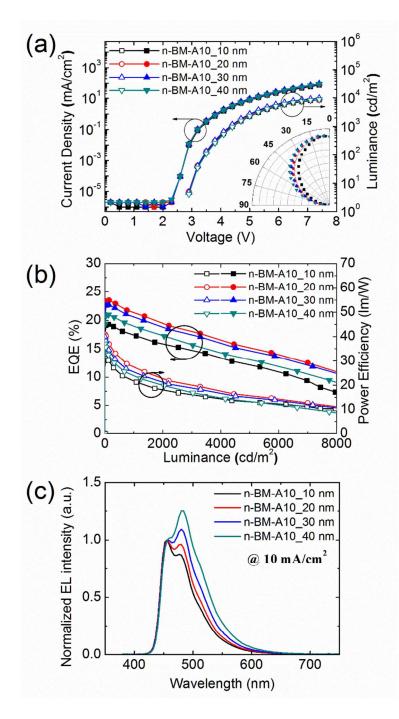
## **Supporting Information**

## An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes

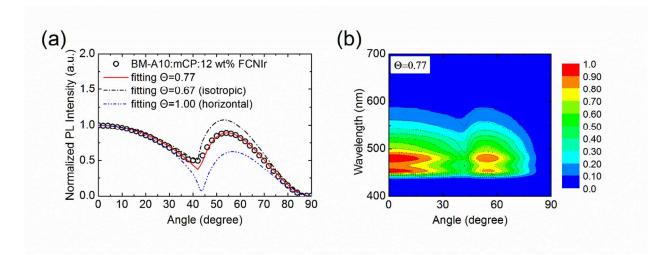
Hyoungcheol Lim<sup>1</sup>, Hyun Shin<sup>1</sup>, Kwon-Hyeon Kim<sup>1</sup>, Seung-Jun Yoo<sup>†1</sup>, Jin-Suk Huh<sup>1</sup> and Jang-Joo Kim<sup>1,2,\*</sup>


<sup>1</sup>Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744,

South Korea

<sup>2</sup>Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 151-744,

South Korea


\*Corresponding author: jjkim@snu.ac.kr



**Figure S1.** (a) J-V-L characteristics of the devices. (b) The EQEs and PEs of the devices. (c) Normalized EL spectra of devices with various thicknesses of the BM-A10 layer.

Figure S1a shows the current density-voltage-luminance (J-V-L) characteristics of the devices with the different thicknesses of the electron injection layer. The device structure was

indium tin oxide (ITO) (70 nm)/6 wt% ReO<sub>3</sub> doped mCP (30 nm)/mCP (20 nm)/emitting laver (EML, 30 nm)/BM-A10 (20 nm)/12 wt% Rb<sub>2</sub>CO<sub>3</sub> doped BM-A10 (10, 20, 30, 40 nm)/Al (100 nm). The turn-on voltage was 2.9 V. Efficient hole and electron injection was achieved from the electrodes by p- and n-doping, respectively, and the simple device structure with few interfaces resulted in the low turn-on voltage. Figure S1b shows the Lambertian corrected EQEs and power efficiencies. The emission patterns of the devices were measured via angle-dependent electroluminescence (EL), where the Lambertian correction factors were 0.86, 1.04, 1.06, and 1.14 for *n*-doped BM-A10 layers that were 10-, 20-, 30-, and 40-nm-thick, respectively. Lambertian correction was implemented according to the method reported elsewhere.<sup>1</sup> Figure S1c shows normalized EL spectra of the devices at a current density of 10 mA cm<sup>-2</sup>. As the thickness of the n-BM-A10 layer increased, the intensity of the vibronic peak of FCNIr increased, which is attributed to the microcavity effect.<sup>2</sup> The CIE v-coordinate varied from 0.19 to 0.27 as the thickness of the *n*-BM-10 layer increased from 10 to 40 nm. The device with a 10nm-thick *n*–BM-A10 layer exhibited a maximum EQE of 19% with a power efficiency (PE) of 33 lm W<sup>-1</sup>. The device with a 20-nm-thick *n*-BM-A10 layer exhibited a maximum EQE of 24% and maximum PE of 41 lm  $W^{-1}$  with a CIE *v*-coordinate of 0.21.



**Figure S2.** (a) Experimentally obtained angle-dependent PL (open circles) and simulated PL (solid line) of a 30-nm-thick BM-A10:mCP:FCNIr (12wt%) film at 455 nm. (b) Simulated (dashed line) and experimentally obtained (contour plot) angle-dependent PL spectra of an mCP:BM-A10:FCNIr (12 wt%) film.

| Host                             | Dopant                             | V <sub>on</sub><br>[V] | EQE<br>[%] <sup>a)</sup> | $\frac{\text{PE}}{\left[\text{Im W}^{-1}\right]^{a)}}$ | CIE<br>( <i>x</i> , <i>y</i> ) | Ref.         |
|----------------------------------|------------------------------------|------------------------|--------------------------|--------------------------------------------------------|--------------------------------|--------------|
| mCP:<br>BM-A10<br>(exciplex)     | FCNIr                              | 2.9                    | 24 / 23 / 21             | 41 / 34 / 23                                           | (0.15, 0.21)                   | This<br>work |
| t-DCDPA:<br>DBFTrz<br>(exciplex) | FCNIr                              | 4.0                    | 16.4 / - / 14.7          | _/_/_                                                  | (0.14, 0.20)                   | 3            |
| pBCb2Cz:<br>TSPO1<br>(mixed)     | tBUCN-<br>FIrmMes                  | 3.0                    | 22.4 / - / 22.4          | 31.9 / - / 24.9                                        | (0.14, 0.21)                   | 4            |
| TSPO1                            | <i>fac</i> -Ir(pmp) <sub>3</sub>   | 4.0                    | 10.1 / - / 9.0           | _/_/_                                                  | (0.16, 0.09)                   | 5            |
| TSPO1                            | <i>mer</i> -Ir(pmp) <sub>3</sub>   | 3.0                    | 14.4 / - / 13.3          | _/_/_                                                  | (0.16, 0.15)                   | 5            |
| BCPO                             | (fpmi) <sub>2</sub> Ir<br>(dmpypz) | 3.2                    | 17.1 / 16.5 / 15.<br>1   | 19.8 / 15.0 / 11.<br>2                                 | (0.13, 0.16)                   | 6            |
| PPO2                             | FCNIr                              | _                      | 18.4 / 13.5 / -          | 16.6 /9.1 / -                                          | (0.14, 0.15)                   | 7            |
| PPO21                            | FCNIr                              | 3.5                    | 20.4 / - / 11.9          | 26.1 / - / 6.6                                         | (0.14, 0.19)                   | 8            |
| PO9                              | Ir(dbfmi)                          | 2.6                    | 18.6 / 13.6 / 6.2        | 35.9 / 19.6 / 6.3                                      | (0.15, 0.19)                   | 9            |
| mCP                              | (dfpypy) <sub>2</sub><br>Ir(dpm)   | 3.5                    | 20.4 / 20.4 / 18.<br>5   | 24.7 / - / -                                           | (0.14, 0.18)                   | 10           |
| mCPPO1                           | FCNIrpic                           | 3.5                    | 25.1 / 24.8 / 23.<br>1   | 21.5 / 21.5 / 15.                                      | (0.14, 0.18)                   | 11           |

Table S1. Summarized performances of PhOLEDs with CIE *y*-coordinate close to 0.2.

<sup>a)</sup> Data were measured at the maximum value/100 cd m<sup>-2</sup>/1000 cd m<sup>-2</sup>

## References

1. Shin, H.; Lee, J.-H.; Moon, C.-K.; Huh, J.-S.; Sim, B.; Kim, J.-J. Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. *Adv. Mater.* **2016**, 28 (24), 4920-4925.

2. Tokito, S.; Tsutsui, T.; Taga, Y. Microcavity Organic Light-Emitting Diodes for Strongly Directed Pure Red, Green, and Blue Emissions. *J. Appl. Phys.* **1999**, 86 (5), 2407-2411.

3. Song, W.; Lee, H. L.; Lee, J. Y. High Triplet Energy Exciplex Hosts for Deep Blue Phosphorescent Organic Light-Emitting Diodes. *J. Mater. Chem. C*, **2017**, *5*, 5923-5929.

Sarada, G.; Sim, B.; Moon, C.-K.; Cho, W.; Kim, K.-H.; Sree, V. G.; Park, E.; Kim, J.-J.;
Jin, S.-H. Synthesis and Characterization of Highly Efficient Blue Ir(III) Complexes by Tailoring
β-Diketonate Ancillary Ligand for Highly Efficient PhOLED Applications. *Org. Electron.* 2016, 39, 91-99.

5. Lee, J.; Chen, H. F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Deep Blue Phosphorescent Organic Light-emitting Diodes with Very High Brightness and Efficiency. *Nat. Mater.* **2016**, 15 (1), 92-98.

6. Lu, K.-Y.; Chou, H.-H.; Hsieh, C.-H.; Yang, Y.-H. O.; Tsai, H.-R.; Tsai, H.-Y.; Hsu, L.-C.; Chen, C.-Y.; Chen, I.-C.; Cheng, C.-H. Wide-Range Color Tuning of Iridium Biscarbene Complexes from Blue to Red by Different N<sup>N</sup> Ligands: An Alternative Route for Adjusting the Emission Colors. *Adv. Mater.* **2011**, 23 (42), 4933–4937.

7. Jeon, S. O.; Yook, K. S.; Joo, C. W.; Lee, J. Y. Phenylcarbazole-Based Phosphine Oxide Host Materials for High Efficiency in Deep Blue Phosphorescent Organic Light-Emitting Diodes, *Adv. Funct. Mater.* **2009**, 19 (22), 3644-3649.

 8. Son, H. S.; Lee, J. Y. Structure–Property Relationship in High Triplet Energy Host Materials with a Phenylcarbazole Core and Diphenylphosphine Oxide Substituent, *Org. Electron.* 2011, 12
(6), 1025-1032. 9. Sasabe, H.; Takamatsu, J.-I.; Motoyama, T.; Watanabe, S.; Wagenblast, G.; Langer, N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J. High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex. *Adv. Mater.* **2010**, 22 (44), 5003–5007.

10. Park, J.; Oh, H.; Oh, S.; Kim, J.; Park, H. J.; Kim, O. Y.; Lee, J. Y.; Kang, Y. Deep Blue Phosphorescent Organic Light-Emitting Diodes with Excellent External Quantum Efficiency. *Org. Electron.* **2013**, 14 (12), 3228–3233.

11. Jeon, S. O.; Jang, S. E.; Son, H. S.; Lee, J. Y. External Quantum Efficiency above 20% in Deep Blue Phosphorescent Organic Light-Emitting Diodes. *Adv. Mater.* **2011**, 23 (12), 1436–1441.