
Introduction1

Permutation methods provide exact control of false positives and allow the 
use of non-standard statistics, making only weak assumptions about the 
data. However, even under these weak assumptions, the standard statistics 
may behave erratically in some circumstances. For example, while a single 
permutation test may be valid, the null distribution may vary from voxel to 
voxel. is variation in null distribution is known as a violation of 
pivotality; when pivotality does not hold, even though the familywise error 
rate may be controlled overall, the risk of false positives may be greater in 
some places in the image, and smaller in others. Here we introduce to 
neuroimaging a new statistic, the G-statistic, a generalisation of the F-
statistic that is robust to heteroscedasticity, that can be used in various 
useful cases, and preserves pivotality. 

Results5

e distribution of the G-statistic was robust to heteroscedasticity, even 
with large variance differences across groups, in contrast to the distribution 
of the commonly used F statistic, which varied across tests in the presence 
of heteroscedasticity (Figure 2).

In addition, the G-statistic not only controlled the error rate, but it was also 
generally just as, or even more powerful than F (Table 3).
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e G-statistic2

Consider the common analysis of a neuroimaging experiment. At each 
voxel, vertex, face or edge (or any other imaging unit), we have a linear 
model expressed as:

where Y contains the experimental data, M contains the regressors, ψ the 
regression coefficients, which are to be estimated, and ε the residuals. For a 
linear null hypothesis that C'ψ = 0, where C is a contrast vector, if rank(C) 
= 1, the Student's t statistic can be calculated as:

If rank(C) ≥ 1, the F statistic can be calculated as:

If, however, the variances for the observations differ, i.e., in the presence of 
heteroskedasticity, we demonstrate in the results that t and F are no longer 
pivotal and not guaranteed to be the same throughout the image, therefore 
creating difficulties when controlling the familywise error-rate (FWER). is 
is the case even if the FWER p-values are assessed via permutation tests. To 
solve this issue, we propose the use of a robust statistic that is invariant 
with respect to heteroskedasticity, G, which can be computed as:

where W is a diagonal matrix that has elements:

and where Rn'n' are the n' diagonal elements of the residual forming matrix, 
and gn is the variance group to which the n-th observation belongs. e 
remaining denominator term, Λ, is given by:

where s = rank(C). e matrix W can be seen as a weighting matrix, the 
square root of which normalises the model such that the errors have then 
unit variance and can be ignored. It can also be seen as being itself a 
variance estimator.
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Permutation strategies3

When some of the covariates are nuisance effects, more than one 
permutation strategy is possible. Various different methods have been 
proposed, in which the design matrix M is partitioned into effects of 
interest, X, and nuisance effects, Z, and parts of the design are shuffled 
differently (Table 2).

e G-statistic can be used with the general linear model (GLM), and only 
requires the definition of the variance groups, i.e., the sets of observations 
that share the same variance. e exact value of the variance is not assumed 
to be known. e G-statistic is a generalisation of various well known 
statistics, including the F-statistic itself.

Evaluation method4

To assess the impact of pivotality, eight scenarios of heteroscedasticity and 
imbalance were simulated (Table 3). e resulting distributions of the G and 
F statistic were compared using the two-sample Kolmogorov-Smirnov test. 
By comparing the distributions of the same statistic obtained in different 
variance seings, this evaluation strategy mimics what is observed when 
the variances for each voxel varies across space in the same imaging 
experiment. Typically, the variances are not assumed to the same. e same 
eight scenarios were used to evaluate control over error rates and power.

To evaluate the permutation strategies, we simulated various experimental 
designs with continuous and discrete regressors, different degrees of non-
orthogonality, different error distributions, and different sample sizes. is 
diverse set parameters allowed a total of other 1536 different simulation 
scenarios, which were used to assess the methods in terms of their error 
rates  and power. 

Regarding the different permutation strategies, we found that the 
Freedman-Lane and Smith methods produced the best control over error 
rates and power (Table 4).

Figure 1: The W matrix is constructed from
the estimated variances of the error terms.
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Table 1: G is a generalisation of other well-known statistics. 

Table 2: A number of methods are available to obtain parameter estimates
and construct a reference distribution in the presence of nuisance variables.

Figure 2: Heatmaps for the comparison of the distributions 
obtained under different variance seings for identical sample 

sizes. In each map, the cells below the main diagonal contain the 
results for the pairwise F statistic, and above, for the G statistic. 
The percentages refer to the fraction of the 1000 tests in which 

the distribution of the statistic for one variance seing was 
found different than for another in the same simulation scenario. 
Each variance seing is indicated by leers (a–e), corresponding 

to the same leers in Table 3. Smaller percentages indicate 
robustness of the statistic to heteroscedasticity. Confidence 

intervals (95%) are shown in parenthesis.
Table 3: The eight different simulation scenarios, each with its own same sample 

sizes and different variances, along with the proportion of error type I and power (%) 
for the statistics F and G. Confidence intervals (95%) are shown in parenthesis. The 

leers in the last column (marked with a star, ⋆) indicate the variance 
configurations represented in the pairwise comparisons shown in Figure 2.

Table 4: A summary of the results for the 1536 simulations with different 
parameters. The amount of error type I is calculated for the 768 simulations 
without signal. Confidence intervals (CI) at 95% were computed around the 

nominal level α = 0.05, and the observed amount of errors for each regression 
scenario and for each method was compared with this interval. Methods that 

mostly remain within the CI are the most appropriate. Methods that frequently 
produce results below the interval are conservative;those above are invalid. Power 

was calculated for the remaining 768 simulations, which contained signal.

All the results presented in this poster, as well as more (theory, restricted 
exchangeability, implementation of the randomise algorithm, and 
examples), have just been published in NeuroImage (2014;92:381-97).
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