
Supporting Information

A: Calculation of radial distribution functions

To get an effective propagator in one dimension, we first transform (1) into spherical coor-

dinates:

x− a = ρ sin θ cosφ , y = ρ sin θ sinφ , z = ρ cos θ. (14)

The two scalar products in the combined exponents of Eq.(1) become:

(r± bẑ)2 = a2 + b2 + ρ2 + 2aρ sin θ cosφ± 2bρ cos θ. (15)

The next step of integration over the solid angle on the unit hemisphere is not easy. We

need to evaluate

I =

∫ π/2

0

dθ sin θ

∫ 2π

0

dφ e−α cosφ sin θ±β cos θ, (16)

where parameters α and β involve N, b, a and ρ. This is solved by realizing that the integrand

has a non-trivial axial symmetry. We transform back into Cartesian coordinates about the

target: x′ = cosφ sin θ, z′ = cos θ, and rotate these new coordinates by an angle ϕ =

tan−1(β/α) = tan−1(b/a) around the y-axis. The direction of this rotation depends on

the sign of the z-term in the exponent (i.e. whether we are dealing with the ‘real’ or

‘image’ Gaussian term). This rotation means we are essential integrating exp(−
√
a2 + b2x).

However, we must be careful when we define the surface we are integrating over. Since

we aren’t integrating over a line in the plane of the surface, the hemisphere appears tilted

with respect to the variable of integration x, as in Figure. The surface element is given by

ψ(x)
√

1− x2ds. On the unit sphere y = ±
√

1− x2, and the element ds is given by

ds =

√
1 +

(
∂y

∂x

)2

dx =
dx√

1− x2
. (17)
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The opening angle of the surface element has the exact expression

ψ(x) =


2π, −1 ≤ x < − cosϕ

π − 2 sin−1
(
x tanϕ√

1−x2

)
, − cosϕ ≤ x ≤ cosϕ

0, cosϕ < x ≤ 1

(18)

The radial probability density is defined with the normalisation over only the allowed half-

space: ∫ ∞
0

dρ ρ2Peq(ρ) = 1 (19)

where a factor of 2π accounting for the area of a hemispherical shell,2πρ2, has been absorbed

into Peq(ρ) for simplicity. Using this, we find that the radial probability density takes the

form

Peq(ρ) = 2π

√
Nπ

6

(
3

2πNb2

)3/2

e−
3(a2+b2+ρ2

2Nb2 × (20)[
2Nb2

3ρ
√
a2 + b2

[
cosh

(
3
√
a2 + b2

2Nb2
ρ

)
− cosh

(
3ρa

2Nb2

)]

+
2b

a
I1

(
3
√
a2 + b2

Nb2
ρ

)
− 4b2

πa2
sinh

(
3
√
a2 + b2

Nb2
ρ

)]
.

Comparing the magnitudes of different terms in the square brackets, we discover that the

modified Bessel function I1 term is by far the dominant, which leads to the approximated

expression Eq. (5) in the main text.

B: Calculation of looping time

Here we show that the mean looping time of a polymer, as calculated from our method,

coincides with the expression derived by Szabo et al.9 If we consider first the more general

problem of a chain with one end tethered in place (in reality, since we can change our frame
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of reference of the polymer, we may do this for the free chain). Then, the distribution of the

free end of an ideal polymer chain is given by

P (r) =

(
3

2πNb2

)3/2

exp

(
− 3r2

2Nb2

)
(21)

We want to calculate the time for the free end to hit a sphere of radius ε centered a distance

a from the first monomer. As in Part A, we may transform into spherical polar coordinates

and then integrate over the polar angles to obtain a probability distribution over r. This

integral is very similar in form to Eq. (16), but with the integration limits extended over

the entire unit sphere, and β = 0:

I =

∫ π

0

dθ sin θ

∫ 2π

0

dφ e−α cosφ sin θ (22)

Tranforming back into Cartesian coordinates, we have

I = 2π

∫ 1

−1

dx e−αx =
2π

α

(
eα − e−α

)
. (23)

As such, the resulting radial probability distribution about the target is

Peq(ρ) =
1

aρ

√
3

2πNb2

(
e−

3(ρ−a)2

2Nb2 − e−
3(ρ+a)2

2Nb2

)
. (24)

When we use this probability distribution in the expression for mean first passage time

τ =

∫ ∞
ε

dρ
[
Dρ2Peq(ρ)

]−1
[∫ ∞

ρ

dρ′ ρ′2Peq(ρ
′)

]2

, (25)

we find that the integral, though not analytically solvable, is dominated by the value of the

integrand at small ρ. As ρ → 0, the probability distribution tends to a non-zero constant,
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and so we can make the approximation

τon ≈
√

π

54

(Nb2)3/2

D
e

3a2

2Nb2

∫ ∞
ε

dρ

ρ2

=

√
π

54

(Nb2)3/2

Dε
e

3a2

2R2
g . (26)

From here, it is a matter of setting a = 0 to recover the Szabo result for the looping time of

a polymer in three dimensions, shown in (11).

C: Parallel walls at large separation

One way of writing the solution to the Edwards equation in the case of two walls is given in

(8), but we may also write the solution as an infinite sum of Gaussian images:

G(x, y, z) =
∞∑

j=−∞

(
3

2πNb2

)3/2

e−
3(x2+y2)

2Nb2

(
e−

3(z−2jd−b)2

2Nb2

−e−
3(z−2jd+b)2

2Nb2

)
(27)

In fact, (8) is just the Fourier series expansion of this expression. If we take the receptor to be

aligned directly opposite the tether (i.e. the displacement perpendicular to the parallel plates

between the tether and receptor, a = 0), then we may exploit the azimuthal symmetry of this

expression, and use the same hemispherical integral construction as in Section , only with

ψ = 2π. Instead of integrating over the whole sphere, we just integrate over the hemisphere.

We make the coordinate transformation so that we are centred on the target, with the

positive z-direction pointing into the space, z′ = d− z, and introduce the radial coordinate

r2 = x2 + y2 + z′2. The radial probability distribution is given formally by

r2Peq(r) = 2πr

√
πN

6

∫ r

0

dz′G(r, z′), (28)
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where the factor
√
πN/6 is the partition function. Although algebraically convoluted, this

turns out to be integration of an exponential.

At first sight, the small-r expansion actually has an r2, rather than r3 dependence, but

these terms actually cancel once the sum is performed. Exploiting the exponential decay

with increasing j for large d, we are able to neglect all terms apart from j = 0 and j = 1 in

the sum. We are left, to leading order, with the expression:

r2Peq(r)r→0 ≈
9dr3

2N2b5

[
(1− b/d) e−

3d2(1−b/d)2

2Nb2

− (1 + b/d) e−
3d2(1+b/d)2

2Nb2

]
(29)

Finally, we expand in the small parameter b/d (since d is much larger than the radius of

gyration, this is sensible), to obtain the final expression

r2Peq(r)r→0 =
27d2r3

N3b6
e−

3d2

2Nb2 . (30)

This represents the limit of wide gap, or strong chain stretching d � Rg, opposite to the

Eq. (9). The expression for an arbitrary gap is possible, but the more practical approach is

to form an interpolation between the short-d and the long-d expressions. This interpolation

is given in the Eq. (10); we have tested it and found it approximating the numerical exact

expression very well.
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