Supporting Information

Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding

Huai-Song Wang,^{†,‡} Hai-Ling Liu,[†] Kang Wang,[†] Ya Ding,^{* ‡} Jing-Juan Xu,[†] Xing-Hua Xia^{*†}, Hong-Yuan Chen[†]

[†] State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.

Materials and reagents

The DNA oligonucleotides were synthesized by Shanghai Sangon Biological Engineering Technology & Services Co., Ltd. (China). The sequences of the DNA oligonucleotides were as follows:

FAM-P1: 5'-CTGTCTTGAACATGAGTT-FAM-3' TAMRA-P1: 5'-CTGTCTTGAACATGAGTT-TAMRA-3'

T1: 5'-AACTCATGTTCAAGACAG-3'

 $Cr(NO_3)_3 \cdot 9H_2O$, terephthalic acid and polyethyleneimine (PEI, branched, M.W. 10,000) were purchased from Alfa Aesar. HAuCl₄·4H₂O was from Aladdin Reagent Company (Shanghai, China). Sodium dodecylbenzenesulfonate (SDBS) and Hexadecyltrimethylammonium bromide (CTAB) were purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Graphene and amino-functionalized carbon nanotubes (CNT-NH₂) were purchased from JCNANO Tech Co., Ltd (Nanjing, China). Other reagents and chemicals were of analytical grade. All aqueous solutions were prepared from deionized water (18 M Ω ·cm⁻¹, PURELAB Classic, PALL, USA).

Apparatus and measurements

The X-ray diffraction patterns were obtained on an X-ray powder diffractometer (XRD, X'TRA, Cu K α radiation, Switzerland). The morphology of MOF nanosheets and nanoparticles were characterized by transmission electron microscopy (TEM, JEM-200CX, Japan) and scanning electron microscope (SEM, S-4800, Japan). IR spectra were collected on a Nicolet 6700 FT-IR spectrometer (Thermo Scientific, U.S.A.). Fluorescence spectra were recorded on a RF-5301PC spectrophotometer (Shimadzu, Japan). Zeta potential measurements were performed on a Zetasizer Nano-Z system (USA).

Figure S1. Fluorescence quenching properties of MoS₂ nanosheets toward dyelabeled P1. (A) Fluorescence spectra of FAM-P1 (15 nM) in the presence of 20 nM T1 mixed with 0.2 mg·mL⁻¹ MoS₂ nanosheets in 10 mM PBS (pH 7.38). (B) The fluorescence spectra of TAMRA-P1 (15 nM) in the presence of 20 nM T1 mixed with 0.2 mg·mL⁻¹ MoS₂ nanosheets in 10 mM PBS (pH 7.38). FAM-P1 and TAMRA-P1 were probes for a *Homo sapiens* tumor suppressor gene.

Figure S2. Characterization of MIL-101. (A) SEM image of MIL-101 and (B) the experimental and simulated XRD patterns of MIL-101.

Figure S3. Schematic illustration of the adsorption/coordination of HPO_4^{2-} on MIL-101.

Figure S4. Structures of the labeled fluorophores (FAM and TAMRA) on P1.

Figure S5. Fluorescence spectra of TAMRA-P1 (20 nM) with T1 (30 nM) in 10 mM PBS (pH 7.38) containing 0.2 mg·mL⁻¹ MIL-101.

Figure S6. Schematic illustration of the fluorescent DNA assay using MIL-101 and PEI-MIL-101 as the sensing platforms.

Figure S7. Fluorescence spectra (A) and peak intensity (B) of TAMRA-P1 (20 nM) with T1 (25 nM) in 10 mM PBS (pH 7.38) containing 0.2 mg·mL⁻¹ PEI-MIL-101.

Figure S8. TEM images and schematic representations of AuNPs+ (A), AuNPs- (B), G+ (C-a), G- (C-b), and CNTs (D).

Figure S9. Nano-quenchers with positively or negatively charged surfaces for fluorescent DNA assay. (A) Zeta potentials of the nano-quenchers. (B)
Fluorescence peak intensity of FAM-P1 (20 nM) with and without T1 (30 nM) in 10 mM PBS buffer (pH 7.4) with AuNPs+ (or AuNPs-, G+, G-), or in 10 mM PBS buffer (pH 5.29 or 8.04) with CNT-NH₂ (0.03 mg·mL⁻¹).