Supporting Information

Access to Alkyl Substituted Lactone via Photoredox-Catalyzed

Alkylation/Lactonization of Unsaturated Carboxylic Acids

Wanxing Sha, Shengyang Ni, Jianlin Han,* and Yi Pan

1.	General information
2.	General procedure for the alkylation/lactonization of unsaturated carboxylic
	acidsS2
3.	Investigation of the mechanism conditions
4.	Characterization data of products
5.	X-ray crystallography for 3ck
6.	NMR spectra-S16

1. General information

All commercial reagents were used without additional purification unless otherwise specified. The reactions were conducted under an atmosphere of argon and were monitored by TLC unless otherwise noted. Solvents were dried and distilled prior to use. Flash chromatography was performed using silica gel 60 (300–400 mesh). ¹H, ¹⁹F, ¹³C and ³¹P NMR were recorded on a Bruker AVANCE400M spectrometer. Melting points were uncorrected. Infrared spectra were obtained on a Agilent Cary 630 instrument on a diamond plate by way of technology Attenuated Total Reflection (ATR). HRMS were conducted on an Agilent 6540Q-TOF LC/MS equipped with an electrospray ionization (ESI) probe operating in positive ion mode.

2. General procedure for the alkylation/lactonization of unsaturated carboxylic acids

An oven-dried reaction vial containing unsaturated carboxylic acids **1** (0.2 mmol), Ir(ppy)₂(dtbbpy)PF₆ (0.004 mmol, 0.02 equiv.), **2** (0.4 mmol, 2.0 equiv) and TsOH·H₂O (0.04 mmol, 0.2 eq.) was evacuated and purged with argon three times. Then CH₃CN (2 mL) as solution and H₂O (20 mmol, 100 eq.) were added via syringe, respectively. Then the reaction mixture was stirred for 24 hours at room temperature in the presence of 5W blue LED lamps. When the reaction was complete, the reaction mixture was purified by flash chromatography (petroleum ether: dichloromethane = 1: 2) directly to furnish the corresponding product **3**.

1 mmol scale reaction: An oven-dried reaction vial containing unsaturated carboxylic acids **1a** (1.0 mmol), $Ir(ppy)_2(dtbbpy)PF_6$ (0.02 mmol, 0.02 equiv.), **2a** (2.0 mmol, 2.0 equiv) and TsOH·H₂O (0.2 mmol, 0.2 eq.) was evacuated and purged with argon three times. Then CH₃CN (14 mL) as solution and H₂O (100 mmol, 100 eq.) were added via syringe, respectively. Then the reaction mixture was stirred for 32 hours at room temperature in the presence of 5W blue LED lamps. When the reaction was complete, the reaction mixture was purified by flash chromatography (petroleum ether: dichloromethane = 1: 2) directly to furnish the corresponding product **3aa** in 71% yield (186.2 mg).

3. Investigation of the mechanism conditions

condition addition In **a**), a reaction of **1a** and 2a with the of 3 equiv 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as radical-trapping reagent under the standard condition was performed, and the formation of target product 3aa was suppressed completely detected by TLC.

In condition **b**), the reaction was carried out in the condition of **1a** (0.2 mmol), **2a** (0.4 mmol), $Ir(ppy)_2(dtbbpy)PF_6$ (0.004 mmol, 0.02 equiv), $TsOH \cdot H_2O$ (0.04 mmol), 1,1-diphenylethylene (0.4 mmol), H_2O (20 mmol) and CH_3CN (2 mL), argon atmosphere, and stirred 24h at room temperature in the presence of 5W blue LED lamps. The formation of target product **3aa** was suppressed. Compound **4a** can be isolated by flash chromatography with 43% yield.

Characterization data of compound 4a:

(2-cyclopentylethene-1,1-diyl)dibenzene (4a): Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59

-7.01 (m, 10H), 5.97 (d, J = 10.0 Hz, 1H), 2.63 -2.32 (m, 1H), 1.84 -1.73 (m, 2H), 1.73 -1.62 (m, 2H), 1.57 -1.45 (m, 2H), 1.45 -1.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 140.6, 140.0, 135.5, 130.0, 128.1, 128.1, 127.3, 126.8, 126.7, 40.5, 34.3, 25.6. Analytical data for **4a** was consistent with that previously reported.¹

In condition c), the reaction was carried out in the condition of **1a** (0.2 mmol), **2a** (0.4 mmol), $Ir(ppy)_2(dtbbpy)PF_6$ (0.004 mmol, 0.02 equiv.), $TsOH \cdot H_2O$ (0.04 mmol), 1,1-diphenylethylene (0.4 mmol), $H_2^{18}O$ (20 mmol) and CH_3CN (2 mL), argon atmosphere, and stirred 24h at room temperature in the presence of 5W blue LED lamps. The formation of target product **3aa** was detected by HRMS (TOF MS ESI): calcd for $C_{16}H_{19}FNaO_2^+$ [M+ Na]⁺ 285.1261, found 285.1260, and **3aa'** was detected by HRMS (TOF MS ESI): calcd for $C_{16}H_{19}FNaO^{18}O^+$ [M+ Na]⁺ 287.1304, found 287.1305.

4. Characterization data of products

5-(cyclopentylmethyl)-5-(4-fluorophenyl)dihydrofuran-2(3H)-one (3aa)

Yellow liquid, 40.4 mg (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 7.15 – 6.94 (m, 2H), 2.68 – 2.50 (m, 1H), 2.50 – 2.32 (m, 3H), 2.08 (dd, *J* = 14.4, 6.1 Hz, 1H), 1.99 (dd, *J* = 14.4, 6.8 Hz, 1H), 1.84 – 1.69 (m, 1H), 1.59 – 1.29 (m, 6H), 1.10 (ddd, *J* = 17.8, 12.4, 8.7 Hz, 1H), 0.89 (ddt, *J* = 11.5, 8.0, 5.8 Hz, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -115.06 (s). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 162.0 (d, *J* = 246.5 Hz), 139.0 (d, *J* = 3.2 Hz), 126.5 (d, *J* = 8.1 Hz), 115.4 (d, *J* = 21.4 Hz), 89.4, 48.4, 36.0, 36.0, 33.7, 33.7, 28.5, 24.8, 24.8. IR (cm⁻¹): 2946, 1772, 1510, 1185, 1157, 837, 814. HRMS (TOF MS ESI): calcd for C₁₆H₁₉FNaO₂⁺ [M+ Na]⁺ 285.1261, found 285.1263.

5-([1,1'-biphenyl]-4-yl)-5-(cyclopentylmethyl)dihydrofuran-2(3H)-one (3ba)

Yellow solid, 29.4 mg (46% yield), m.p. 78 - 80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.53 (m, 4H), 7.42 (tt, J = 8.6, 1.9 Hz, 4H), 7.38 – 7.31 (m, 1H), 2.66 – 2.52 (m, 1H), 2.52 – 2.35 (m, 3H), 2.15 (dd, J = 14.4, 5.9 Hz, 1H), 2.02 (dd, J = 14.4, 7.0 Hz, 1H), 1.89 – 1.75 (m, 1H), 1.68 (td, J = 9.1, 2.5 Hz, 1H), 1.58 – 1.45 (m, 3H), 1.45 – 1.30 (m, 2H), 1.14 (ddd, J = 17.9, 12.3, 8.4 Hz, 1H), 1.02 – 0.84 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 142.2, 140.4, 140.3, 128.8, 127.5, 127.1, 127.0, 125.2, 89.8, 48.4, 36.2, 36.0, 33.8, 33.8, 28.6, 24.9, 24.8. IR (cm⁻¹): 2916, 2850, 1765, 1183, 833, 762, 693. HRMS (TOF MS ESI): calcd for C₂₂H₂₄NaO₂⁺ [M+ Na]⁺ 343.1669, found 343.1670.

5-(cyclopentylmethyl)-5-phenyldihydrofuran-2(3H)-one (3ca)

Colorless liquid, 37.8 mg (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.11 (m, 5H), 2.56 – 2.41 (m, 1H), 2.41 – 2.24 (m, 3H), 2.04 (dd, *J* = 14.4, 6.0 Hz, 1H), 1.92 (dd, *J* = 14.4, 6.9 Hz, 1H), 1.76 – 1.63 (m, 1H), 1.60 – 1.21 (m, 6H), 1.04 (dq, *J* = 12.5, 8.7 Hz, 1H), 0.83 (tt, *J* = 8.8, 5.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 143.2, 128.5, 127.5, 124.7, 89.8, 48.4, 36.1, 36.0, 33.8, 33.7, 28.6, 24.9, 24.8. IR (cm⁻¹): 2945, 1770, 1191, 928, 766, 703. HRMS (TOF MS ESI): calcd for C₁₆H₂₀NaO₂⁺ [M+ Na]⁺ 267.1356, found 267.1354.

5-(cyclopentylmethyl)-5-(p-tolyl)dihydrofuran-2(3H)-one (3da)

Colorless liquid, 36.3 mg (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 7.16 (d, J = 8.1 Hz, 2H), 2.60 – 2.46 (m, 1H), 2.46 – 2.36 (m, 3H), 2.35 (s, 3H), 2.10 (dd, J = 14.4, 5.9 Hz, 1H), 1.97 (dd, J = 14.4, 7.0 Hz, 1H), 1.84 – 1.70 (m, 1H), 1.66 – 1.28 (m, 6H), 1.11 (ddd, J = 17.9, 12.4, 8.6 Hz, 1H), 0.99 – 0.82 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 140.2, 137.1, 129.1, 124.7, 89.9, 48.4, 36.1, 36.1, 33.7, 33.7, 28.6, 24.9, 24.8, 21.0. IR (cm⁻¹): 2945, 1772, 1180, 928, 818. HRMS (TOF MS ESI): calcd for C₁₇H₂₂NaO₂⁺ [M+ Na]⁺ 281.1512, found 281.1513.

5-(4-bromophenyl)-5-(cyclopentylmethyl)dihydrofuran-2(3H)-one (3ea)

Pale yellow liquid, 44.4 mg (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.35 (m, 2H), 7.19 – 7.10 (m, 2H), 2.58 – 2.42 (m, 1H), 2.42 – 2.24 (m, 3H), 2.01 (dd, *J* = 14.5, 6.0 Hz, 1H), 1.91 (dd, *J* = 14.5, 7.0 Hz, 1H), 1.75 – 1.64 (m, 1H), 1.57 – 1.22 (m, 6H), 1.03 (ddd, *J* = 17.9, 12.4, 8.6 Hz, 1H), 0.92 – 0.74 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 142.4, 131.6, 126.6, 121.5, 89.3, 48.2, 36.0, 36.0, 33.7, 28.4, 24.9, 24.8. IR (cm⁻¹): 2946, 1772, 1191, 1008, 826, 727. HRMS (TOF MS ESI): calcd for C₁₆H₁₉BrNaO₂⁺ [M+ Na]⁺ 345.0461, found 345.0459.

5-(4-chlorophenyl)-5-(cyclopentylmethyl)dihydrofuran-2(3H)-one (3fa)

Colorless liquid, 45.1 mg (81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 2H), 7.24 – 7.16 (m, 2H), 2.58 – 2.41 (m, 1H), 2.41 – 2.23 (m, 3H), 2.09 – 1.95 (m, 1H), 1.91 (dd, *J* = 14.5, 6.9 Hz, 1H), 1.77 – 1.62 (m, 1H), 1.57 – 1.22 (m, 6H), 1.03 (ddd, *J* = 17.8, 12.4, 8.6 Hz, 1H), 0.82 (tt, *J* = 8.5, 6.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 141.8, 133.4, 128.7, 126.2, 89.3, 48.2, 36.0, 36.0, 33.7, 33.7, 28.5, 24.9, 24.8. IR (cm⁻¹): 2946, 1772, 1491, 1189, 928, 829. HRMS (TOF MS ESI): calcd for C₁₆H₁₉ClNaO₂⁺ [M+ Na]⁺ 301.0966, found 301.0966.

6-(cyclopentylmethyl)-6-phenyltetrahydro-2H-pyran-2-one (3ga)

Colorless liquid, 24.1 mg (47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.19 (m, 5H), 2.56 – 2.33 (m, 2H), 2.28 (dt, *J* = 14.1, 4.2 Hz, 1H), 2.11 – 1.92 (m, 3H), 1.87 – 1.69 (m, 3H), 1.61 – 1.45 (m, 3H), 1.45 – 1.28 (m, 3H), 1.19 – 1.00 (m, 1H), 0.96 – 0.75 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 143.6, 128.6, 127.2, 125.1, 88.0, 49.9, 35.4, 34.2, 33.8, 33.6, 29.2, 24.9, 24.8, 16.3. IR (cm⁻¹): 2946, 2866, 1730, 1236, 1034, 762, 701. HRMS (TOF MS ESI): calcd for C₁₇H₂₂NaO₂⁺ [M+ Na]⁺ 281.1512, found 281.1513.

3-(cyclopentylmethyl)isobenzofuran-1(3H)-one (3ha)

Yellow liquid, 23.7 mg (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.7 Hz, 1H), 7.67 (td, J = 7.5, 1.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 7.7, 0.7 Hz, 1H), 5.49 (dd, J = 8.9, 3.8 Hz, 1H), 2.24 – 2.05 (m, 1H), 2.03 – 1.87 (m, 2H), 1.87 – 1.73 (m, 2H), 1.68 – 1.46 (m, 4H), 1.33 – 1.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 150.5, 133.9, 129.0, 126.0, 125.7,

121.8, 81.2, 41.2, 36.7, 33.2, 32.6, 25.1, 25.0. IR (cm⁻¹): 2946, 1754, 1286, 1060, 742, 695. HRMS (TOF MS ESI): calcd for $C_{14}H_{16}NaO_2^+$ [M+ Na]⁺ 239.1043, found 239.1044.

3-(cyclopentylmethyl)-3-methylisobenzofuran-1(3H)-one (3ia)

Yellow oil, 15.0 mg (33% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.80 (m, 1H), 7.65 (td, J = 7.5, 1.1 Hz, 1H), 7.50 (td, J = 7.5, 0.9 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 2.19 (dd, J = 14.6, 6.3 Hz, 1H), 1.94 (dd, J = 14.6, 6.7 Hz, 1H), 1.76 – 1.66 (m, 1H), 1.64 (s, 3H), 1.57 – 1.41 (m, 3H), 1.40 – 1.28 (m, 3H), 1.14 (ddd, J = 18.0, 12.3, 9.0 Hz, 1H), 0.95 – 0.81 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.2, 133.9, 128.8, 126.1, 125.7, 121.1, 88.0, 45.8, 35.7, 33.8, 33.7, 27.0, 25.0, 24.9. IR (cm⁻¹): 2920, 1757, 1286, 1031, 764, 695. HRMS (TOF MS ESI): calcd for C₁₅H₁₈NaO₂⁺ [M+ Na]⁺ 253.1199, found 253.1198.

3-(4-chlorophenyl)-3-(cyclopentylmethyl)isobenzofuran-1(3H)-one (3ja)

Colorless oil, 54.9 mg (84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.6 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.58 – 7.42 (m, 4H), 7.36 – 7.29 (m, 2H), 2.57 (dd, J = 14.6, 5.7 Hz, 1H), 2.24 (dd, J = 14.6, 6.5 Hz, 1H), 1.67 – 1.23 (m, 7H), 1.20 – 1.06 (m, 1H), 1.06 – 0.91 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 152.9, 139.8, 134.3, 134.0, 129.3, 128.8, 126.4, 126.0, 125.4, 122.2, 89.8, 46.3, 36.0, 33.8, 33.7, 24.9, 24.8. IR (cm⁻¹): 2946, 1757, 1493, 1286, 1094, 829, 758. HRMS (TOF MS ESI): calcd for C₂₀H₁₉ClNaO₂⁺ [M+ Na]⁺ 349.0966, found 349.0965.

3-(cyclopentylmethyl)-3-phenylisobenzofuran-1(3H)-one (3ka)

Pale yellow oil, 45.5 mg (78% yield).¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 1H), 7.64 (td, J = 7.7, 1.1 Hz, 1H), 7.54 (dt, J = 8.6, 5.4 Hz, 3H), 7.49 (td, J = 7.6, 0.9 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.31 – 7.22 (m, 1H), 2.61 (dd, J = 14.7, 5.6 Hz, 1H), 2.27 (dd, J = 14.7, 6.4 Hz, 1H), 1.70 – 1.57 (m, 2H), 1.57 – 1.22 (m, 5H), 1.22 – 1.06 (m, 1H), 1.05 – 0.89 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 153.4, 141.2, 134.1, 129.1, 128.7, 128.0, 125.8, 125.5, 124.8, 122.4, 90.4, 46.4, 36.0, 33.8, 33.7, 24.9, 24.8. IR (cm⁻¹): 2946, 1754, 1286, 1072, 751, 691. HRMS (TOF MS ESI): calcd for C₂₀H₂₀NaO₂⁺ [M+ Na]⁺ 315.1356, found 315.1355.

3-(cyclopentylmethyl)-3-(p-tolyl)isobenzofuran-1(3H)-one (3la)

Colorless oil, 50.5 mg (83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.55 (td, *J* = 7.7, 1.0 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 2.51 (dd, *J* = 14.6, 5.6 Hz, 1H), 2.23 (s, 3H), 2.17 (dd, *J* = 14.6, 6.5 Hz, 1H), 1.61 – 1.13 (m, 7H), 1.12 – 0.98 (m, 1H), 0.98 – 0.83 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 153.6, 138.2, 137.8, 134.1, 129.4, 129.0, 125.8, 125.5, 124.8, 122.4, 90.4, 46.3, 36.0, 33.9, 33.7, 24.9, 24.8, 21.0. IR (cm⁻¹): 2946, 1756, 1465, 1286, 1074, 982, 818, 721, 691. HRMS (TOF MS ESI): calcd for C₂₁H₂₂NaO₂⁺ [M+ Na]⁺ 329.1512, found 329.1510.

5-ethyl-5-phenyldihydrofuran-2(3H)-one (3cb)

Yellow liquid, 21.3 mg (56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.22 (m, 5H), 2.67 – 2.34 (m, 4H), 2.00 (q, *J* = 7.4 Hz, 2H), 0.82 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 142.7, 128.5, 127.5, 124.8, 89.9, 35.3, 34.6, 28.8, 8.3. Analytical data for **3cb** was consistent with that previously reported.²

5-phenyl-5-propyldihydrofuran-2(3H)-one (3cc)

Colorless liquid, 29.7 mg (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.17 (m, 5H), 2.69 – 2.51 (m, 1H), 2.51 – 2.35 (m, 3H), 2.04 – 1.81 (m, 2H), 1.48 – 1.28 (m, 1H), 1.20 – 1.00 (m, 1H), 0.84 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 143.0, 128.5, 127.5, 124.6, 89.6, 44.7, 35.1, 28.7, 17.2, 14.1. IR (cm⁻¹): 2960, 1770, 1448, 1191, 762, 701. HRMS (TOF MS ESI): calcd for C₁₃H₁₆NaO₂⁺ [M+ Na]⁺ 227.1043, found 227.1044.

5-butyl-5-phenyldihydrofuran-2(3H)-one (3cd)

Pale yellow oil, 25.5 mg (58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.24 (m, 5H), 2.65 – 2.51 (m, 1H), 2.51 – 2.36 (m, 3H), 2.05 – 1.84 (m, 2H), 1.40 – 1.13 (m, 3H), 1.05 (qdd, J = 16.8, 12.2, 7.6 Hz, 1H), 0.82 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 143.1, 128.5, 127.5, 124.6, 89.6, 42.2, 35.1, 28.7, 25.9, 22.7, 13.9. IR (cm⁻¹): 2935, 1770, 1191, 928, 766, 700. HRMS (TOF MS ESI): calcd for C₁₄H₁₈NaO₂⁺ [M+ Na]⁺ 241.1199, found 241.1198.

5-phenyl-5-(3-phenylpropyl)dihydrofuran-2(3H)-one (3ce)

Yellow oil, 28.1 mg (50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.20 (m, 7H), 7.20 – 7.11 (m, 1H), 7.11 – 7.00 (m, 2H), 2.70 – 2.29 (m, 6H), 2.10 – 1.86 (m, 2H), 1.78 – 1.64 (m, 1H), 1.48 – 1.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 142.8, 141.6, 128.6, 128.4, 128.3, 127.6, 125.9, 124.6, 89.4, 41.8, 35.6, 35.3, 28.6, 25.5. IR (cm⁻¹): 2943, 1770, 1191, 934, 749, 699. HRMS (TOF MS ESI): calcd for C₁₉H₂₀NaO₂⁺ [M+ Na]⁺ 303.1356, found 303.1355.

5-phenyl-5-(4-phenylbutyl)dihydrofuran-2(3H)-one (3cf)

Yellow oil, 39.4 mg (67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 5H), 7.23 (dd, J = 9.6, 5.0 Hz, 2H), 7.17 – 7.11 (m, 1H), 7.11 – 7.03 (m, 2H), 2.77 – 2.27 (m, 6H), 2.11 – 1.84 (m, 2H), 1.63 – 1.47 (m, 2H), 1.46 – 1.33 (m, 1H), 1.20 – 1.06 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 142.9, 142.3, 128.6, 128.3, 127.6, 125.7, 124.7, 89.5, 42.3, 35.7, 35.1, 31.5, 28.7, 23.6. IR (cm⁻¹): 2937, 1770, 1180, 922, 747, 699. HRMS (TOF MS ESI): calcd for C₂₀H₂₂NaO₂⁺ [M+ Na]⁺ 317.1512, found 317.1511.

5-phenyl-5-(3-(p-tolyl)propyl)dihydrofuran-2(3H)-one (3cg)

Yellow liquid, 37.2 mg (63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 7.04 (d, J = 7.8 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 2.62 – 2.35 (m, 6H), 2.29 (s, 3H), 2.05 – 1.88 (m, 2H), 1.75 – 1.58 (m, 1H), 1.46 – 1.29 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 142.8, 138.5, 135.3, 129.0, 128.6, 128.2, 127.6, 124.6, 89.4, 41.9, 35.2, 35.2, 28.6, 25.6, 21.0. IR (cm⁻¹): 2922, 1772, 1156, 1151, 764, 703. HRMS (TOF MS ESI): calcd for C₂₀H₂₂NaO₂⁺ [M+ Na]⁺ 317.1512, found 317.1514.

5-isobutyl-5-phenyldihydrofuran-2(3H)-one (3ch)

Yellow oil, 27.4 mg (63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.10 (m, 5H), 2.66 – 2.27 (m, 4H), 2.00 (dd, J = 14.6, 5.0 Hz, 1H), 1.83 (dd, J = 14.6, 7.4 Hz, 1H), 1.49 (dqd, J = 13.5, 6.7, 5.1 Hz, 1H), 0.89 (d, J = 6.6 Hz, 3H), 0.72 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 142.9, 128.5, 127.5, 124.7, 89.8, 50.8, 36.8, 28.3, 24.5, 24.1, 23.5. IR (cm⁻¹): 2954, 1772, 1191, 1122, 919, 768, 703. HRMS (TOF MS ESI): calcd for C₁₄H₁₈NaO₂⁺ [M+ Na]⁺ 241.1199, found 241.1199.

5-(cyclobutylmethyl)-5-phenyldihydrofuran-2(3H)-one (3ci)

Pale yellow oil, 30.2 mg (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.11 (m, 5H), 2.58 – 2.41 (m, 1H), 2.41 – 2.27 (m, 3H), 2.27 – 2.12 (m, 1H), 2.08 – 1.94 (m, 2H), 1.93 – 1.82 (m, 1H), 1.70 – 1.53 (m, 4H), 1.43 – 1.30 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 143.0, 128.4, 127.5, 124.7, 89.6, 49.3, 35.0, 31.9, 29.6, 29.3, 28.6, 19.1. IR (cm⁻¹): 2932, 1770, 1189, 930, 766, 701. HRMS (TOF MS ESI): calcd for C₁₅H₁₈NaO₂⁺ [M+ Na]⁺ 253.1199, found 253.1198.

5-(cyclohexylmethyl)-5-phenyldihydrofuran-2(3H)-one (3cj)

Colorless oil, 36.4 mg (71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.15 (m, 5H), 2.61 – 2.46 (m, 1H), 2.46 – 2.30 (m, 3H), 1.95 (dd, J = 14.7, 5.0 Hz, 1H), 1.88 – 1.72 (m, 2H), 1.64 – 1.43 (m, 3H), 1.32 (t, J = 11.0 Hz, 1H), 1.20 (dddd, J = 10.8, 7.1, 5.6, 3.3 Hz, 1H), 1.14 – 0.98 (m, 3H), 0.98 – 0.72 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 143.1, 128.5, 127.4, 124.7, 89.8, 49.6, 36.6, 34.4, 34.1, 33.7, 28.4, 26.2, 26.1, 26.0. IR (cm⁻¹): 2920, 1772, 1448, 1168, 932, 766, 703. HRMS (TOF MS ESI): calcd for C₁₇H₂₂NaO₂⁺ [M+ Na]⁺ 281.1512, found 281.1513.

5-((4,4-difluorocyclohexyl)methyl)-5-phenyldihydrofuran-2(3H)-one (3ck)

Yellow solid, 47.7 mg (81% yield), m.p. 103 - 105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.28 (m, 5H), 2.62 – 2.48 (m, 1H), 2.47 – 2.30 (m, 3H), 2.15 – 1.77 (m, 6H), 1.55 – 1.38 (m, 1H), 1.36 – 1.23 (m, 3H), 1.21 – 1.06 (m, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -92.00 (d, *J* = 235.9 Hz), -102.15 (d, *J* = 234.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 142.4, 128.7, 127.8, 124.5, 123.2 (dd, *J* = 241.5, 239.7 Hz), 89.2, 47.9, 37.2, 34.4 – 32.6 (m), 31.9, 29.8 (dd, *J* = 47.5, 9.3 Hz), 28.2. IR (cm⁻¹): 2929, 1761, 1176, 1107, 910, 768, 708. HRMS (TOF MS ESI): calcd for C₁₇H₂₀F₂NaO₂⁺ [M+Na]⁺ 317.1324, found 317.1323.

5-(2-ethylhexyl)-5-phenyldihydrofuran-2(3H)-one (3cl)

Pale yellow oil, 32.7 mg (60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.13 (m, 5H), 2.60 – 2.32 (m, 4H), 1.96 (ddd, J = 14.7, 7.2, 4.2 Hz, 1H), 1.85 (ddd, J = 14.8, 8.6, 6.2 Hz, 1H), 1.42 – 1.12 (m, 5H), 1.12 – 0.94 (m, 4H), 0.84 (t, J = 7.0 Hz, 1.5H), 0.80 – 0.71 (m, 3H), 0.66 (t, J = 7.4 Hz, 1.5H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 176.8, 143.1, 143.0, 128.4 (overlap, s), 127.5, 127.4, 124.8, 124.8, 90.0, 90.0, 45.9 (overlap, s), 36.5, 36.2, 34.8, 34.6, 33.3, 33.2, 28.5, 28.4, 28.4, 28.3, 26.5, 26.4, 22.9, 22.8, 14.1, 14.0, 10.5, 10.2. IR (cm⁻¹): 2926, 1776, 1180, 924, 766, 703. HRMS (TOF MS ESI): calcd for C₁₈H₂₆NaO₂⁺ [M+ Na]⁺ 297.1825, found 297.1826.

5-neopentyl-5-phenyldihydrofuran-2(3H)-one (3cm)

Yellow solid, 34.8 mg (75% yield). m.p. 79 - 80 °C ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.21 (m, 5H), 2.60 – 2.24 (m, 4H), 2.13 (d, *J* = 14.9 Hz, 1H), 1.99 (d, *J* = 14.9 Hz, 1H), 0.74 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 143.2, 128.4, 127.4, 125.0, 89.5, 54.4, 39.1, 31.7, 31.0, 27.9. IR

 (cm^{-1}) : 2941, 1757, 1053, 990, 758, 699. HRMS (TOF MS ESI): calcd for $C_{15}H_{20}NaO_2^+ [M+Na]^+$ 255.1356, found 255.1355.

Reference

- 1. S. Ni, Y. Zhang, C. Xie, H. Mei, J. Han and Y. Pan, Org. Lett., 2015, 17, 5524.
- 2. T. M. Ha, C. Chatalova-Sazepin, Q. Wang and J. Zhu, Angew. Chem. Int. Ed., 2016, 55, 9249.

5. X-ray crystallography for 3ck (CCDC number: 1569464)

6. NMR spectra

6.1. NMR spectra of compound 4a

¹H NMR (400 MHz, CDCl₃) spectra of **4a**

6.2. NMR spectra of products 3

¹H NMR (400 MHz, CDCl₃) spectra of **3aa**

¹³C NMR (101 MHz, CDCl₃) spectra of **3aa**

¹H NMR (400 MHz, CDCl₃) spectra of **3ba**

¹³C NMR (101 MHz, CDCl₃) spectra of **3ba**

¹³C NMR (101 MHz, CDCl₃) spectra of **3ca**

¹³C NMR (101 MHz, CDCl₃) spectra of **3da**

¹³C NMR (101 MHz, CDCl₃) spectra of **3fa**

¹³C NMR (101 MHz, CDCl₃) spectra of **3ha**

¹³C NMR (101 MHz, CDCl₃) spectra of **3ia**

¹³C NMR (101 MHz, CDCl₃) spectra of **3ja**

¹H NMR (400 MHz, CDCl₃) spectra of **3ka**

¹³C NMR (101 MHz, CDCl₃) spectra of **3ka**

¹³C NMR (101 MHz, CDCl₃) spectra of **3la**

¹H NMR (400 MHz, CDCl₃) spectra of **3cb**

S31

¹³C NMR (101 MHz, CDCl₃) spectra of **3ce**

^{13}C NMR (101 MHz, CDCl₃) spectra of 3cf

^{13}C NMR (101 MHz, CDCl₃) spectra of 3cg

^{13}C NMR (101 MHz, CDCl₃) spectra of $\boldsymbol{3ch}$

¹³C NMR (101 MHz, CDCl₃) spectra of **3ci**

^{13}C NMR (101 MHz, CDCl₃) spectra of 3cj

 ^{19}F NMR (376 MHz, CDCl₃) spectra of **3ck**

¹H NMR (400 MHz, CDCl₃) spectra of **3cl**

¹H NMR (400 MHz, CDCl₃) spectra of **3cm**

