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Materials. N-Bromosuccinimide was recrystallized before use. 

4,4'-Methylenebis(2-ethyl-6-methylaniline) (7a), 1,4-phenylenedimethanamine (7b), 

1,4-diethynylbenzene (8a), bisphenol A, 4-bromobenzophenone, and other chemicals and 

reagents were purchased from Sigma-Aldrich or Alfa and used as received without further 

purification. THF and toluene were distilled under nitrogen at normal pressure from sodium 

benzophenone ketyl immediately prior to use. Et3N was distilled and dried over potassium 

hydroxide. DMSO and DMF were extra-dry grade. 

Instruments. FT-IR spectra were recorded on a Bruker Vector 22 spectrometer as thin films 

on KBr pellets. 
1
H and 

13
C NMR spectra were measured on a Bruker AV 500 or Bruker AV 400 

spectrometer in DMSO-d6 using tetramethylsilane (TMS; δ = 0) as internal reference. Relative 

weight-average and number-average molecular weights (Mw and Mn) and polydispersity indices 

(Ð, Mw/Mn) of the polymers were estimated by a Waters PL-GPC-50 gel permeation 

chromatography (GPC) system equipped with refractive index (RI) detector, using a set of 

monodisperse polymethyl methacrylate as calibration standards and DMF as the eluent at a flow 

rate of 1.0 mL/min. Thermal stabilities were evaluated by measuring thermogravimetric analysis 

(TGA) thermograms on a PerkinElmer TGA 7 under dry nitrogen at a heating rate of 10 °C/min. 

Refractive indices of the polymers were measured on J. A. Woollam V-VASE variable angle 

ellipsometry system with a region from 400 to 1700 nm. The polymer films were prepared by 

spin coating using THF as the solvent on crystalline silicon. UV−vis spectra were measured on a 

Varian VARY 100 Bio UV−vis spectrophotometer. Photoluminescence (PL) spectra were 

recorded on a Shimadzu RF-5301PC spectrofluorophotometer. 

Monomer Preparation. In order to obtain a series of polyamides, A2 (1a and 1b) + B2 (2a, 2b 

and 2c) + H2O co-monomer strategies were used (A and B refer to the diisocyanides and 
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bis(bromoalkyne)s monomers respectively, Scheme 1). Monomers 1a, 2a and water were used as 

model monomers to optimize the polymerization conditions, and monomers 1b, 2b, and 2c were 

applied to prove the universality and robustness of this polymerization. The synthetic routes to 

monomers 1 and 2 are shown in Schemes S1 and S2 and the detailed synthetic procedures are 

shown below. 

Monomers 1 was prepared by slight modification of literature procedures.
1
 The synthesis 

procedure of 1b is resemble with that of 1a. The detailed method for the synthesis of 1a was 

given here as an example. 

1,1-Bis(3-ethyl-4-isocyano-5-methylphenyl)methane (1a). A 50% aqueous solution of 

sodium hydroxide (15 mL) was added to the vigorously stirred DCM solution (15 mL) 

containing 4,4'-methylenebis(2-ethyl-6-methylaniline) (14.100 g, 50 mmol), chloroform (4.022 

mL, 50 mmol), and TEBA chloride (227.8 mg, 1 mmol). The mixture was heated at 40 
o
C for 12 

hours. The reaction was monitored by thin-layer chromatography (TLC). Afterwards, the 

reaction mixture was cooled down to room temperature, and cold water (100 mL) was added. 

The aqueous phase was extracted with methylene chloride. The organic layer was washed with 

concentrated sodium bicarbonate solution and dried over magnesium sulphate. The drying agent 

was filtered off, and the solvent was evaporated under reduced pressure. The residue was 

subjected to column chromatography to give 1a. 

Characterization data of 1a: White powder of 1a was obtained in 31.7% yield (4.790 g). 

FT-IR (KBr), v (cm
-1

): 2115 (C≡N stretching). 
1
H NMR (500 MHz, DMSO-d6) δ (TMS, ppm): 

7.11 (d, J = 10 Hz, 2H), 3.90 (s, 1H), 2.67 (q, J = 10.0 Hz, 2H), 2.32 (s, 3H), 1.17 (t, J = 5.0 Hz, 

3H). 
13

C NMR (125 MHz, DMSO) δ (ppm):  168.46 (s), 142.43 (s), 140.60 (s), 135.19 (s), 

128.81 (s), 127.32 (s), 25.59 (s), 18.88 (s), 14.30 (s). 
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Characterization data of 1b: Yellow powder of 1b was obtained in 28.9% yield (2.251 g). 

FT-IR (KBr), v (cm
-1

): 2160 (C≡N stretching).
1
H NMR (500 MHz, DMSO-d6) δ (TMS, ppm): 

7.43 (s, 2H), 4.91-4.85 (m, 2H). 
13

C NMR (125 MHz, DMSO) δ (ppm): 157.16 (s), 133.79 (s), 

127.84 (s), 44.97 (s). 

Monomer 2 was prepared by slight modification of literature procedures.
2
 The synthetic 

procedures of 2b-2c are resemble with that of 2a. The detailed method for the synthesis of 2a 

was given here as an example. 

1,4-Bis(bromoethynyl)benzene (2a). 1,4-Diethynylbenzene (1.790 g, 14.2 mmol) was 

dissolved in acetone (60 mL), and N-bromosuccinimide (7.590 g, 42.6 mmol) and AgNO3 (531 

mg, 3.1 mmol) was added. The reaction mixture was stirred overnight at room temperature in 

dark. Afterwards, the solution was concentrated under reduced pressure and the crude product 

was purified by a silica gel column chromatography using petroleum ether (PE) as eluent. Light 

yellow powder of 2a was obtained. 

Characterization data of 2a: White powder of 2a was obtained in 85.0% yield (4.828 g). IR 

(KBr), v (cm
-1

): 2194 (C≡C stretching). 
1
H NMR (500 MHz, DMSO-d6) δ (TMS, ppm): 7.49 (s, 

3H). 
13

C NMR (125 MHz, DMSO) δ (ppm): 132.52 (s), 122.83 (s), 79.62 (s), 55.92 (s), 31.15 (s). 

Characterization data of 2b: Yellow solid of 2b was obtained in 61.3% yield (5.664 g). IR 

(KBr), v (cm
-1

): 2223 (C≡C stretching). 
1
H NMR (500 MHz, DMSO-d6) δ (TMS, ppm): 7.13 (d, 

J = 10.0 Hz, 4H), 6.87 (d, J = 5.0 Hz, 4H), 4.80 (s, 4H), 1.59 (s, 6H). 
13

C NMR (125 MHz, 

DMSO-d6) δ (ppm): 155.42 (s), 143.80 (s), 127.95 (s), 114.59 (s), 76.38 (s), 56.60 (s), 41.72 (s), 

31.12 (s). 

Characterization data of 2c: White powder of 2c was obtained in 65.0% yield (6.994 g). IR 

(KBr), v (cm
-1

): 2205 (C≡C stretching). 
1
H NMR (500 MHz, DMSO-d6) δ 7.26-7.23 (m, 4H), 
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7.18-7.15 (m, 6H), 7.05 – 6.94 (m, 8H). 
13

C NMR (125 MHz, DMSO) δ 144.11 (s), 142.85 (s), 

141.05 (s), 133.74 (s), 132.33 (s), 131.10 (s), 128.44 (s), 127.40 (s), 127.11 (s), 120.59 (s), 80.05 

(s), 53.73 (s). 

Scheme S1. Synthetic route to diisocyanides 1.  

 

Scheme S2. Synthetic route to dibromoalkynes 2. 

 

Scheme S3. Synthetic route to model compound 5-PM1. 

 

Scheme S4. Synthetic route to model compound 5-PM2. 
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Figure S1. FT-IR spectra of polymers obtained at 100 
o
C at different reaction time. 
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Figure S2. TGA thermograms of polymers PI-PVI. Td represents the temperature of 5% weights 

loss. 
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Figure S3. FT-IR spectra of 1a (A), 2b (B) and PII (C). 
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Figure S4. FT-IR spectra of 1a (A), 2c (B) and PIII (C). 
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Figure S5. FT-IR spectra of 1b (A), 2a (B) and PIV (C). 

 

4000 3000 2000

Wavenumber (cm
-1
)

1500 1000 500

 

 A 

 B 

 C 

N-H

C≡C

C≡N

C=O

N-H

 

Figure S6. FT-IR spectra of 1b (A), 2b (B) and PV (C). 
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Figure S7. FT-IR spectra of 1b (A), 2c (B) and PVI (C). 
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Figure S8. 
1
H NMR spectra of 1a (A ), 2b (B) and PII (C) in DMSO-d6. The solvent peaks are 

marked with asterisks. 
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Figure S9. 
1
H NMR spectra of 1a (A ), 2c (B) and PIII (C) in DMSO-d6. The solvent peaks are 

marked with asterisks.  
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Figure S10. 
1
H NMR spectra of 1b (A ), 2a (B) and PIV (C) in DMSO-d6. The solvent peaks are 

marked with asterisks. 
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Figure S11. 
1
H NMR spectra of 1b (A ), 2b (B) and PV (C) in DMSO-d6. The solvent peaks are 

marked with asterisks. 
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Figure S12. 
1
H NMR spectra of 1b (A ), 2c (B) and PVI (C) in DMSO-d6. The solvent peaks are 

marked with asterisks. 
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Figure S13. 
1
H NMR spectra of polymers prepared using H2O (A) and D2O (B) as co-monomer 

in DMSO-d6. The solvent peaks are marked with asterisks. 

 

 

 



S18 

 

180 150 120 90 60 30 0

*

 B 

 C 

 A 

*

Chemical shift (ppm)

*

 

Figure S14. 
13

C NMR spectra of 1a (A ), 2b (B) and PII (C) in DMSO-d6. The solvent peaks are 

marked with asterisks. 
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Figure S15. 
13

C NMR spectra of 1a (A ), 2c (B) and PIII (C) in DMSO-d6. The solvent peaks 

are marked with asterisks. 
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Figure S16. 
13

C NMR spectra of 1b (A ), 2a (B) and PIV (C) in DMSO-d6. The solvent peaks 

are marked with asterisks. 
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Figure S17. 
13

C NMR spectra of 1b (A ), 2b (B) and PV (C) in DMSO-d6. The solvent peaks are 

marked with asterisks. 
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Figure S18. 
13

C NMR spectra of 1b (A ), 2c (B) and PVI (C) in DMSO-d6. The solvent peaks 

are marked with asterisks. 
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Figure S19. 
1
H NMR spectrum of 7 in DMSO-d6. The solvent peaks are marked with asterisks. 
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Figure S20. 
1
H NMR spectrum of PI-PM1 in DMSO-d6. The solvent peaks are marked with 

asterisks. 

The grafting degree of PI-PM2 is arranged as �, then un-reacted part accounts for (1 − �), 

2�

10� + 10(1 − �)
=
1.27

10
 

� =	0.635 
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Figure S21. 
1
H NMR spectrum of 9 in DMSO-d6. The solvent peaks are marked with asterisks. 
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Figure S22. 
1
H NMR spectrum of PI-PM2 in DMSO-d6. The solvent peaks are marked with 

asterisks. 

The grafting degree of PI-PM2 is arranged as �, then un-reacted part accounts for (1 − �), 

8� + 2(1 − �)

18� + 10(1 − �)
=

8

19.81
 

� =	0.736 
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Figure S23. 
1
H NMR spectrum of PI-PM3 in DMSO-d6. The solvent peaks are marked with 

asterisks. 

The grafting degree of PI-PM2 is arranged as �, then un-reacted part accounts for (1 − �), 

8� + 2(1 − �)

18� + 10(1 − �)
=

8

19.93
 

� =	0.727 

 

Table S1. Effect of the amount of water on the polymerization of diisocyanide 1a and 

dibromoalkyne 2a.
 a

 

entry VH2O (µL) yield (%) Mw 
b
 Ð 

b 

1 7.2 40.4 16400 2.23 

2 100 51.2 17900 2.18 

3 200 44.4 18800 2.25 

a
 Carried out in DMSO at 90 

o
C for 10 h under nitrogen ([1a]/[2a] = 1.5, [CsF]/[2a] = 2, [2a] = 

0.1 M). 
b
 Mw and Ð (Mw/Mn) of polymers were estimated by GPC in DMF containing 0.05 M 

LiBr on the basic of a polymethyl methacrylate calibration. 
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