New and best-practice approaches to thresholding

Thomas Nichols, Ph.D.
Department of Statistics &
Warwick Manufacturing Group
University of Warwick

FIL SPM Course 17 May, 2012

Overview

- Why threshold?
- Assessing statistic images
- Measuring false positives
- Practical solutions

Thresholding

Where's the signal?

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

...but why threshold?!

Blue-sky inference: What we'd like

- Don't threshold, model the signal!
 - Signal location?
 - Estimates and CI's on (x,y,z) location
 - Signal magnitude?
 - CI's on % change
 - Spatial extent?
 - Estimates and CI's on activation volume
 - Robust to choice of cluster definition
- ...but this requires an explicit spatial model

Blue-sky inference: What we need

- Explicit spatial models
 - No routine methods exist
 - High-dimensional mixture modeling problem
 - Activations don't look like Gaussian blobs
- Some encouraging initial efforts...

Kang et al. (2011). *JASA* 106:124-134.

Gershman et al. (2011). *NI*, 57(1), 89-100. Thirion et al. (2010). *MICCAI*, 13(2):241-8. Kim et al. (2010). *IEEE TMI*, 29:1260-74. Weeda et al. (2009). *HBM*, 30:2595-605. Neumann et al. (2008). HBM, 29:177-92.

- ADVT: Thur, 8:30, Ballroom AB, Level 1

"Where's Your Signal? Explicit Spatial Models to Improve Interpretability and Sensitivity of Neuroimaging Results"

Real-life inference: What we get (typically)

- Signal location
 - Local maximum no inference
- Signal magnitude
 - Local maximum intensity P-values (& CI's)
- Spatial extent
 - Cluster volume P-value, no CI's
 - Sensitive to blob-defining-threshold

Assessing Statistic Images...

Ways of assessing statistic images

- Standard methods
 - Voxel
 - Cluster
 - Set
 - Peak (new)

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold $u_{\rm clus}$
 - Retain clusters larger than α -level threshold k_{α}

Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected

Set-level Inference

- Count number of blobs c
 - Minimum blob size *k*
- Worst spatial specificity
 - Only can reject global null hypothesis

Here c = 1; only 1 cluster larger than k

Peak-level Inference

- Identify all the local maxima
 - Ignore all smaller than u_{peak}
- Retain peaks by height

Peak-level Inference

• "Topological inference" – interpretable with boundless Point Spread Function (see Chumbley & Friston, NI, 2009)

• Cumbersome – only making inference at a sprinkling of | locations

Test Statistics for Assessing Statistic Images...

Sometimes, Different Possible Ways to Test...

Image Feature	Test Statistic
Voxel	1. Statistic image value
Cluster	 Cluster size in voxels Cluster size in RESELs Combination, Joint Peak-Cluster Combination, Cluster Mass Combination, Threshold-Free Cluster Enhancement
Set	1. Cluster count
Peak	1. Statistic image value

Sometimes, Different Possible Ways to Test...

Image Feature	Test Statistic
Voxel	1. Statistic image value
Cluster	 Cluster size in voxels Cluster size in RESELs Combination, Joint Peak-Cluster Combination, Cluster Mass Combination, Threshold-Free Cluster Enhancement
Set	1. Cluster count
Peak	1. Statistic image value

Combining Cluster Size with Intensity Information

- Peak-Height combining Poline et al., NeuroImage 1997
 - Minimum P_{extent} & P_{height}
 - Take better of two P-values; (use RFT to correct for taking minimum)
 - Can catch small,
 intense clusters

- Integral M above threshold
 - More powerfully combines peak & height (Hayasaka & Nichols, NI 2004)
- Both are still cluster inference methods!

space

The Pesky Cluster Forming Threshold u_c

- Cluster inference is highly sensitive to cluster-forming threshold u_c
 - Set too low, one big blob
 - Set too high, miss all the signal

Threshold-Free Cluster Enhancement (TFCE)

• A cluster-informed voxel-wise statistic

Smith & Nichols, NI 2009

- Consider cluster mass voxel-wise, for every u_c !
 - For a given voxel, sum up all clusters 'below'
 - For all possible u_c , add up all clusters that contain that voxel
 - But this would give low u_c 's too much weight
 - Low u_c 's give big clusters just by chance

Threshold-Free Cluster Enhancement (TFCE)

• A cluster-informed voxel-wise statistic

Smith & Nichols, NI 2009

- Consider cluster mass voxel-wise, for every $u_c!$
 - For a given voxel, sum up all clusters 'below'
 - For all possible u_c , add up all clusters that contain that voxel
 - But this would give low u_c 's too much weight
 - Low u_c 's give big clusters just by chance
 - Solution: Down-weight according to u_c !

Threshold-Free Cluster Enhancement (TFCE)

• TFCE Statistic for voxel *v*

$$TFCE(v) = \int_0^{t(v)} h^H e(h)^E dh \approx \sum_{0,\delta,2\delta,...,t(v)} h^H e(h)^E \delta$$

- Parameters H & E
 control balance between
 cluster & height
 information
 - H=2 & E=1/2 asmotivated by theory

TFCE Redux

- Avoids choice of cluster-forming threshold u_c
- Generally more sensitive than cluster-wise
- But yet less specific
 - Inference is on some cluster for some u_c
 - "Support" of effect could extend far from significant voxels
- Implementation
 - Currently onlyFSL's randomise

Multiple comparisons...

Multiple Comparisons Problem

- Which of 100,000 voxels are sig.?
 - $-\alpha=0.05 \Rightarrow 5{,}000$ false positive voxels

- Which of (random number, say) 100 clusters significant?
 - $-\alpha=0.05 \Rightarrow 5$ false positives clusters

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

Random field theory...

FWER MCP Solutions: Random Field Theory

- Euler Characteristic χ_{μ}
 - Topological Measure
 - #blobs #holes
 - At high thresholds, just counts blobs

Random Field Theory Smoothness Parameterization

- $E(\chi_u)$ depends on $|\Lambda|^{1/2}$
 - $-\Lambda$ roughness matrix:
- Smoothness
 parameterized as
 Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness Λ

$$\begin{split} & \Lambda = \mathbf{Var} \left(\frac{\partial G}{\partial (x,y,z)} \right) \\ & = \begin{pmatrix} \mathbf{Var} \left(\frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\ & \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\ & \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial z} \right) \end{pmatrix} \\ & = \begin{pmatrix} \lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\ \lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\ \lambda_{zx} & \lambda_{zy} & \lambda_{zz} \end{pmatrix} \end{split}$$

$$|\Lambda|^{1/2} = \frac{(4\log 2)^{3/2}}{\text{FWHM}_x \text{FWHM}_y \text{FWHM}_z}.$$

Random Field Theory Smoothness Parameterization

RESELS

- Resolution Elements
- 1 RESEL = FWHM_x × FWHM_y × FWHM_z
- RESEL Count R
 - $R = \lambda(\Omega) \sqrt{|\Lambda|} = (4\log 2)^{3/2} \lambda(\Omega) / (FWHM_x \times FWHM_y \times FWHM_z)$
 - Volume of search region in units of smoothness
 - Eg: 10 voxels, 2.5 FWHM 4 RESELS

- Beware RESEL misinterpretation
 - RESEL are not "number of independent 'things' in the image"
 - See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.

Random Field Theory Smoothness Estimation

- Smoothness est'd from standardized residuals
 - Variance of gradients
 - Yields resels per voxel (RPV)
- RPV image
 - Local roughness est.
 - Can transform in to local smoothness est.
 - FWHM Img = $(RPV Img)^{-1/D}$
 - Dimension D, e.g. D=2 or 3

```
spm_imcalc_ui('RPV.img', ...
'FWHM.img','i1.^(-1/3)')
```

Est. smoothness also needed for AlphaSim

Random Field Theory Limitations

- Sufficient smoothness
 - − FWHM smoothness 3-4× voxel size (Z)
 - More like $\sim 10 \times$ for low-df T images
- Smoothness estimation
 - Estimate is biased when images not sufficiently Continuous Random smooth
- Multivariate normality
 - Virtually impossible to check
- Several layers of approximations
- Stationary required for cluster size results

Real Data

- fMRI Study of Working Memory
 - 12 subjects, block design Marshuetz et al (2000)
 - Item Recognition
 - Active: View five letters, 2s pause, view probe letter, respond
 - Baseline: View XXXXX, 2s pause, view Y or N, respond
- Second Level RFX
 - Difference image, A-B constructed for each subject
 - One sample t test

Real Data: RFT Result

Threshold

- -S = 110,776
- $-2 \times 2 \times 2$ voxels $5.1 \times 5.8 \times 6.9$ mm FWHM
- -u = 9.870
- Result
 - 5 voxels above the threshold
 - 0.0063 minimumFWE-correctedp-value

Permutation...

Nonparametric Permutation Test

- Parametric methods
 - Assume distribution of statistic under null hypothesis
- Nonparametric methods
 - Use *data* to find
 distribution of statistic
 under null hypothesis
 - Any statistic!

Permutation Test & Exchangeability

- Exchangeability is fundamental
 - Def: Distribution of the data unperturbed by permutation
 - Under H0, exchangeability justifies permuting data
 - Allows us to build permutation distribution
- fMRI scans not exchangeable over time!
 - Even if no signal, autocorrelation structures data
- Subjects are exchangeable
 - Under Ho, each subject's "active" "control" labels can be flipped
 - Equivalently, under Ho flip the sign of each subject's contrast images

Controlling FWE: Permutation Test

- Parametric methods
 - Assume distribution of max statistic under null hypothesis
- Nonparametric methods
 - Use *data* to find
 distribution of *max* statistic
 under null hypothesis
 - Again, any max statistic!

Permutation Test Smoothed Variance t

- Collect max distribution
 - To find threshold that controls FWER
- Consider smoothed variance t statistic

Permutation Test Smoothed Variance t

- Collect max distribution
 - To find threshold that controls FWER
- Consider smoothed variance t statistic

Permutation Test Example

• Permute!

 $-2^{12} = 4,096$ ways to flip 12 A/B labels

– For each, note maximum of *t* image

Permutation Distribution Maximum *t*

Orthogonal Slice Overlay Thresholded *t*

Permutation

 $u^{\text{Perm}} = 7.67$

58 sig. vox.

t_{11} Statistic, Nonparametric Threshold

Test Level vs. t_{11} Threshold

RFT & Bonferroni

 $u^{RF} = 9.87$ $u^{Bonf} = 9.80$ 5 sig. vox. 5.1×5.8×6.9 mm FWHM noise smoothness

*t*₁₁ Statistic, RF & Bonf. Threshold **Permutation & Sm.Var.**

378 sig. vox.

Smoothed Variance *t* Statistic, Nonparametric Threshold

Reliability with Small Groups

- Consider n=50 group study
 - Event-related Odd-Ball paradigm, Kiehl, et al.
- Analyze all 50
 - Analyze with SPM and SnPM, find FWE thresh.
- Randomly partition into 5 groups 10
 - Analyze each with SPM & SnPM, find FWE thresh
- Compare reliability of small groups with full
 - With and without variance smoothing

SPM t₁₁: 5 groups of 10 vs all 50 5% FWE Threshold

2 8 11 15 18 35 41 43 44 50

1 3 20 23 24 27 28 32 34 40

9 13 14 16 19 21 25 29 30 45

SnPM t: 5 groups of 10 vs. all 50 5% FWE Threshold

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 Arbitrary thresh of 9.0

SnPM SmVar t: 5 groups of 10 vs. all 50 5% FWE Threshold

6 7 12 17 26 37 38 46 48 49

4 5 10 22 31 33 36 39 42 47

Arbitrary thresh of 9.0

False Discovery Rate...

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

False Discovery Rate Illustration:

Control of Per Comparison Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 1

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

FWE

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7% 10.4%

14.9%

9.3%

16.2%

13.8%

14.0%

10.5%

12.2%

8.7%

Percentage of Activated Pixels that are False Positives

50

Benjamini & Hochberg Procedure

- Select desired limit q on FDR
- Order p-values, $p_{(1)} \le p_{(2)} \le ... \le p_{(V)}$

JRSS-B (1995) 57:289-300

• Let *r* be largest *i* such that

$$p_{(i)} \leq i/V \times q$$

Reject all hypotheses corresponding to

$$p_{(1)}, \ldots, p_{(r)}$$
.

• Threshold is adaptive to signal in the data

Real Data: FDR Example

- Threshold
 - Indep/PosDep u = 3.83
 - Arb Cov u = 13.15
- Result
 - 3,073 voxels aboveIndep/PosDep *u*
 - < 0.0001 minimum FDR-corrected p-value

FDR Threshold = 3.83 3,073 voxels FWER Perm. Thresh. = 9.87 7 voxels

Changes in SPM Inference

Before SPM8

< SPM8	Uncorrected	FDR	FWE
Voxel-wise	×	×	×
Cluster-wise	×		×

SPM8

≥ SPM8	Uncorrected	FDR	FWE
Voxel-wise	×		X
Cluster-wise	×	×	×
Peak-wise		×	×

- SPM 8 placed new emphasis on peak inference, removed voxel-wise FDR
 - FWE Voxel-wise & Peak-wise equivalent
 - FDR Voxel-wise & Peak-wise not equivalent!
 - To get voxel FDR, edit spm_defaults.m or do

Cluster FDR: Example Data

Level 5% Cluster-FDR, P = 0.001 cluster-forming thresh k_{FDR} = 138, 6 clusters

Level 5% Cluster-FWE P = 0.001 cluster-forming thresh $k_{FWE} = 241$, 5 clusters

Level 5% Cluster-FDR P = 0.01 cluster-forming thresh $k_{FDR} = 1132$, 4 clusters

Level 5% Cluster-FWE P = 0.01 cluster-forming thresh $k_{FWE} = 1132$, 4 clusters

Level 5% Voxel-FDR

Level 5% Voxel-FWE

Conclusions

- Thresholding is not modeling!
 - Just inference on a feature of a statistic image
- Many features to choose from
 - Voxel-wise, cluster-wise, peak-wise...
- FWER
 - Very specific, not very sensitive
- FDR
 - Voxel-wise: Less specific, more sensitive
 - Cluster-, Peak-wise: Similar to FWER

References

• TE Nichols & S Hayasaka, Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Statistical Methods in Medical Research, 12(5): 419-446, 2003.

TE Nichols & AP Holmes, Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. *Human Brain Mapping*, 15:1-25, 2001.

CR Genovese, N Lazar & TE Nichols, Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. *NeuroImage*, 15:870-878, 2002.

JR Chumbley & KJ Friston. False discovery rate revisited: FDR and topological inference using Gaussian random fields. *NeuroImage*, 44(1), 62-70, 2009