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The Problem

Neuroactivation Studies

Task-related designs

Seek group-level inferences relating stimuli
to neural response

Contrasts specify task-related changes (and
possibly group differences) in neural activity
Estimation and hypothesis testing about
group-level contrasts

Multiple contrasts for each subject, derived
from multiple tasks/effects

Linear model framework (linear in
parameters)
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Univariate versus Multivariate Linear Models

Univariate Linear Models

Involve a single dependent variable

May involve one or more independent variables

Multiple regression

Multivariate Linear Models

Involve multiple dependent variables

Dependent variables are possibly correlated

Over voxels
Over time
Related stimuli/tasks

May involve one or more independent variables
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Common Univariate Analysis Framework

Two-stage Model: Mass Univariate Approach

First, fit a linear model separately for each subject (at each voxel)

Convolution with a HRF
Temporal correlations between scans: AR models (+ white noise)

Linear covariance structure
Pre-coloring/temporal smoothing [Worsley and Friston, 1995]
Pre-whitening [Bullmore et al, 1996; Purdon and Weisskoff, 1998]
Alternative structures available for PET [Bowman and Kilts, 2003]

Second, fit linear model that combines subject-specific estimates
A two-stage (random effects) model

Simplifies computations*
Sacrifices efficiency

For Inference: Compute t-statistics at each voxel and threshold

Consider a multiple testing adjustment (Bonferonni-type, FDR, RFT)
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Common Univariate Analysis Framework

Properties

Two-stage (random effects) model

Simplifies computations
Sacrifices efficiency

May assume independence between different regression coefficients

Assumes independence between different brain locations
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Data Example

Working Memory in Schizophrenia Patients

N=28 subjects: 15 schizophrenia patients and 13 healthy controls

fMRI Tasks: Serial Item Recognition Paradigm (SIRP)

Encoding set: Memorize 1, 3, or 5 target digits.
Probing set: Shown single digit probes and asked to press a button:

with their index finger, if the probe matched
with their middle finger, if not.

Between conditions, subjects fixated on a flashing cross.

6 runs per subject: (177 scans per run for each subject)

3 runs of working memory tasks on each of 2 days

Objective: Compare working memory-related brain activity between

patients and controls

Data from the Biomedical Informatics Research Network (BIRN) [1]: Potkin et al. (2002).
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Statistical Modeling

General Linear Model: Stage I

Yi (v) = Xivβi (v) + Hivγ i (v) + εi (v)

Yi (v) S × 1 serial BOLD activity at voxel v .

Xiv S × q design matrix reflecting fixation and WM tasks.

βi (v) q × 1 parameter vector linking experimental tasks.

εi (v) S × 1 random error about ith subject’s mean.

Hiv S ×m contains other covariates, e.g. high-pass filtering.

εi (v) ∼ Normal(0, τ2v V).
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Statistical Modeling: Univariate

General Linear Model: Stage II (Contrast of Interest)

Cβij(v) = µj(v) + eij(v)

βij(v) stage I fixation and WM parameters; subject i , group j .

C contrast matrix (linear combinations of elements in βij(v)).

µj(v) group-level mean (for group j).

eij(v) random error.

eij(v) ∼ Normal(0, σ2(v)).
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Statistical Modeling: Univariate
Working Memory Data:


n×1

=




n×b

[
µ1
µ2

]
b×1

+




n×1

General Linear Model: Stage II (Matrix Model)

Cβ11(v)
...

Cβnc1(v)
Cβ12(v)

...
Cβnp2(v)


=



1 0
...

...
1 0
0 1
...

...
0 1


[
µ1(v)
µ2(v)

]
+



e11(v)
...

enc1(v)
e12(v)

...
enp2(v)


(I ⊗ C)β(v) = Xµ(v) + e(v)
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Statistical Modeling

Mass Univariate Approach

May not fully acknowledge the
correlations between

Multiple effects/contrasts
Effects/contrasts at different voxels

Separately models contrasts of interest
Does not yield information on
correlations between contrasts.
Does not enable comparisons or
linear combinations of contrasts.
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Statistical Modeling

Working Memory Data: 
n×p

=

 
n×q

[
µ11 µ12 µ13
µ21 µ22 µ23

]
q×p

+

 
n×p

General Linear Multivariate Model: Stage II

β(v) = Xµ(v) + e(v)

Multiple summary statistics (or contrasts) included for each subject
E.g. working memory load contrasts

Rows contain data from different subjects
Each row assumed to have variance covariance matrix Σ reflecting
correlations between summary statistics/contrasts

Define θ(v) = Cµ(v)U, e.g. (µ13 − µ11) − (µ23 − µ21).
F. D. Bowman (Emory University) OHBM Educational Course Seattle, WA 12 / 21



Background GLM Multivariate Linear Model Results Summary

Statistical Modeling

Contrast Variance:

Define θ(v) = Cµ(v)U, e.g. (µ13 − µ11) − (µ23 − µ21)
C =

[
1 −1

]
U =

 −1
0
1


Var(θ̂)

Var(θ̂(v)) = Var(θ̂(v)′)

= Var
[
vec((Cµ̂(v)U)′)

]
= C(X′X)−1C′ ⊗ U′Σ(v)U

= (
1

nc
+

1

np
)(σ21 + σ23 − 2σ13), for WM data.
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Application to Working Memory Data

Stage I analysis produces estimates of visual fixation, WM load 1,

WM load 3, and WM load 5 for each subject (FSL, SPM, etc).

Compute contrasts of each WM load versus fixation for each subject.

(1) Load 1 vs. Fixation, (2) Load 3 vs. Fixation, and (3) Load 5 vs.
Fixation.

Fit second-stage univariate model (GLM) to estimate the group-level
effects and associated variances.

Estimate final contrast to compare Load 3 vs Load 1 between controls
and schizophrenia patients
Calculate test-statistic

Fit second-stage multivariate model to estimate the group-level
effects and associated variances.

Estimate final contrast to compare Load 3 vs Load 1 between controls
and schizophrenia patients
Calculate test-statistic
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Estimation

Contrast estimates:
GLMM GLUM

Both methods produce unbiased estimates of regression coefficients

and associated contrasts.

θ = [task3 − task1]Controls − [task3 − task1]Patients
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Test Statistics

F-statistics:
GLMM GLUM

The GLMM often produces larger test statistics than the GLUM.

θ = [task3 − task1]Controls − [task3 − task1]Patients
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Test Statistics

This figure clearly reveals increased statistical power in GLMM

relative to GLUM.
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Variances

Contrast Variances:
GLMM GLUM

The GLUM produces larger variances and will thus sacrifice statistical

power.

θ = [task3 − task1]Controls − [task3 − task1]Patients
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Task Correlations
Correlation Matrix:

1-Digit

3-Digit

5-Digit

1-Digit 3-Digit 5-Digit

The GLMM yields estimates of correlations between the three working

memory loads (stage I contrasts).
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Summary

Mass univariate and multivariate linear
models produce identical estimates of
task-related changes.

Multivariate modeling approaches consider
dependencies between multiple dependent
variables

Multiple effects/contrasts
Multiple voxels [Bowman et al., 2008; Zhang et al., 2012]

Multiple time points (e.g. longitudinal
study)

By accounting for correlations, multivariate
methods generally

Increase efficiency (reduces variability)
Increase statistical power.

Univariate approaches may have a
deleterious effect on inference.
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