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Overview 

•  Why threshold? 
•  Assessing statistic images 
•  Measuring false positives 
•  Practical solutions 
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Thresholding 

Where’s the signal? 

t > 0.5 t > 3.5 t > 5.5 

High Threshold Med. Threshold Low Threshold 

Good Specificity 
 

Poor Power 
(risk of false negatives) 

Poor Specificity 
(risk of false positives) 

 

Good Power 

...but why threshold?! 
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•  Don’t threshold,  model the signal! 
– Signal location? 

•  Estimates and CI’s on 
(x,y,z) location 

– Signal magnitude? 
•  CI’s on % change 

– Spatial extent? 
•  Estimates and CI’s on activation volume 
•  Robust to choice of cluster definition 

•  ...but this requires an explicit spatial model 

Blue-sky inference: 
What we’d like 

space 

Loc.θ̂ Ext.θ̂

Mag.θ̂
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Blue-sky inference: 
What we need 

•  Explicit spatial models 
– No routine methods exist 

•  High-dimensional mixture modeling problem 
•  Activations don’t look like Gaussian blobs 

•  Some encouraging initial efforts… 

– ADVT: Thur, 8:30, Ballroom AB, Level 1 
“Where’s Your Signal? Explicit Spatial Models to Improve 
Interpretability and Sensitivity of Neuroimaging Results” 

Gershman et al. (2011). NI, 57(1), 89-100.  
Thirion et al. (2010). MICCAI, 13(2):241-8. 
Kim et al. (2010). IEEE TMI, 29:1260-74.  
Weeda et al. (2009). HBM, 30:2595-605. 
Neumann et al. (2008). HBM, 29:177-92. 

Kang et al. (2011). JASA 106:124-134.  

95% predictive ellipsoids 
95% credible ellipsoids 
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Real-life inference: 
What we get (typically) 

•  Signal location 
– Local maximum  –  no inference 

•  Signal magnitude 
– Local maximum intensity  –  P-values (& CI’s) 

•  Spatial extent 
– Cluster volume  –  P-value, no CI’s 

•  Sensitive to blob-defining-threshold 
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Assessing Statistic 
Images… 



Ways of assessing statistic 
images 

•  Standard methods 
– Voxel 
– Cluster 
– Set 
– Peak (new) 
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Voxel-level Inference 

•  Retain voxels above α-level threshold uα 

•  Gives best spatial specificity 
– The null hyp. at a single voxel can be rejected 

Significant 
Voxels 

space 

uα 

No significant 
Voxels 
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Cluster-level Inference 

•  Two step-process 
– Define clusters by arbitrary threshold uclus 

– Retain clusters larger than α-level threshold kα 

Cluster not 
significant  

uclus 

space 

Cluster 
significant kα kα 
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Cluster-level Inference 

•  Typically better sensitivity 
•  Worse spatial specificity 

– The null hyp. of entire cluster is rejected 
– Only means         that one or more of voxels in 

cluster active 

Cluster not 
significant  

uclus 

space 

Cluster 
significant kα kα 
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Set-level Inference 

•  Count number of blobs c 
– Minimum blob size k 

•  Worst spatial specificity 
– Only can reject global null hypothesis 

uclus 

space 

Here c = 1; only 1 cluster larger than k 

k k 
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Peak-level Inference 

•  Identify all the local maxima  
–  Ignore all smaller than upeak 

•  Retain peaks by height 

Significant  
peak 

space 

upeak 

Not a significant 
peak 

uα 
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Peak-level Inference 

•  “Topological inference” – interpretable with 
boundless Point Spread Function (see Chumbley & Friston, NI, 2009) 

•  Cumbersome – only making inference at a 
sprinkling of                     locations 

Significant  
peak 

space 

upeak 

Not a significant 
peak 

uα 
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Test Statistics for  
Assessing Statistic 

Images… 



Sometimes, Different 
Possible Ways to Test… 
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Image Feature Test Statistic 
Voxel 1.  Statistic image value 
Cluster 1.  Cluster size in voxels 

2.  Cluster size in RESELs 
3.  Combination, Joint Peak-Cluster 
4.  Combination, Cluster Mass 
5.  Combination, Threshold-Free Cluster 

Enhancement 
Set 1.  Cluster count 
Peak 1.  Statistic image value 



Sometimes, Different 
Possible Ways to Test… 
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Image Feature Test Statistic 
Voxel 1.  Statistic image value 
Cluster 1.  Cluster size in voxels 

2.  Cluster size in RESELs 
3.  Combination, Joint Peak-Cluster 
4.  Combination, Cluster Mass 
5.  Combination, Threshold-Free Cluster 

Enhancement 
Set 1.  Cluster count 
Peak 1.  Statistic image value 



Combining Cluster Size with 
Intensity Information 

•  Peak-Height combining Poline et al., NeuroImage 1997 

– Minimum Pextent & Pheight  
•  Take better of two P-values; 

(use RFT to correct for taking minimum) 
– Can catch small,  

intense clusters 

•  Cluster mass Bullmore et al., IEEE Trans Med Img 1999 
–  Integral M above threshold 

•  More powerfully combines 
peak & height (Hayasaka & Nichols, NI 2004) 

•  Both are still cluster 
inference methods! 

space 

uc 

space 

uc 



The Pesky Cluster Forming 
Threshold uc 

•  Cluster inference is highly sensitive to 
cluster-forming threshold uc 
– Set too low, one big blob 
– Set too high, miss all the signal 
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Z > 2.0 Z > 3.0 Z > 4.0 Z > 5.0

7 clusters
largest: 98,246 voxels

32 clusters
largest: 57,500 voxels

54 clusters
largest: 10,960 voxels

50 clusters
largest: 783 voxels



Threshold-Free Cluster 
Enhancement (TFCE) 

•  A cluster-informed voxel-wise statistic 

•  Consider cluster mass voxel-wise, for every uc! 
– For a given voxel, sum up all clusters ‘below’ 

•  For all possible uc, add up all clusters that contain that 
voxel  

– But this would give low  
uc’s too much weight 

•  Low uc’s give big clusters  
just by chance 
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Smith & Nichols, NI 2009 



Threshold-Free Cluster 
Enhancement (TFCE) 

•  A cluster-informed voxel-wise statistic 

•  Consider cluster mass voxel-wise, for every uc! 
– For a given voxel, sum up all clusters ‘below’ 

•  For all possible uc, add up all clusters that contain that 
voxel  

– But this would give low  
uc’s too much weight 

•  Low uc’s give big clusters  
just by chance 

•  Solution: Down-weight  
according to uc ! 

Smith & Nichols, NI 2009 
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Threshold-Free Cluster 
Enhancement (TFCE) 

•  TFCE Statistic for voxel v  

•  Parameters H & E  
control balance between 
cluster & height  
information 
– H=2 & E=1/2 as  

motivated by theory 

TFCE(v) =

∫ t(v)

0
h
H
e(h)Edh ≈

∑
0,δ,2δ,...,t(v)

h
H
e(h)Eδ

t(v) 

Voxel v 

e(h) 



TFCE Redux 
 •  Avoids choice of cluster-forming threshold uc 

•  Generally more sensitive than cluster-wise 
•  But yet less specific 

–  Inference is on some cluster for some uc 

–  “Support” of effect 
could extend far 
from significant 
voxels 

•  Implementation 
– Currently only 

FSL’s randomise 
23 



24 

Multiple comparisons… 
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Multiple Comparisons Problem 

•  Which of 100,000 voxels are sig.? 
– α=0.05 ⇒ 5,000 false positive voxels 

•  Which of  (random number, say) 100 clusters significant? 
– α=0.05 ⇒ 5 false positives clusters 

t > 0.5 t > 1.5 t > 2.5 t > 3.5 t > 4.5 t > 5.5 t > 6.5 
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MCP Solutions: 
Measuring False Positives 

•  Familywise Error Rate (FWER) 
– Familywise Error 

•  Existence of one or more false positives 

– FWER is probability of familywise error 
•  False Discovery Rate (FDR) 

– FDR = E(V/R) 
– R voxels declared active, V falsely so 

•  Realized false discovery rate: V/R 
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Random field theory… 
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FWER MCP Solutions: 
Random Field Theory 

•  Euler Characteristic χu 
– Topological Measure 

•  #blobs - #holes 

– At high thresholds, 
just counts blobs   

– FWER = P(Max voxel ≥ u | Ho) 
  = P(One or more blobs | Ho) 
  ≈ P(χu ≥ 1 | Ho) 
  ≈ E(χu | Ho) 

Random Field 

Suprathreshold Sets 

Threshold 

No holes 

Never more 
than 1 blob 
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Random Field Theory 
Smoothness Parameterization 

•  E(χu) depends on |Λ|1/2 

–  Λ  roughness matrix: 

•  Smoothness  
parameterized as  
Full Width at Half Maximum 
–  FWHM of Gaussian kernel  

needed to smooth a white 
noise random field to  
roughness Λ 

Autocorrelation Function 

FWHM 
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•  RESELS 
–   Resolution Elements 
–  1 RESEL = FWHMx × FWHMy × FWHMz 
–  RESEL Count R 

•  R = λ(Ω) √ |Λ| = (4log2)3/2 λ(Ω)  /  ( FWHMx × FWHMy × FWHMz )  
•  Volume of search region in units of smoothness 
•  Eg: 10 voxels, 2.5 FWHM 4 RESELS 

•  Beware RESEL misinterpretation 
–  RESEL are not “number of independent ‘things’ in the image” 

•  See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res. 
. 

Random Field Theory 
Smoothness Parameterization 

1 2 3 4 

2 4 6 8 10 1 3 5 7 9 
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ε= β +Y X

data matrix

de
si

gn
 m

at
ri

x

parameters errors+ ?= × ?
voxelsvoxels

scansscans

 estimate

β̂

 residuals

estimated
component

fields

parameter
estimates

variance σ2

estimated variance



÷
=

Random Field Theory 
Smoothness Estimation 

•  Smoothness est’d 
from standardized 
residuals 
– Variance of 

gradients 
– Yields resels per 

voxel (RPV) 
•  RPV image 

– Local roughness est. 
– Can transform in to local smoothness est. 

•  FWHM Img = (RPV Img)-1/D 

•  Dimension D, e.g. D=2 or 3 
•  Est. smoothness also needed for AlphaSim 

spm_imcalc_ui('RPV.img', ...!
'FWHM.img','i1.^(-1/3)')!
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Random Field Theory 
Limitations 

•  Sufficient smoothness 
–  FWHM smoothness 3-4× voxel size (Z) 
–  More like ~10× for low-df T images 

•  Smoothness estimation 
–  Estimate is biased when images not sufficiently 

smooth  
•  Multivariate normality 

–  Virtually impossible to check 
•  Several layers of approximations 
•  Stationary required for cluster size results 

Lattice Image 
Data 

≈ 

Continuous Random 
Field 
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Real Data 

•  fMRI Study of Working Memory    
–  12 subjects, block design  Marshuetz et al (2000) 
–  Item Recognition 

•  Active:View five letters, 2s pause, 
 view probe letter, respond 

•  Baseline: View XXXXX, 2s pause, 
 view Y or N, respond 

•  Second Level RFX 
–  Difference image, A-B constructed 

for each subject 
–  One sample t test 

D 

yes UBKDA 

Active 

N 

no XXXXX 

Baseline 
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Real Data: 
RFT Result 

•  Threshold 
–  S = 110,776 
–  2 × 2 × 2 voxels 

5.1 × 5.8 × 6.9 mm 
FWHM 

–  u = 9.870 
•  Result 

–  5 voxels above 
 the threshold 

–  0.0063  minimum 
FWE-corrected 
p-value 

-lo
g 1

0 p
-v

al
ue
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Permutation… 



Nonparametric 
 Permutation Test 

•  Parametric methods 
– Assume distribution of 

statistic under null 
hypothesis 

•  Nonparametric methods 
– Use data to find  

distribution of statistic 
under null hypothesis 

– Any statistic! 

5% 

Parametric Null Distribution 

5% 

Nonparametric Null Distribution 



Permutation Test 
& Exchangeability 

•  Exchangeability is fundamental 
–  Def: Distribution of the data unperturbed by 

permutation 
–  Under H0, exchangeability justifies permuting data 
–  Allows us to build permutation distribution 

•  fMRI scans not exchangeable over time! 
–  Even if no signal, autocorrelation structures data 

•  Subjects are exchangeable 
–  Under Ho, each subject’s “active” “control” labels can 

be flipped 
–  Equivalently, under Ho flip the sign of each subject’s 

contrast images 



Controlling FWE: 
Permutation Test 

•  Parametric methods 
– Assume distribution of 

max statistic under null 
hypothesis 

•  Nonparametric methods 
– Use data to find  

distribution of max statistic 
under null hypothesis 

– Again, any max statistic! 

5% 

Parametric Null Max Distribution 

5% 

Nonparametric Null Max Distribution 



Permutation Test 
Smoothed Variance t 

•  Collect max distribution 
– To find threshold that controls FWER 

•  Consider smoothed variance t statistic 

t-statistic variance 

mean difference 



Permutation Test 
Smoothed Variance t 

•  Collect max distribution 
– To find threshold that controls FWER 

•  Consider smoothed variance t statistic 

Smoothed 
Variance 
t-statistic 

mean difference 
smoothed 
variance 



Permutation Test 
Example 

•  Permute! 
–  212 = 4,096 ways to flip 12 A/B labels 
– For each, note maximum of t image 
. 

Permutation Distribution 
Maximum  t 

Orthogonal Slice Overlay 
Thresholded t 



t11 Statistic, RF & Bonf. Threshold t11 Statistic, Nonparametric Threshold 

uRF   = 9.87 
uBonf = 9.80 
5 sig. vox.  

uPerm = 7.67  
 
58 sig. vox. 

Smoothed Variance t Statistic, 
Nonparametric Threshold 

378 sig. vox. 

Test Level vs. t11 Threshold 

5.1×5.8×6.9 
mm FWHM 
noise 
smoothness 
 

RFT & Bonferroni Permutation 

Permutation & Sm.Var. 



Reliability with Small Groups 

•  Consider n=50 group study 
– Event-related Odd-Ball paradigm, Kiehl, et al. 

•  Analyze all 50 
– Analyze with SPM and SnPM, find FWE thresh. 

•  Randomly partition into 5 groups 10 
– Analyze each with SPM & SnPM, find FWE 

thresh 
•  Compare reliability of small groups with full 

– With and without variance smoothing 
. 



SPM t11:  5 groups of 10 vs all 50 
5% FWE Threshold  

10 subj 10 subj 10 subj 

10 subj 10 subj all 50 

T>10.93 T>11.04 T>11.01 

T>10.69 T>10.10 T>4.66 

2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 



T>4.09 

SnPM t:  5 groups of 10 vs. all 50 
5% FWE Threshold 

10 subj 10 subj 10 subj 

10 subj 10 subj 

T>7.06 T>8.28 T>6.3 

T>6.49 T>6.19 

Arbitrary thresh of 9.0 

T>9.00 

all 50 

2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 



10 subj 10 subj 10 subj 

10 subj 10 subj 
Arbitrary thresh of 9.0 

T>9.00 

all 50 

SnPM SmVar t:  5 groups of 10 vs. all 50 
5% FWE Threshold 

T>4.69 T>5.04 T>4.57 

T>4.84 T>4.64 

2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 
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False Discovery Rate… 
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MCP Solutions: 
Measuring False Positives 

•  Familywise Error Rate (FWER) 
– Familywise Error 

•  Existence of one or more false positives 

– FWER is probability of familywise error 
•  False Discovery Rate (FDR) 

– FDR = E(V/R) 
– R voxels declared active, V falsely so 

•  Realized false discovery rate: V/R 
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False Discovery Rate 
Illustration: 

Signal 

Signal+Noise 

Noise 



50 

FWE 

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% 

Control of Familywise Error Rate at 10% 

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Control of Per Comparison Rate at 10% 

Percentage of Null Pixels that are False Positives 

Control of False Discovery Rate at 10% 

Occurrence of Familywise Error 

Percentage of Activated Pixels that are False Positives 
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Benjamini & Hochberg 
Procedure 

•  Select desired limit q on FDR 
•  Order p-values, p(1) ≤ p(2) ≤  ... ≤ p(V) 
•  Let r be largest i such that 

 
 

•  Reject all hypotheses  
corresponding to 
 p(1), ... , p(r). 

•  Threshold is adaptive to  
signal in the data 

p(i) ≤  i/V × q 
p(i) 

i/V 
i/V × q 

p-
va

lu
e 

0 1 

0 
1 

JRSS-B (1995) 
57:289-300 



52 FWER Perm. Thresh. = 9.87 
7 voxels 

Real Data: FDR Example 

FDR Threshold = 3.83 
3,073 voxels 

•  Threshold 
–  Indep/PosDep 

u = 3.83 
– Arb Cov 

u = 13.15 
•  Result 

–  3,073 voxels above 
Indep/PosDep u 

– <0.0001  minimum 
FDR-corrected 
p-value 
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Changes in SPM Inference 
 

•  SPM 8 placed new emphasis on peak 
inference, removed voxel-wise FDR 
– FWE Voxel-wise & Peak-wise equivalent 
– FDR Voxel-wise & Peak-wise not equivalent! 

•  To get voxel FDR, edit spm_defaults.m or do 
        global defaults; defaults.stats.topoFDR=0;!

 

< SPM8 Uncorrected FDR FWE 
Voxel-wise ×  × × 
Cluster-wise × × 

≥ SPM8 Uncorrected FDR FWE 
Voxel-wise ×  
Cluster-wise × × × 
Peak-wise × × 

Before SPM8 

SPM8 
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Cluster FDR: Example Data 
 Level 5% Cluster-FDR 

P = 0.01 cluster-forming thresh 
 kFDR = 1132, 4 clusters  

Level 5% Cluster-FWE 
P = 0.01 cluster-forming thresh 
kFWE = 1132, 4 clusters 
5 clusters  

Level 5% Cluster-FDR, 
P = 0.001 cluster-forming thresh 
kFDR = 138, 6 clusters 

Level 5% Cluster-FWE 
P = 0.001 cluster-forming thresh 
kFWE = 241, 5 clusters 

 
Level 5% Voxel-FDR 

 
Level 5% Voxel-FWE  
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Conclusions 

•  Thresholding is not modeling! 
–  Just inference on a feature of a statistic image 

•  Many features to choose from 
– Voxel-wise, cluster-wise, peak-wise… 

•  FWER 
– Very specific, not very sensitive 

•  FDR 
– Voxel-wise: Less specific, more sensitive 
– Cluster-, Peak-wise: Similar to FWER 
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