	MgCl ₂	24 h	24	2000	1.11	8	84	8	-
18 ^{<i>d</i>}	VL	ZnI₂	24 h	49	5200	1.09	5	90	5	-
19 ^d	VL	YCl ₃	24 h	42	800	1.68	-	-	-	-
20 ^{<i>d</i>}	VL	-	24 h	6	-	-	-	-	-	-

^{*a*}Conditions: molar ratio of NHO/BnOH/M_x/GBL/Co = 1:2:5:100:100 [M]_{0,total} = 2.0 M in THF, r.t. ^{*b*}Monomer conversion determined *via* NMR spectroscopy. ^{*c*}Determined *via* GPC analysis (CHCl₃). ^{*d*}T = -36°C.

Figure S6. GPC trace received from a GBL/CL copolymer, synthesized *via* application of $2/ZnI_2$ after 4 h and 24 h. NHO/BnOH/MX_n/GBL/CL = 1:2:5:100:100, [M]_{0,total} = 2.0 mol/L, THF, T = -36 °C.

Figure S7. GPC trace received from a GBL/VL copolymer, synthesized *via* application of $2/ZnI_2$ after 4 h and 24 h. NHO/BnOH/MX_n/GBL/VL = 1:2:5:100:100, [M]_{0,total} = 2.0 mol/L, THF, T = -36 °C.

Figure S8. ¹³C NMR spectroscopy (CDCl₃, 300 K, O-<u>C</u>H₂ region) with dyad sequence analysis of a PDL/CL copolymer resulting from application 2/LiCl after 2 h at 100 °C.

Figure S9. ¹³C NMR spectroscopy (CDCl₃, 300 K, O-<u>C</u>H₂ region) with dyad sequence analysis of a PDL/VL copolymer resulting from application $2/YCl_3$ after 24 h at 150 °C.

Figure S10. ¹³C NMR spectroscopy (CDCl₃, 300 K, O- $\underline{C}H_2$ region) with dyad sequence analysis of a PDL/VL copolymer resulting from application $2/ZnI_2$ after 8 h at 50 °C.

Figure S11. ¹³C NMR spectroscopy (CDCl₃, 300 K, O-<u>C</u>H₂ region) with dyad sequence analysis of a PDL/GBL copolymer resulting from application $2/YCl_3$ after 24 h at 100 °C.

Figure S12. ¹³C NMR spectroscopy (CDCl₃, 300 K, O-<u>C</u>H₂ region) with dyad sequence analysis of a GBL/CL copolymer resulting from application $2/YCl_3$ after 2 h at room temperature.

Figure S13. ¹³C NMR spectroscopy (CDCl₃, 300 K, O-<u>C</u>H₂ region) with dyad sequence analysis of a GBL/VL copolymer resulting from application 2/LiCl after 2 h at room temperature.

DSC analysis of synthesized copolymers

Table S8. Melting points of copolymers determined *via* DSC analyses (heat rate = 5 K/min, purge gas flow (N₂) = 20 mL/min). For more details, see correlated tables.

Table in paper	Entry	NHO/M _X	Polymerization time [min]	(Co)mo	onomers	<i>T_m</i> [°C]
	1			ומת		
1	6	$1/MgCl_2$	240	PDL	-	93
2	1	2/LiCl	240	PDL	CL	72
2	2	$2/MgCl_2$	240	PDL	CL	70
2	3	$2/MgI_2$	240	PDL	CL	74
2	4	$2/ZnI_2$	240	PDL	CL	53
2	5	2 /YCl ₃	480	PDL	CL	80
3	1	$2/MgI_2$	240	PDL	VL	39
3	2	$2/MgI_2$	24 h	PDL	VL	59
3	3	$2/ZnI_2$	240	PDL	VL	29/41
3	4	$2/ZnI_2$	24 h	PDL	VL	30
3	5	2 /YCl ₃	240	PDL	VL	38
3	6	2 /YCl ₃	24 h	PDL	VL	72
4	1	2/LiCl	24 h	PDL	GBL	79
4	2	$2/MgCl_2$	27 h	PDL	GBL	84
4	3	$2/ZnI_{2}$	48 h	PDL	GBL	85
4	4	2 /YCl ₃	86 h	PDL	GBL	91
4	5	2/LiCl	63	PDL	GBL	86
4	6	2/LiCl	24	PDL	GBL	79
5	4	$2/ZnI_2$	120	GBL	CL	42
5	5	2 /YCl ₃	120	GBL	CL	35
5	8	$2/MgI_2$	120	GBL	VL	39
5	9	2 /YCl ₃	120	GBL	VL	31
5	10	2/LiCl	24 h	GBL	CL	34
5	11	$2/ZnI_2$	24 h	GBL	CL	39
5	13	2/LiCl	24 h	GBL	VL	40
5	15	$2/ZnI_{2}$	24 h	GBL	VL	45

Figure S14. DSC investigation (5 K/min, second cycle) of copolymer derived from PDL and VL using $2/MgI_2$ (NHO/BnOH/M_x/PDL/VL = 1:2:5:100:100, 480 min, 50°C, toluene).

Figure S15. DSC investigation (5 K/min, second cycle) of copolymer derived from PDL and VL using $2/YCl_3$ (NHO/BnOH/M_x/PDL/VL = 1:2:5:100:100, 24 h, 110°C, toluene).

Figure S16. DSC investigation (5 K/min, second cycle) of copolymer derived from PDL and VL using $2/ZnI_2$ (NHO/BnOH/M_x/PDL/VL = 1:2:5:100:100, 24 h, 110°C, toluene).

Figure S17. DSC investigation (5 K/min, second cycle) of copolymer derived from PDL and GBL using $2/ZnI_2$ (NHO/BnOH/M_x/PDL/GBL = 1:2:5:100:100, 48 h, 100°C, THF).

Figure S18. DSC investigation (5 K/min, second cycle) of copolymer derived from GBL and VL using $2/Znl_2$ (NHO/BnOH/M_x/GBL/VL = 1:2:5:100:100, 24 h, -36°C, THF).

Complexation experiments analyzed via ¹H-NMR spectroscopy

Figure S19. Complexation experiments with 2 and various Lewis Acids, as well as the ¹H-NMR spectrum of the initiator BnOH.

References

- [1] Gruseck, U.; Heuschmann, M. 2-Alkylidenimidazolidine Synthese, Basizität, ¹H- und ¹³C-NMR-Spektren. *Chem. Ber.* **1987**, *120*, 2053-2064.
- [2] Quast, H.; Ach, M.; Kindermann, M. K.; Rademacher, P.; Schindler, M. Synthese, NMR-Spektren und Photoelektronen-Spektren von cyclischen Keten-N,X-acetalen (2-Alkyliden-N-heterocyclen). *Chem. Ber.* **1993**, *126*, 503-516.
- [3] Kronig, S.; Jones, P. G.; Tamm, M. Preparation of 2-Alkylidene-Substituted 1,3,4,5-Tetramethylimidazolines and Their Reactivity Towards Rh^I Complexes and B(C₆F₅)₃. *Eur. J. Inorg. Chem.* **2013**, 2013, 2301-2314.
- [4] Naumann, S.; Wang, D. Dual Catalysis Based on N-Heterocyclic Olefins for the Copolymerization of Lactones: High Performance and Tunable Selectivity. *Macromolecules* **2016**, *49*, 8869-8878.