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Overview
• Functional network analysis

• Focus on functional connectivity in task and rest 

• FMRI:

• Task FMRI?

• Direct vs indirect connections?

• Missing Node problem?

• Spurious FC changes? 

• MEG

• Zero lag correlations? 

• Signal leakage due to source reconstruction 

• Time-varying FC

• Spurious FC changes? 



Functional Network Analysis

• The estimation of brain networks from task- and resting-
functional neuroimaging data (FMRI, M/EEG etc.)



How to do network analysis?

• Define network “nodes” (spatial ROIs or coordinates)

• Identify a timeseries associated with each node

• Estimate the connections between the nodes (edges)

• For example, correlate any pair of timeseries together
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the feature space in half the number of iterations of RFE
(Table 2). This is further illustrated in Fig. 3, where RRFE
removes over 80% of the features in its first iteration; in
comparison, it takes RFE nine iterations to remove the same
amount.

t Test filtering was employed using feature-wise t tests and
a liberal threshold: P !0.05 uncorrected. Contrary to our
expectations, TF performed significantly better than RFE and
only slightly worse than the proposed reliability-based mul-
tivariate methods. Investigation of the selected features (Fig.
5a) shows that TF selected eight out of the 11 features that RF
selected and three additional features to RF.

The RF method achieved 95% LOOCV. It selected all of
the most consistent features of the other techniques (Fig.
5). The 11 features implicated by RF are explored in detail
in Fig. 6. None of the features would have been identified
using a t test and multiple comparison correction.

There is a significant difference in age (P !0.0001) and
in head coil used for scanning between the MDD and HC
groups. In order to investigate the impact of these differ-
ences on classification, six additional depressed patients
meeting DSM IV criteria for a current major depressive
episode, without any comorbid psychiatric disorders (6 F,
mean age 26.4 " 3.1) and scanned with the same head coil

and scanning procedures as HC, were used for a holdout
validation procedure.

After the previously described SVC procedure was per-
formed for each feature selection algorithm (none, TF, RF,
RFE, and RRFE), holdout validation was performed. An
additional SVC training was performed using all of the
MDD and HC samples as the training dataset and the MDD
hold-out group as the testing dataset and the features re-
tained by the feature selection procedure. For RFE and
RRFE, which select a different feature set for each iteration
of LOOCV, features that were chosen in at least 50% of the
LOOCV iterations were retained. The results of this proce-
dure are listed in Table 3.

Without feature selection, holdout error is high and only
one of the six holdout subjects is correctly identified.
Holdout error is dramatically improved with feature selec-
tion, and the two reliability-based feature selection algo-
rithms performed the best. The ranking of feature selection
algorithms based on holdout error is the same as that
obtained with LOOCV.

DISCUSSION
This study illustrates the potential utility of resting FC as
a biomarker of disease. FC patterns defined using SVC are

FIG. 5. Discriminant maps gen-
erated from the four different fea-
ture selection algorithms em-
ployed. Linear discriminant weights
were averaged across the 10
cross-validation iterations to pro-
duce the discriminant maps for
TF (a) and RF (b) methods. Dis-
criminant maps for RFE and reli-
ability RFE were calculated by
quantizing linear discriminant
maps extracted each iteration of
cross-validation to #1 if the fea-
ture had a negative weight and
$1 if its weight was positive.
Summary maps were generated
by averaging the quantized maps
across the iterations of cross-val-
idation. Please refer to subfigures
C and D. dmThalamus: dorsome-
dial thalamus, vMF10: ventral me-
dial prefrontal cortex (BA10),
sgACC24!25: subgenual cingu-
late cortex (BA 24!25), aINS: an-
terior insula, rACC24: rostral an-
terior cingulate cortex (BA24),
dlPFC9: dorsolateral prefrontal
cortex (BA9), OFC11: orbitofron-
tal cortex (BA11), dMF10: dorso-
medial prefrontal cortex (BA10),
MCC24: midcingulate cortex
(BA24), vPCC: ventral posterior
cingulate cortex, scACC25: sub-
callosal cingulate cortex (BA25),
BA: Brodmann area.

Disease State Prediction 1625

• Edge strengths used as features

• Used to discriminate controls and 
subjects with a disease/disorder

Applications of network analysis

able to predict whether a subject is an HC or a clinically
depressed patient at least 62.5% and as much as 95% of
the time, depending on the feature selection method em-
ployed. This is substantially better than the 50% accuracy
that would be achieved by chance on the same dataset. A
t test analysis (P � 0.05, false discovery rate corrected)
performed on the same data found none of the features
implicated by the most generalizable (least prediction er-
ror) SVC method employed. Using a more liberal threshold
(P � 0.05), t tests find 11 features, eight of which overlap
with those identified by the RF method. The most impor-
tant feature for discriminating MDD from HC as deter-
mined by SVC was not found by either t test analysis.
Thus, SVC is more sensitive than t tests for finding FC

patterns that differentiate MDD from HC, and likely dis-
ease states in general. The three features that were identi-
fied by TF and not by RF were excluded by RF due to poor
reliability.

The performance of SVC varies based on feature selec-
tion method employed. RFE was previously applied to
fMRI analysis (22). In that study, RFE outperformed the
univariate filter methods to which it was compared. The
results presented here contradict that finding. A univariate
TF outperforms RFE by a factor of 2. A possible reason for
the discrepancy is that the previous study (22) applied
feature selection to a dataset with much higher dimension-
ality. We attribute poor performance of RFE in this study
to the large number of irreproducible features that it se-
lects. To resolve this issue, we propose an improvement to
RFE that incorporates an estimate of feature reliability into
the feature selection criterion.

The RRFE technique achieves better prediction accuracy
than RFE (Table 2). A qualitative comparison of the results
generated by the two techniques indicates that RRFE is
successful in reducing the number of irreproducible fea-
tures selected (Fig. 5c vs d). This observation is confirmed
by a comparison of Fleiss’ � statistics calculated on the
feature sets selected by each technique across the 10 iter-

FIG. 6. Features implicated by
RF feature selection. Box plots il-
lustrate the group differences for
each feature. Box plot titles in-
clude mean discriminant weight
obtained for the feature across
the LOOCV iterations and the re-
sult of a t test comparing features
between groups, and corre-
sponding FDR corrected P val-
ues. dmThalamus: dorsomedial
thalamus, aINS: anterior insula,
rACC24: rostral anterior cingulate
cortex (BA24), dMF10: dorsome-
dial prefrontal cortex (BA10),
vPCC: ventral posterior cingulate
cortex, sgACC24!25: subgenual
cingulate cortex (BA24!25), BA:
Brodmann area, FDR: false dis-
covery rate.

Table 3
Results of Holdout Validation

Method Holdout error

RF 16.67%
RRFE 16.67%
TF 33.33%
RFE 50%
None 83.33%

1626 Craddock et al.

Craddock et al., MRM (2009)



What are the main methods?

• Pairwise measures (functional connectivity): correlation, Mutual Information 
(MI), coherence

• Semi-global: partial correlation/regularised inverse covariance (ICOV)

• Tries to distinguish direct from indirect connections

• Global model-based (effective connectivity): 

• Multivariate AR (Granger), Structural Causal Models (SEM, Bayes Nets e.g. GES 
[Ramsey, NI (2010)]), Dynamic Causal Models

• In theory better at modelling “whole story”



Task Data
• In resting state data we can correlate across whole time series

• Problem: in task data, if two brain areas both respond to the task 
stimulus, then they will be correlated, even if there is no connectivity 
between them.

• This can be thought of as a special case of the missing node 
problem, where the external stimulus input is the “missing node”

• Solution: 

• look at FC within task conditions only

• or, if using correlation, use PPI analysis (O'Reilly et al. Soc Cogn Affect Neurosci, 2012)

PPI regressor (red line) is as an element-wise product of the 
HRF convolved task regressor (black line) and the
seed ROI regressor (blue line).
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Smith et al. NeuroImage 2011

• Ground-truth networks used to 
simulate BOLD timeseries

• Compare network modelling methods 
for estimating:

• direct connections (edge presence)

What are the common pitfalls of FMRI 
network analysis?



Indirect Connections

• Problem: raw correlations include indirect 
connections!

−10

−5

0

5

10

Z
−

tr
u

e
−

p
o

si
tiv

e
s

(Z
fp

 in
 o

ra
n

g
e

)

−10

−5

0

5

10

Z
−

fa
ls

e
−

p
o

si
tiv

e
s

(Z
tp

 in
 o

ra
n

g
e

)

0

0.2

0.4

0.6

0.8

1

fr
a

ct
io

n
 o

f 
T

P
 >

 9
5

th
%

(F
P

)
b

lu
e

 li
n

e
: 

m
e

a
n

 a
cr

o
ss

 s
u

b
je

ct
s

−10

−5

0

5

10

ca
u

sa
lit

y 
 (

Z
ri
g

h
t 

−
 Z

w
ro

n
g

)

Simulation 2    (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%, HRFstd=0.5s)
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Smith et al. NeuroImage 2011

• Solution: look at partial correlation, e.g. 
regularised inverse covariance (ICOV) (or use 
an effective connectivity approach, e.g. DCM).
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Simulation 2    (10 nodes, 10 minute sessions, TR=3.00s, noise=1.0%, HRFstd=0.5s)
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Missing Node Problem

• Problem: missing nodes means that partial correlation approaches will 
erroneously infer a direct connection, e.g.:

• Solution: Include all nodes

A C

true network:
partial correlation network, inferred when 
B is a missing node:

partial correlation network, inferred when 
B is included:

• This is a ubiquitous issue, including for effective connectivity approaches such as DCM

A

B

C

A

B

C



ROI/Parcellation selection
• Problem: atlas-based parcellation causes erroneous 

connectivity inference 

• due to mixing of overlapping true ROI timeseries

Smith et al. NeuroImage 2011

• Spatial ICA
Beckmann, Phil. 
Trans. R. Soc. 

(2005)

• Solution: use data driven parcellations, e.g.:
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• Clustering of voxels with similar timecourses

• Gradients in seed-based correlation maps Cohen, NeuroImage (2009)

Craddock, HBM (2011)



ROI/Parcellation selection
• Problem: atlas-based parcellation causes erroneous 

connectivity inference 

• due to mixing of overlapping true ROI timeseries

Smith et al. NeuroImage 2011

• Gradients in seed-based correlation maps Cohen, NeuroImage (2009)

Beckmann, Phil. 
Trans. R. Soc. 

(2005)

• Solution: use data driven parcellations, e.g.:

1

2

3

• Clustering of voxels with similar timecourses

• Spatial ICA (low-dimensional: ~25 comps)

Craddock, HBM (2011)



ROI/Parcellation selection
• Problem: atlas-based parcellation causes erroneous 

connectivity inference 

• due to mixing of overlapping true ROI timeseries

Smith et al. NeuroImage 2011

• Gradients in seed-based correlation maps Cohen, NeuroImage (2009)

Beckmann, Phil. 
Trans. R. Soc. 

(2005)

• Solution: use data driven parcellations, e.g.:

1

2

3

• Use these as a spatial basis set to get subject ROIs (c.f. dual regression)
Filippini, PNAS (2009)

• Clustering of voxels with similar timecourses

• Spatial ICA (high-dimensional: ~125 comps)

Craddock, HBM (2011)



Changes in Functional Connectivity
Controls Patients

B

A

noise

noise

input signal

Change in 
corr(A,B)

OK
B

A

noise

noise

input signal

• Changes in an edge correlation between two groups/conditions 
could be interpreted as a change in connectivity in that edge

Friston et al., Brain Connectivity (2011)



SNR Changes
Patients

B

A

noise

noise

input signal

Controls

B

A

noise

noise

input signal

• Problem: change in SNR can cause artefactual correlation change 

• SNR could change due to changes observation noise amplitude or change in 
endogenous activity (input signal). 

Change in 
corr(A,B)

Friston et al., Brain Connectivity (2011)

• Solution:  

1) Use Monte-Carlo simulations to get null (i.e. no connectivity change) 
distribution 

2) Use effective connectivity/generative model approaches

X



What about using MEG?

• High temporal resolution (~1000Hz) allows for richer 
exploration of dynamic neuronal interactions

• Problem: zero lag correlation no good

Brookes et al., Neuroimage (2011)

reconstructions of the simulated left and right motor cortex sources.
Connectivity between the seed and test locations was measured using
both AEC (Δ=10 s) and CAE (Δ=0.5 s). Results are shown in Fig. A5.

Results in Fig. A5 show that a source placedmidway between the left
and right motor cortices has little effect on the FC values measured in
simulation. The implication is that the beamformer spatial filters
(derived from the real data) act as an effective means to suppress this
third source.

Appendix 3. The existence of an interfering non-brain source

In a single subject, the electrocardiogram (ECG) was acquired
concurrently with MEG data by placing three electrodes on the
subject's chest. ECG data were acquired specifically to assess the
contribution of electrical interference from the heart to the MEG. In
order to assess the effect of non-neuronal physiology on raw and
beamformer projected MEG data, the level of cardiac interference in a
single subject was measured. The ECG was filtered into the same
frequency bands as those used for MEG analysis. The Pearson
correlation coefficient between the filtered ECG and the filtered
MEGwas assessed at eachMEG sensor, resulting in amap showing the
topographical distribution, in sensor space, of cardiac interference for
each of the seven frequency bands. Note that Pearson correlation
values were computed for the data acquired during the resting state
phase of the experiment only. MEG data were then projected into the
brain. (To ensure optimized spatial resolution, the beamformer
weights were based on covariance computed using the entire
dataset.) Beamformer projected timecourses were extracted from
two locations of interest in the left and right sensorimotor areas (as
defined by the MEG localizer experiment) and the Pearson correlation
coefficients between the ECG and the two projected timecourses
(again for the resting phase of the experiment) were computed. These
correlation values were compared to equivalent values computed at
the MEG sensors most affected by the motor cortex sources (i.e. those

MEG sensors with a lead field greater than 80% of the maximum
absolute lead field at any sensor).

Fig. A6 shows an example of the interference rejection properties
of the beamformer. As alluded to in the introduction, a confound of
fcMRI is that results can be affected by non-neuronal physiological
interference caused by, for example, the cardiac cycle, changes in the
cardiac cycle, respiration or changes in respiration rate. Here we show
that MEG can also be affected by similar confounds since it is
susceptible to interference from non-neuronal sources, in this case the
electrical signal from the heart. Fig. A6A shows the ECG plotted
alongside the MEG signal from a single sensor. Fig. A6B shows the
Pearson correlation between the frequency filtered ECG and the
frequency filtered channel space MEG signals. Note that cardiac
interference affects a large number of MEG sensors and, unless
adequately dealt with, could lead to spurious connectivity measure-
ment, particularly when using channel space metrics. Figs. A6C and D
highlight the artifact rejection properties of the beamformer. In both
cases the blue line shows Pearson correlation between the ECG and
the MEG sensors most affected by sources in the left (C) and right (D)
sensorimotor cortices. The green line shows correlation between the
ECG and the beamformer reconstructed timecourses from the peak
voxel of interest in the left (C) and right (D) sensorimotor cortices.
Notice that for sensor space data, high correlation with the ECG is
observed, and further that correlation is inhomogeneous with respect
to frequency. However, following application of the spatial filter,
correlation is significantly reduced and is less than 0.05 in all
frequency bands.

Appendix 4. The existence of an interfering brain source

In Fig. 3C, AEC, CAE, Coh and ICoh measurements extracted from
real data have been corrected by subtraction of the equivalent metrics
applied to simulated data. In Fig. A7, for completeness, we show the
AEC, CAE, Coh and ICoh metrics applied to real and simulated data

Fig. A7. Fig. A7 AEC, CAE, Coh and ICoh metrics applied to real (blue curve) and simulated (black curve) data extracted from left and right motor cortices. The four columns show the
four separate FC metrics and the 5 rows show different values of delta.

1102 M.J. Brookes et al. / NeuroImage 56 (2011) 1082–1104
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Resting state MEG data: BLP power correlations 
between left and right Motor Cortex

• Solution: use other FC measures: e.g. band-limited power 
(BLP) correlations 



Brookes et al., PNAS, 2011 
Luckoo et al. NI 2012

• RSNs found in MEG data 
(mainly beta band)

• Eyes open, 10 subjects

• ICA run on BLP 
timecourses

• Excellent correspondence 
with fMRI ICA Resting 
state Networks



Signal Leakage
• Problem: source reconstruction (e.g. beamforming, minimum norm) introduces 

spurious seed-based correlations 

Brookes, Woolrich, Barnes. NI (2012)
Hipp et al. Nat Neuro (2012)

• Solution: regress out zero lag correlations, and then compute BLP correlations

* weights are the linear weightings applied to the sensors to map from sensor to brain space



• Correlation-based resting-state network analysis assumes stationarity 
(correlations not changing over time)

• The correlation between two regions’ timecourses is an average over 
the whole experiment duration

• However, if the “true underlying” connectivity is changing over time 
(e.g., has several distinct states), the time-averaged correlation is an 
oversimplification of the network structure [Chang NeuroImage 2010]

Functional Connectivity (correlation)
is a time-averaged network measure



Temporal Nonstationarity

• Various things of interest might be nonstationary

• Here we focus on the neuronal connectivity, e.g. between A 
and B, changing over time

emod

A B

eA ?
• Can we detect this using 

sliding window correlation 
approaches? 

[Chang NeuroImage 2010]
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Sliding-window  “nonstationarity”  ?

emod

A B

eA ?
sliding window correlations from 4 pairs of timeseries
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A B

eA eB

A B

eA

A B

eA eB

emod

A B

eA

this network’s not even connected!

this is the only one with true nonstationarities!

these are stationary 
networks!

Sliding-window  “nonstationarity”  ?



Sliding-window  “nonstationarity”  ?

• Problem:  there will be apparent nonstationarity in connectivity when using 
techniques like sliding window correlations, even in a stationary network  
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Baker et al. (In Prep)

Resting state MEG data: Right lateral fronto-
parietal network 

• Solution:  

1) Use Monte-Carlo simulations to get null (no non-stationarity)               
distribution 

2) Use effective connectivity/generative model approaches



• FMRI:

• Task FMRI? - Model out common task stimuli

• Direct vs indirect connections? - Use partial correlation to get direct conns

• Missing Node problem? - Include all relevant nodes

• Spurious FC changes? - Use Monte Carlo sims to get null (or use DCM)

• MEG

• Zero lag correlations? - Use Band-Limited Power correlations

• Signal leakage due to source reconstruction - Regress out zero lag corrs

• Time-varying FC

• Spurious FC changes? - Use Monte Carlo sims to get null (or use DCM)

Conclusions
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