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Overview

® Functional network analysis

® Focus on functional connectivity in task and rest

e FMRI:

® Task FMRI?

® Direct vs indirect connections!?
® Missing Node problem!?

® Spurious FC changes!?

e MEG

® Zero lag correlations!?

® Signal leakage due to source reconstruction

® Time-varying FC

® Spurious FC changes!?



Functional Network Analysis

® The estimation of brain networks from task- and resting-
functional neuroimaging data (FMRI, M/EEG etc.)




How to do network analysis!?
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® Define network “nodes” (spatial ROls or coordinates)
® |dentify a timeseries associated with each node
® Estimate the connections between the nodes (edges)

® For example, correlate any pair of timeseries together



Applications of network analysis
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What are the main methods?

® Pairwise measures (functional connectivity): correlation, Mutual Information
(MI), coherence

® Semi-global: partial correlation/regularised inverse covariance (ICOV)

® Tries to distinguish direct from indirect connections

® Global model-based (effective connectivity):

® Multivariate AR (Granger), Structural Causal Models (SEM, Bayes Nets e.g. GES
[Ramsey, NI (2010)]), Dynamic Causal Models

® In theory better at modelling “whole story”



Task Data

® |n resting state data we can correlate across whole time series

® Problem:in task data, if two brain areas both respond to the task
stimulus, then they will be correlated, even if there is no connectivity
between them.

® This can be thought of as a special case of the missing node
problem, where the external stimulus input is the “missing node”

® Solution:
® ook at FC within task conditions only

® or, if using correlation, use PPl analysis (O'Reilly et al. Soc Cogn Affect Neurosci, 201 2)

PPI regressor (red line) is as an element-wise product of the
HRF convolved task regressor (black line) and the
seed ROI regressor (blue line).



What are the common pitfalls of FMRI
network analysis?

® Ground-truth networks used to
simulate BOLD timeseries

® Compare network modelling methods
for estimating:

® direct connections (edge presence) Dﬁﬂ
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Indirect Connections

® Problem: raw correlations include indirect
connections!
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® Solution:look at partial correlation, e.g. s883 °
558

regularised inverse covariance (ICOV) (or use
an effective connectivity approach, e.g. DCM).

partial correlation inferred network
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Missing Node Problem

® Problem: missing nodes means that partial correlation approaches will
erroneously infer a direct connection, e.g.:

partial correlation network, inferred when
true network: B is a missing node:

B
A/ \C A<e—> C

® Solution: Include all nodes

partial correlation network, inferred when
B is included:

B
A/ \C

® This is a ubiquitous issue, including for effective connectivity approaches such as DCM



ROI/Parcellation selection

® Problem:atlas-based parcellation causes erroneous Wy
connectivity inference Sy

® due to mixing of overlapping true ROI timeseries A

® Solution: use data driven parcellations, e.g.:

* Clustering of voxels with similar timecourses  craddock, HEM (2011)

* Gradients in seed-based correlation maps Cohen, Neurolmage (2009)

e Spatial ICA

Beckmann, Phil.
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ROI/Parcellation selection

® Problem:atlas-based parcellation causes erroneous Wy
connectivity inference Sy

® due to mixing of overlapping true ROI timeseries A

® Solution: use data driven parcellations, e.g.:

* Clustering of voxels with similar timecourses  craddock, HEM (2011)

* Gradients in seed-based correlation maps Cohen, Neurolmage (2009)

» Spatial ICA (low-dimensional: ~25 comps)
Beckmann, Phil.

Trans. R. Soc.
(2005)
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ROI/Parcellation selection

® Problem: atlas-based parcellation causes erroneous Wy
connectivity inference Sy

® due to mixing of overlapping true ROI timeseries A

® Solution: use data driven parcellations, e.g.:

* Clustering of voxels with similar timecourses  craddock, HEM (2011)

* Gradients in seed-based correlation maps Cohen, Neurolmage (2009)

e Spatial ICA (high-dimensional: ~125 comps)
&H S @ : 0 & A4 £n Beckmann, Phil.

Trans. R. Soc.
(2005)

» Use these as a spatial basis set to get subject ROIs (c.f. dual regression)
Filippini, PNAS (2009)
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Changes in Functional Connectivity

Controls

noise

Change in
corr(A,B)

Patients

OK

 Changes in an edge correlation between two groups/conditions
could be interpreted as a change in connectivity in that edge

Friston et al., Brain Connectivity (2011)



SNR Changes

Controls Patients

noise

noise

input signal

input signal

noise
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® Problem: change in SNR can cause artefactual correlation change
® SNR could change due to changes observation noise amplitude or change in
endogenous activity (input signal).
® Solution:

|) Use Monte-Carlo simulations to get null (i.e. no connectivity change)
distribution

2) Use effective connectivity/generative model approaches

Friston et al., Brain Connectivity (201 1)



What about using MEG!?

® High temporal resolution (~1000Hz) allows for richer
exploration of dynamic neuronal interactions

® Problem:zero lag correlation no good

® Solution:use other FC measures: e.g. band-limited power
(BLP) correlations

Resting state MEG data: BLP power correlations
between left and right Motor Cortex

Power correlation

Frequency (Hz)

Brookes et al., Neuroimage (2011)



e RSNs found in MEG data
(mainly beta band)

* Eyes open, 10 subjects

e |CArunon BLP
timecourses

e Excellent correspondence
with fMRI ICA Resting
state Networks

Brookes et al., PNAS, 2011
Luckoo et al. NI 2012




Signal Leakage

Problem: source reconstruction (e.g. beamforming, minimum norm) introduces
spurious seed-based correlations
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* weights are the linear weightings applied to the sensors to map from sensor to brain space

® Solution: regress out zero lag correlations, and then compute BLP correlations

Real Data
Corrected

Brookes, Woolrich, Barnes. NI (2012)
Hipp et al. Nat Neuro (2012)



Functional Connectivity (correlation)
is a time-averaged network measure

® Correlation-based resting-state network analysis assumes stationarity
(correlations not changing over time)

® The correlation between two regions’ timecourses is an average over
the whole experiment duration

® However, if the “true underlying” connectivity is changing over time
(e.g., has several distinct states), the time-averaged correlation is an
oversimplification of the network structure



Temporal Nonstationarity

* Various things of interest might be nonstationary

* Here we focus on the neuronal connectivity, e.g. between A

and B, changing over time
?

'

 Can we detect this using
sliding window correlation ~ |
approaches? -

corr(A, B)

lation

time



Sliding-window “‘nonstationarity” !

the y-axis is the same in all plots!
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Sliding-window “‘nonstationarity” !
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Sliding-window “‘nonstationarity” !

® Problem: there will be apparent nonstationarity in connectivity when using
techniques like sliding window correlations, even in a stationary network

® Solution:

|) Use Monte-Carlo simulations to get null (no non-stationarity)
distribution

Resting state MEG data: Right lateral fronto-

parietal network
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2) Use effective connectivity/generative model approaches



Conclusions

e FMRI:

® Task FMRI? - Model out common task stimuli

® Direct vs indirect connections? - Use partial correlation to get direct conns
® Missing Node problem!? - Include all relevant nodes

® Spurious FC changes? - Use Monte Carlo sims to get null (or use DCM)

® MEG

® Zero lag correlations? - Use Band-Limited Power correlations

® Signal leakage due to source reconstruction - Regress out zero lag corrs

® Time-varying FC

® Spurious FC changes? - Use Monte Carlo sims to get null (or use DCM)
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