Light-driven Hydrogen Evolution from Water by a Tripodal Silane Based Co^{II}₆L¹₈ Octahedral Cage

Mahesh S. Deshmukh,^{a‡} Vishwanath S. Mane,^{b‡} Avinash S. Kumbhar,^{b*} and Ramamoorthy Boomishankar^{a,c*}

^aDepartment of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India ^bDepartment of Chemistry, Savitribai Phule Pune University, Pune-411007, India ^cCentre for Energy Science, Indian Institute of Science Education and Research, Pune-411008, India

*Email: <u>boomi@iiserpune.ac.in</u>, <u>askum@chem.unipune.ac.in</u>

Compound	1
Chemical formula	$C_{128}H_{134}CI_{12}N_{24}O_6Si_8Co_6$
Formula weight	3106.21
Temperature	100(2)K
Crystal system	Orthorhombic
Space group	Pbcn
a (Å); α (°)	21.048(5); 90°.
b (Å); β(°)	29.141(7); 90 °.
c (Å); γ (°)	32.738(8); 90°.
V (ų); Z	20080(8); 150
ρ (calc.) mg m ⁻³	1.023
μ(Mo K _α) mm⁻¹	0.735
2θ _{max} (°)	50.052
R(int)	0.2118
Completeness to θ	99.9 %
Data / param.	17730/863
GOF	1.058
R1 [F>4σ(F)]	0.0768
wR2 (all data)	0.2642
max. peak/hole (e.Å ⁻³)	1.105/-1.171

 Table S1: Crystal data of cage 1

 Table S2: Selected bond-lengths and angles for 1.

Compound	Bond length		Bond angle	
1	Co(1)-O(1)	2.116(5)	O(1)-Co(1)-N(113)	87.4(2)
	Co(1)-N(113)	2.126(6)	O(1)-Co(1)-N(313)	87.8(2)
	Co(1)-N(313)	2.141(6)	N(113)-Co(1)-N(313)	175.1(2)
	Co(1)-N(213)	2.173(6)	O(1)-Co(1)-N(213)	89.0(2)
	Co(1)-N(433)#1	2.177(6)	N(313)-Co(1)-N(213)	89.9(2)
	Co(1)-Cl(1)	2.351(3)	O(1)-Co(1)-N(433)#1	90.0(2)
	Co(2)-O(2)	2.143(7)	N(113)-Co(1)-N(433)#1	89.8(2)
	Co(2)-N(123)	2.170(6)	N(313)-Co(1)-N(433)#1	91.2(2)
	Co(2)-N(123)#1	2.170(6)	N(213)-Co(1)-N(433)#1	178.5(2)
	Co(2)-N(223)#1	2.177(6)	O(1)-Co(1)-Cl(1)	179.30(16)
	Co(2)-N(223)	2.178(6)	N(113)-Co(1)-Cl(1)	92.59(18)
	Co(2)-Cl(2)	2.340(4)	N(313)-Co(1)-Cl(1)	92.18(17)
	Co(3)-O(3)	2.128(5)	N(213)-Co(1)-Cl(1)	90.32(16)
	Co(3)-N(233)	2.154(6)	N(433)#1-Co(1)-Cl(1)	90.69(16)
	Co(3)-N(413)	2.160(6)	O(2)-Co(2)-N(123)	87.91(15)

Co(3)-N(333)	2.190(6)	N(123)-Co(2)-N(123)#1	175.8(3)
Co(3)-N(133)#1	2.195(6)	O(2)-Co(2)-N(223)#1	90.71(15)
Co(3)-Cl(3)	2.345(3)	N(123)-Co(2)-N(223)#1	90.5(2)
Co(4)-O(4)	2.146(7)	N(123)#1-Co(2)-N(223)#1	89.6(2)
Co(4)-N(423)	2.147(5)	O(2)-Co(2)-N(223)	90.71(15)
Co(4)-N(423)#1	2.147(5)	N(123)-Co(2)-N(223)	89.6(2)
Co(4)-N(323)	2.182(6)	N(123)#1-Co(2)-N(223)	90.5(2)
Co(4)-N(323)#1	2.182(6)	N(223)#1-Co(2)-N(223)	178.6(3)
Co(4)-Cl(4)	2.367(3)	O(2)-Co(2)-Cl(2)	180.0
		N(123)-Co(2)-Cl(2)	92.09(15)
		N(223)-Co(2)-Cl(2)	89.29(15)
		O(3)-Co(3)-N(233)	87.8(2)
		O(3)-Co(3)-N(413)	88.4(2)
		N(233)-Co(3)-N(413)	175.6(2)
		O(3)-Co(3)-N(333)	91.8(2)
		N(233)-Co(3)-N(333)	89.4(2)
		N(413)-Co(3)-N(333)	88.5(2)
		O(3)-Co(3)-N(133)#1	87.2(2)
		N(233)-Co(3)-N(133)#1	90.8(2)
		N(413)-Co(3)-N(133)#1	91.3(2)
		N(333)-Co(3)-N(133)#1	178.9(2)
		O(3)-Co(3)-Cl(3)	177.38(17)
		N(233)-Co(3)-Cl(3)	91.99(16)
		N(413)-Co(3)-Cl(3)	91.86(16)
		N(333)-Co(3)-Cl(3)	90.83(16)
		N(133)#1-Co(3)-Cl(3)	90.21(16)
		O(4)-Co(4)-N(423)	88.63(15)
		O(4)-Co(4)-N(423)#1	88.62(15)
		N(423)-Co(4)-N(423)#1	177.3(3)
		O(4)-Co(4)-N(323)	90.23(14)
		N(423)-Co(4)-N(323)	89.5(2)
		N(423)#1-Co(4)-N(323)	90.5(2)
		O(4)-Co(4)-N(323)#1	90.23(14)
		N(323)-Co(4)-N(323)#1	179.5(3)
		O(4)-Co(4)-Cl(4)	180.0
		N(423)-Co(4)-Cl(4)	91.37(15)
		N(423)#1-Co(4)-Cl(4)	91.38(15)
		N(323)-Co(4)-Cl(4)	89.77(14)

Figure S1. ESI mass spectra of cage 1 in water

Figure S2. Crystal structure of **1** showing (a) the linkage mode of the ligands, (b) the coordination environment around the Co^{II} ions, (c) view of the octahedral cationic cage along with the location of counter chloride ions and (d) space filling model of cage **1** showing the absence of any cage windows and central cavities

Figure S3: Thermal ellipsoid plot at 50% probability for the asymmetric unit of 1

Figure S4. UV-Visible spectra of the 0.2 mM solution of cage 1 in B. R. Buffer at various pH at 25 $^{\circ}$ C

Figure S5. CV (red line) and DPV (black line) of 1 mM of ligand L^1 in acetonitrile at a scan rate 100 mV/s, containing 0.1 M (n-Bu₄N)PF₆) as supporting electrolyte and SCE reference electrode, glassy carbon working electrode and Pt wire auxiliary electrode at 25 °C

Figure S6: Charge vs time curves for bulk electrolysis of a 5 ml sample of 161 μ M (cage 1), at 0.75 V potential in water. KNO₃ (0.1 M): supporting electrolyte; SCE: reference electrode; glassy carbon: working electrode; Pt wire: uxiliary electrode

Figure S7: Charge-time curves for bulk electrolysis of a 5 ml sample of 161 μ M (cage 1), at -0.75 V potential in water. KNO₃ (0.1 M): supporting electrolyte; SCE: reference electrode; glassy carbon: working electrode; Pt wire: uxiliary electrode

Figure S8. DPV of 1 mM **1** in buffer solution (pH 4) at a scan rate of 100 mV/s at 25 °C, containing 0.1 M (n-Bu₄N)PF₆) as supporting electrolyte and SCE as reference electrode, glassy carbon as working electrode and Pt wire as auxiliary electrode

Figure S9. The Pourbiax diagram of 1 mM **1** at 25 ⁰C in B.R.buffer by using DPV (Differential Pulse Voltammetry)

Figure S10: Schematic diagram illustrating the pathway leading to the hydrogen evolution from proton catalysed by the cage 1. The observation of a linear line with a slope (~= -59 mV/pH) in the Pourbiax diagram (Figure S9) indicates the involvement of proton-coupled electron transfer in the catalytic pathway.

Figure S12: Controlled potential electrolysis at -1.4 V (vs SCE); In the presence (pink line) and absence (black line) of 0.5 μ M **1** in 1.0 M aqueous phosphate buffer (pH 7.0); Glassy Carbon as working electrode, Pt wire as counter electrode and SCE as the reference electrode.

Figure S13: Turnover frequency (mol H₂/mol catalysts/h) versus overpotentials (mV) in 1.0 M phosphate buffer (pH 7.0) for the electrocatalytic hydrogen evolution by **1** (0.5 μ M). Overpotential = applied potential – E(pH), where E(pH) = 0.059pH

 $TOF = \Delta C/Fn_1n_2t$ -----> Eqn. S1

Where,

 ΔC = Difference between charge build with and without catalyst

F = Faraday's Constant (96480 mol⁻¹)

 n_1 = Number of electrons involved in the reduction of proton (2)

 n_2 = Number of moles of **1**

t = 120 s

Figure S14: ESI mass spectra of 1 before and after the bulk electrolysis

Figure S15: DLS analysis of the photocatalytic system; black bar for before and red bar for after the photocatalytic reaction under inert atmosphere Supporting Information

Catalysts	[Cat]	conditions	рН	light	TON	Ref.
[Co(bpyPY₂OH)(CH₃CN)(CF₃SO₃)] ⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.0	LED 452 nm	950	1
[Co(bpyPY₂Me)(CH₃CN)(CF₃SO₃) ⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.5	LED 452 nm	1850	1
[Co(bpy(PY-CF ₃) ₂ Me)(CH ₃ CN) ₂] ²⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ²	4.5	LED 452 nm	400	1
[Co(qpy)(OH ₂) ₂] ²⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	5.5	LED 452 nm	200	1
[Co(pr-bpy ₂)(CF ₃ SO ₃) ₂] ²⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	5.0	LED 452 nm	150	1
[Co(PY ₄ Me ₂ H)(CH ₃ CN)(CF ₃ SO ₃)] ¹⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	5.5	LED 452 nm	250	1
[Co(PY ₄ Me ₃)(CH ₃ CN) ₂] ²⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	5.0	LED 452 nm	225	1
[Co(ppq)Cl ₂]	3 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.0	LED 469 nm	333	2

Table S3: comparative data of photocatalytic activity of Co(II) complexes

[Co(bpy₂PYMe)(CF₃SO₃)] ⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.0	LED 452 nm	1630	3
[Co(bpy₂PYMe-CF₃)(CF₃SO₃)] ⁺	20 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.5	LED 452 nm	1390	3
[Co(CF ₃ PY ₅ Me ₂)(H ₂ O)] ²⁺	50 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	6.0	LED 452 nm	300	4
[Co(Py5)Cl]⁺	50 μΜ	Acetate buffer 1 M H ₂ A/HA ⁻ (0.1 M), [Ru(bpy) ₃] ² +	4.0	LED 452 nm	187	5
[Co(ppq)Cl ₂]	10 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ²	4.5	LED 469 nm	300	6
[Co(pbq)Cl ₂]	10 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ²	4.5	LED 469 nm	225	6
[Co(pdpq)Cl(H₂O)] ⁺	10 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.5	LED 469 nm	750	6
[Co(ptpq)Cl ₂]	10 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ²	4.5	LED 469 nm	180	6
[Co(N4py)Cl] ²⁺	100	H ₂ A/HA ⁻ (1.1 M),	4.0	LED 452	65	7

	μM	[Ru(bpy) ₃] ² +		nm		
Cage 1	50 μΜ	H ₂ A/HA ⁻ (0.3 M), [Ru(bpy) ₃] ² +	4.0	LED 469 nm	43	Present manuscript

Figure S16: Photocatalytic hydrogen evolution over the time. Conditions: 5 mL 1.0 M acetate buffer at pH 4.0, [ascorbic acid] = 0.3 M, $[Ru(bpy)_3]^{2+}$ = 0.5 mM, [**1**] = 200.0 μ M, LED light: 469 nm. The arrow indicates addition of **1** (200.0 μ M) and $[Ru(bpy)_3]^{2+}$ (0.5 mM) after hydrogen evolution begins to saturate.

References

 Khnayzer, R. S.; Thoi, V. S.; Nippe, M.; King, A. E.; Jurss, J. W.; El Roz, K. A.; Long, J. R.; Chang, C. J.; Castellano, F. N. Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt (II) polypyridyl catalysts. *Energy. Environ. Sci.*, **2014**, *7*, 1477-1488.

- Tong, L.; Zong, R.; Thummel, R. P. Visible Light-Driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex. J. Am. Chem. Soc., 2014, 136, 4881–4884
- Nippe, M.; Khnayzer, R. S.; Panetier, J. A.; Zee, D. Z.; Olaiya, B. S.; Head-Gordon, M.; Chang, C. J.; Castellano, F. N.; Long, J. R. Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy₂PYMe. *Chem. Sci.*, **2013**, *4*, 3934-3945
- 4) Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J. Molecular cobalt pentapyridine catalysts for generating hydrogen from water. *J. Am. Chem. Soc.*, **2011**, *133*, 9212-9215.
- 5) Deponti, E.; Luisa, A.; Natali, M.; Iengo, E.; Scandola, F. Photoinduced hydrogen evolution by a pentapyridine cobalt complex: elucidating some mechanistic aspects. *Dalton Trans.*, **2014**, *43*, 16345-16353.
- Tong, L.; Kopecky, A.; Zong, R.; Gagnon, K. J.; Ahlquist, M. S.; Thummel, R. P. 2015. Light-Driven Proton Reduction in Aqueous Medium Catalyzed by a Family of Cobalt Complexes with Tetradentate Polypyridine-Type Ligands. *Inorg. chem.*, 2015, 54, 7873-7884.
- 7) Lo, W. K.; Castillo, C. E.; Gueret, R.; Fortage, J.; Rebarz, M.; Sliwa, M.; Thomas, F.; McAdam, C. J.; Jameson, G. B.; McMorran, D. A; Crowley, J. D. Synthesis, characterization, and photocatalytic H₂-evolving activity of a family of [Co(N₄Py)(X)]ⁿ⁺ complexes in aqueous solution. *Inorg. Chem.*, **2016**, *55*, 4564-4581.