Network Modelling and Connectivity in Functional Neuroimaging – Keeping It Real

Mark Woolrich
University of Oxford

Oxford centre for Human Brain Activity

Centre for FMRI of the Brain

Overview

Functional network analysis

Focus on functional connectivity in task and rest

• FMRI:

- Task FMRI?
- Direct vs indirect connections?
- Missing Node problem?
- Spurious FC changes?

MEG

- Zero lag correlations?
- Signal leakage due to source reconstruction

Time-varying FC

• Spurious FC changes?

Functional Network Analysis

 The estimation of brain networks from task- and restingfunctional neuroimaging data (FMRI, M/EEG etc.)

How to do network analysis?

- Define network "nodes" (spatial ROIs or coordinates)
- Identify a timeseries associated with each node
- Estimate the connections between the nodes (edges)
 - For example, correlate any pair of timeseries together

Applications of network analysis

- Edge strengths used as features
- Used to discriminate controls and subjects with a disease/disorder

What are the main methods?

- Pairwise measures (functional connectivity): correlation, Mutual Information (MI), coherence
- Semi-global: partial correlation/regularised inverse covariance (ICOV)
 - Tries to distinguish direct from indirect connections
- Global model-based (effective connectivity):
 - Multivariate AR (Granger), Structural Causal Models (SEM, Bayes Nets e.g. GES [Ramsey, NI (2010)]), Dynamic Causal Models
 - In theory better at modelling "whole story"

Task Data

- In resting state data we can correlate across whole time series
- Problem: in task data, if two brain areas both respond to the task stimulus, then they will be correlated, even if there is no connectivity between them.
 - This can be thought of as a special case of the missing node problem, where the external stimulus input is the "missing node"
- Solution:
 - look at FC within task conditions only
 - or, if using correlation, use PPI analysis (O'Reilly et al. Soc Cogn Affect Neurosci, 2012)

PPI regressor (red line) is as an element-wise product of the HRF convolved task regressor (black line) and the seed ROI regressor (blue line).

What are the common pitfalls of FMRI network analysis?

- Ground-truth networks used to simulate BOLD timeseries
- Compare network modelling methods for estimating:

direct connections (edge presence)

Indirect Connections

 Problem: raw correlations include indirect connections!

true network:

 Solution: look at partial correlation, e.g. regularised inverse covariance (ICOV) (or use an effective connectivity approach, e.g. DCM).

partial correlation inferred network

Missing Node Problem

 Problem: missing nodes means that partial correlation approaches will erroneously infer a direct connection, e.g.:

true network:

partial correlation network, inferred when B is a missing node:

Solution: Include all nodes

partial correlation network, inferred when B is included:

This is a ubiquitous issue, including for effective connectivity approaches such as DCM

ROI/Parcellation selection

- Problem: atlas-based parcellation causes erroneous connectivity inference
 - due to mixing of overlapping true ROI timeseries

- Clustering of voxels with similar timecourses

 Craddock, HBM (2011)
- Gradients in seed-based correlation maps Cohen, NeuroImage (2009)
- Spatial ICA

ROI/Parcellation selection

- Problem: atlas-based parcellation causes erroneous connectivity inference
 - due to mixing of overlapping true ROI timeseries

Clustering of voxels with similar timecourses

 Craddock, HBM (2011)

- Gradients in seed-based correlation maps
- Spatial ICA (low-dimensional: ~25 comps)

Cohen, Neurolmage (2009)

Beckmann, Phil. Trans. R. Soc. (2005)

ROI/Parcellation selection

- Problem: atlas-based parcellation causes erroneous connectivity inference
 - due to mixing of overlapping true ROI timeseries

- Solution: use data driven parcellations, e.g.:
 - Clustering of voxels with similar timecourses

 Craddock, HBM (2011)
 - Gradients in seed-based correlation maps Cohen, NeuroImage (2009)
 - Spatial ICA (high-dimensional: ~125 comps)

Beckmann, Phil. Trans. R. Soc. (2005)

Use these as a spatial basis set to get subject ROIs (c.f. dual regression)

Filippini, PNAS (2009)

Changes in Functional Connectivity

 Changes in an edge correlation between two groups/conditions could be interpreted as a change in connectivity in that edge

SNR Changes

Controls Patients Change in corr(A,B)

- Problem: change in SNR can cause artefactual correlation change
 - SNR could change due to changes observation noise amplitude or change in endogenous activity (input signal).
- Solution:
 - I) Use Monte-Carlo simulations to get null (i.e. no connectivity change) distribution
 - 2) Use effective connectivity/generative model approaches

What about using MEG?

- High temporal resolution (~1000Hz) allows for richer exploration of dynamic neuronal interactions
- Problem: zero lag correlation no good
- Solution: use other FC measures: e.g. band-limited power (BLP) correlations

Resting state MEG data: BLP power correlations between left and right Motor Cortex

- RSNs found in MEG data (mainly beta band)
- Eyes open, 10 subjects
- ICA run on BLP timecourses
- Excellent correspondence with fMRI ICA Resting state Networks

Brookes et al., PNAS, 2011 Luckoo et al. NI 2012

Signal Leakage

 Problem: source reconstruction (e.g. beamforming, minimum norm) introduces spurious seed-based correlations

* weights are the linear weightings applied to the sensors to map from sensor to brain space

• Solution: regress out zero lag correlations, and then compute BLP correlations

Brookes, Woolrich, Barnes. NI (2012) Hipp et al. Nat Neuro (2012)

Functional Connectivity (correlation) is a *time-averaged* network measure

- Correlation-based resting-state network analysis assumes stationarity (correlations not changing over time)
- The correlation between two regions' timecourses is an average over the whole experiment duration
- However, if the "true underlying" connectivity is changing over time (e.g., has several distinct states), the time-averaged correlation is an oversimplification of the network structure [Chang Neurolmage 2010]

Temporal Nonstationarity

Various things of interest might be nonstationary

Here we focus on the neuronal connectivity, e.g. between A and B, changing over time

e_{mod}

A

B

 Can we detect this using sliding window correlation approaches?

[Chang Neurolmage 2010]

Sliding-window "nonstationarity"?

Sliding-window "nonstationarity"?

Sliding-window "nonstationarity"?

 Problem: there will be apparent nonstationarity in connectivity when using techniques like sliding window correlations, even in a stationary network

Solution:

I) Use Monte-Carlo simulations to get null (no non-stationarity) distribution

2) Use effective connectivity/generative model approaches

Conclusions

• FMRI:

- Task FMRI? Model out common task stimuli
- Direct vs indirect connections? Use partial correlation to get direct conns
- Missing Node problem? Include all relevant nodes
- Spurious FC changes? Use Monte Carlo sims to get null (or use DCM)

MEG

- Zero lag correlations? Use Band-Limited Power correlations
- Signal leakage due to source reconstruction Regress out zero lag corrs

Time-varying FC

• Spurious FC changes? - Use Monte Carlo sims to get null (or use DCM)

Acknowledgements

 NIH Human Connectome Project

- University of Oxford:
 - Stephen Smith
 - Adam Baker
 - Clare Mackay
 - Stephen Smith
 - Henry Luckhoo
 - Eugene Duff

- Radboud University Nijmegen
 - Christian Beckmann
- University of Nottingham
 - Matthew Brookes
 - Peter Morris

• EPSRC, UK

Wellcome Trust