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Thresholding

Where' s the signal?

High Threshold

t>5.5

7™

Good Specificity

Poor Power
(risk of false negatives)

Med. Threshold

t>3.5

/a

Low Threshold

t>0.5

A

Poor Specificity
(risk of false positives)

Good Power

...but why threshold?!



Blue-sky inference:
What we’ d like

* Don't thresholdz'°.model the signal '

— Signal location?

e Estimates and CI’ s on
(X,y,z) location

— Signal magnitude?

-

e CI' s on % change 7
— Spatial ?
» Estimates and CI’ s on activation volume

* Robust to choice of cluster definition

» ...but this requires an explicit spatial model |,



Blue-sky inference:
What we need

» Explicit spatial models

— No routine methods exist
e High-dimensional mixture modeling problem

« Activations don’ t look like Gaussian blobs

* Some encouraging initial efforts...

95% predictive ellipsoids 4 Gershman et al. (2011). NI, 57(1), 89-100.

e = 1 Thirion et al. (2010). MICCAI, 13(2):241-8.
. Kim et al. (2010). IEEE TMI, 29:1260-74.
Weeda et al. (2009). HBM, 30:2595-605.
Neumann et al. (2008). HBM, 29:177-92.

Kang et al. (2011). JASA 106:124-134.

— ADVT: Thur, 8:30, Ballroom AB, Level 1

“Where’s Your Signal? Explicit Spatial Models to Improve 5
Interpretability and Sensitivity of Neuroimaging Results”



Real-life inference:
What we get (typically)

* Signal location
— Local maximum — no inference
* Signal magnitude
— Local maximum intensity — P-values (& CI s)
e Spatial
— Cluster volume — P-value, no CI s
 Sensitive to blob-defining-threshold



Assessing Statistic
Images...



Ways of assessing statistic

Images
e Standard methods
— Voxel
— Cluster

— Set
— Peak (new)



Voxel-level Inference

* Retain voxels above a-level threshold u,

» (1ves best spatial specificity

— The null hyp. at a single voxel can be rejected
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Cluster-level Inference

* Two step-process
— Define clusters by arbitrary threshold u

clus

— Retain clusters larger than a-level threshold £

/ \/ ............... 3 W V SpaCFe
Cluster not / \
k k

significant o a
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Cluster-level Inference

* Typically better sensitivity

* Worse spatial specificity
— The null hyp. of entire cluster is rejected

— Only means that one or more of voxels 1n

cluster active

uclus

yaN

- / \/ ............... + W \ 4 SpaCPe
Cluster not / \
k k

significant o o
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Set-level Inference

 Count number of blobs

— Minimum blob size &

* Worst spatial specificity
— Only can reject global null hypothesis

k k

Here ¢ = |; only 1 cluster larger than k .



Peak-level Inference

* Identify all the local maxima

eak

— Ignore all smaller than u,

* Retain peaks by height
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Peak-level Inference

» “Topological inference” — interpretable with
boundless Point Spread Function s s . 20

e Cumbersome — only making inference at a

sprinkling of ﬁ locations
w | M
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Test Statistics for
Assessing Statistic
Images...
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Sometimes, Different
Possible Ways to Test...

Image Feature  Test Statistic
Voxel . Statistic image value

Cluster . Cluster size in voxels
. Cluster size in RESELs
. Combination, Joint Peak-Cluster

. Combination, Cluster Mass
. Combination, Threshold-Free Cluster

Enhancement

. Cluster count

. Statistic image value
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Combining Cluster Size with

Intensity Information

® Peak'Height COmbiniIlg Poline et al., NeuroImage 1997
& Pheight

* Take better of two P-values;
(use RFT to correct for taking minimum)

o > u.
— Can catch small, A~ | "\
intense clusters 7 space

— Minimum P

S

¢ ClUSter maSS Bullmore et al., IEEE Trans Med Img 1999
— Integral M above threshold

* More powerfully combines
peak & height (Hayasaka & Nichols, NI 2004)

* Both are still cluster _ ~
inference methods! 4 space




The Pesky Cluster Forming
Threshold u,

 Cluster inference 1s highly sensitive to
cluster-forming threshold u,

— Set too low, one big blob
— Set too high, miss all the signal

7 clusters 32 clusters 54 clusters 50 clusters
largest: 98,246 voxels  largest: 57,500 voxels largest: 10,960 voxels largest: 783 voxels




Threshold-Free Cluster
Enhancement (TFCE)

* A cluster-informed voxel-wise statistic

Smith & Nichols, NI 2009

* Consider cluster mass voxel-wise, for every u !

— For a given voxel, sum up all clusters ‘below’

* For all possible u_, add up all clusters that contain that
voxel

— But this would give low
u,.’s too much weight

* Low u_’s give big clusters
just by chance




Threshold-Free Cluster
Enhancement (TFCE)

* A cluster-informed voxel-wise statistic

Smith & Nichols, NI 2009
* Consider cluster mass voxel-wise, for every u !
— For a given voxel, sum up all clusters ‘below’
* For all possible u_, add up all clusters that contain that

voxel

— But this would give low
u,.’s too much weight

* Low u_’s give big clusters
just by chance

* Solution: Down-weight
according to u,. !




Threshold-Free Cluster
Enhancement (TFCE)

 TFCE Statistic for voxel v

(o)
TFCE(v) = / em)Pdh ~ S he(h)Fs
4 0,9,29,...,t(v)

 Parameters H & E
control balance between
cluster & height
information

— H=2 & E=1/2 as
motivated by theory




TFCE Redux

Avoids choice of cluster-forming threshold u,

Generally more sensitive than cluster-wise

But yet less specific
— Inference 1s on some cluster for some u,

— “Support” of effect
could extend far
from significant
voxels

Implementation

— Currently only
FSL’s randomise

0.003

p (corrected)

cluster-based (red)
voxel-based (blue)




Multiple comparisons...
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Multiple Comparisons Problem

* Which of 100,000 voxels are sig.? ﬂ
— a=0.05 = 5,000 false positive voxels ‘ ’ |

¢ WhiCh Of(random number, say) 100 ClU.SteI'S Signiﬁcant?

— a0=0.05 = 5 false positives clusters




MCP Solutions:
Measuring False Positives

* Familywise Error Rate (FWER)

— Familywise Error

» Existence of one or more false positives

— FWER 1s probability of familywise error

» False Discovery Rate (FDR)
— FDR = E(V/R)

— R voxels declared active, V falsely so

» Realized false discovery rate: V/R
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Random field theory...



FWER MCP Solutions:
Random Field Theory

* EBuler Characteristic "

— Topological Measure

e #blobs - #holes —

At high threshold b Bt

B < 2t TSI 0l "S5 Threshold &
just counts blobs Random Field E”

— FWER =P(Max voxel =z u | H )
= P(One or more blobs | /)
~P(x, =z 1[H,)
~E(x, | H,)

Suprathreshold Sets



Random Field Theory
Smoothness Parameterization

 E(y,) depends on |A|'2

— A roughness matrix:

e Smoothness
parameterized as
ull VWidth at Half Vaximum

— FWHM of Gaussian kernel
needed to smooth a white
noise random field to
roughness A

A2 = (410 2)°

FWHM,FWHM,FWHM,



Random Field Theory
Smoothness Parameterization

« RESELS
— olution [ lements
— 1 RESEL = FWHM, x FWHMy x FWHM,
— RESEL Count R
« R=NMQ)V Al =4log2)** Q) / (FWHM, x FWHM, x FWHM, )
* Volume of search region in units of smoothness
« Eg: 10 voxels, 2.5 FWHM 4 RESELS

SN
 Beware RESEL misinterpretation

— RESEL are not “number of independent ‘things’™ in the image”
» See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.
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Random Field Theory
Smoothness Estimation

* Smoothness est’d [ - 3
from Standardlzed J_d'atagxi = ri X{ parameters? + errors ?
residuals = | ¥ - P+
— Variance of < SHEy - =
gradients bﬁil ===
— Yields resels per '
voxel (RPV) ;émf —
 RPV image

— Local roughness est.

— Can transform 1n to local smoothness est.
¢ FWHM Img — (RPV Img)_l/D spm_imcalc ui('RPV.img', ...
e Dimension D, e.g. D=2 or 3 T e o oo (D08

» Est. smoothness also needed for AlphaSim :




Random Field Theory
Limitations

Sufficient smoothness
— FWHM smoothness 3-4x voxel size (Z)
— More like ~10x for low-df T 1images

Smoothness estimation

smooth

Multivariate normality
— Virtually impossible to check

Several layers of approximations
Stationary required for cluster size results

| Lattlce Image

R
— Estimate 1s biased when images not sufflclentlyCO”“”‘UOUS ReNEe0

Field

.....
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Real Data

« fMRI Study of Working Memory Active

— 12 subjects, block design Marshuetz et al (2000)

— Item Recognition

« Active:View five letters, 2s pause,
view probe letter, respond

» Baseline: View XXXXX, 2s pause, Baseline
view Y or N, respond

e Second Level RFX

— Difference 1mage, A-B constructed
for each subject

— One sample 7 test

33



Real Data:
RFT Result

 Threshold
— §=110,776

— 2 x 2 x 2 voxels
5.1 x5.8 x 6.9 mm
FWHM

— u=9.870

« Result

— 5 voxels above
the threshold

— 0.0063 mMinimum
FWE-corrected
p-value




Permutation...
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Nonparametric
Permutation Test

e Parametric methods

— Assume distribution of
statistic under null
hypothesis

* Nonparametric methods

— Use data to find
distribution of statistic
under null hypothesis

— Any statistic!



Permutation Test
& Exchangeability

» Exchangeability 1s fundamental

— Def: Distribution of the data unperturbed by
permutation

— Under HO, exchangeability justifies permuting data
— Allows us to build permutation distribution

« fMRI scans not exchangeable over time!
— Even 1f no signal, autocorrelation structures data

* Subjects are exchangeable

— Under Ho, each subject’ s “active
be flipped

— Equivalently, under Ho flip the sign of each subject’s
contrast 1mages

29 ¢¢

control’ labels can



Controlling FWE:
Permutation Test

e Parametric methods

— Assume distribution of
max statistic under null
hypothesis

* Nonparametric methods

— Use data to tind
distribution of max statistic
under null hypothesis

— Again, any max statistic!



Permutation Test
Smoothed Variance ¢

e Collect max distribution
— To find threshold that controls FWER

 Consider smoothed variance ¢ statistic

mean difference

10
. t-statistic
vanance

Qﬂ" 'ﬂ i
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Permutation Test
Smoothed Variance ¢

e Collect max distribution
— To find threshold that controls FWER

 Consider smoothed variance ¢ statistic

4.
3. mean difference Smoothed
’ Variance
1 ! smoothed 10, ¢ statisti
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Permutation Test
Example

 Permute!
— 212=4,096 ways to flip 12 A/B labels
— For each, note maximum of 7 image

350

Permutation Distribution Orthogonal Slice Ovray
Maximum ¢ Thresholded t



Permutation RFT & Bonferroni

5.1x5.8x6.9
mm FWHM

yPerm =7 .67 uRF =987 s
Bonf smoothness
yusont =9 8()

58 sig. vox. | ~ 5sig. VOX.

t,, Statistic, RF & Bonf. Threshold
Permutation & Sm.Var.

— Permutation Test
—— Bonferroni
—.= RF Theory

378 sig. vox.

t Threshold
Smoothed Variance t Statistic,
Test Level vs. t,; Threshold Nonparametric Threshold




Reliability with Small Groups

Consider n=50 group study
— Event-related Odd-Ball paradigm, Kiehl, et al.

Analyze all 50
— Analyze with SPM and SnPM, find FWE thresh.

Randomly partition into 5 groups 10

— Analyze each with SPM & SnPM, find FWE
thresh

Compare reliability of small groups with full
— With and without variance smoothing



SPM t,,: 5 groups of 10 vs all 50

T7>10.93
SPM{T }

10 subj
28111518 3541 43 44 50

T>10.69
SPM(T }

10 subj
451022 31 3336394247

5% FWE Threshold

T7>11.04
SPM{T }

10 subj
13202324 27 28 32 34 40

17>10.10
SPM(T }

10 subj
671217 26 37 38 46 48 49

T>11.01
SPM(T }

10 subj
913141619 21 2529 3045

T>4.66
SPM{T 49}




SnPM t. 5 groups of 10 vs. all 50
5% FWE Threshold

13202324 27 28 32 34 40 913141619 21 25 29 30 45

T>6.19

‘ 17>9.00
o seuTy

&
10 subj - ) all 50

451022313336394247 671217263738 46 4849 [IaUSLEIWAUICE el ReNE




SnPM SmVar t. 5 groups of 10 vs. all 50
5% FWE Threshold

13202324 27 28 32 34 40 913141619 21 25 29 30 45

T7>9.00
SPM{T49}

e,
; l' all 50

451022313336394247 671217263738 46 4849 [IaUSLEIWAUICE el ReNE




False Discovery Rate...



MCP Solutions:
Measuring False Positives

* Familywise Error Rate (FWER)

— Familywise Error

 Existence of one or more false positives

— FWER 1s probability of familywise error
* False Discovery Rate (FDR)
— FDR = E(V/R)

— R voxels declared active, V falsely so
» Realized false discovery rate: V/R
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False Discovery Rate
lllustration

Signal

Sinal+oise




Control of Per Companson Rate at 10%

¢- p L '_’ -y- =iy ~-, ] s, ‘ .:‘, ol “ .
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113% 113% 12.5% 108% 115% 10.0% 10.7% 11.2% 10.2%
Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

P e g v . ,‘t;' . ¥
. N = (" - r . - .1.. 3

FWE
Occurrence of Familywise Error

Control of False Discovery Rate at 10%

8 @ & & B 86 & % »

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2%
Percentage of Activated Pixels that are False Positives

. 1
e e ".
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.

.

v
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-

‘v

95%

8.7%
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Benjamini & Hochberg
Procedure

Select desired limit ¢ on FDR

JRSS-B (1995)
Order p-values, 57:289-300
Let 7 be largest i such that

Py < i1V xq

Reject all hypotheses
corresponding to

p(l), see ,p(’,)o

Threshold 1s adaptive to
signal 1n the data




Real Data: FDR Example

 Threshold

— Indep/PosDep
u=3.83

— Arb Cov
u=13.15

e Result

— 3,073 voxels above
Indep/PosDep u

— <0.0001 mimmimum FDR Threshold = 3.83

FDR-corrected 3,073 voxels
p-value FWER Perm. Thresh. = 9.87

/ voxels




Changes in SPM Inference

Before SPMS

Voxel-wise

Cluster-wise

SPMS

Voxel-wise

Cluster-wise

Peak-wise

 SPM 8 placed new emphasis on peak
inference, removed voxel-wise FDR

— FWE Voxel-wise & Peak-wise equivalent

— FDR Voxel-wise & Peak-wise equivalent!
* To get voxel FDR, edit spm_defaults.m or do

53
global defaults; defaults.stats.topoFDR=0;



Cluster FDR: Example Data

Level 5% Cluster- , Level 5% Cluster-
P =0.001 cluster-forming thresh P =0.01 cluster-forming thresh Level 5% -
kepr = 138, 6 clusters kepr = 1132, 4 clusters

SPM{T"} SPM{T11} ¥ SPM{T11}

Level 5% Cluster-FWE Level 5% Cluster-FWE
P=0.001 cluster-forming thresh P =0.01 cluster-forming thresh Level 5% -FWE
Kewp = 241, 5 clusters kewg = 1132, 4 clusters

SPMT, .3 SPM{T .3 SPM{T, .}




Conclusions

Thresholding 1s not modeling!

— Just inference on a feature of a statistic image

Many features to choose from

— Voxel-wise, cluster-wise, peak-wise...
FWER

— Very specific, not very sensitive

FDR

— Voxel-wise: Less specific, more sensitive
— Cluster-, Peak-wise: Similar to FWER
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