Permutation Inference for the
General Linear Model and the G-statistic Al

Anderson M. Winkler"*’, Gerard R. Ridgway"*, Matthew A. Webster', Stephen M. Smith', Thomas E. Nichols"’ ] m

U
1. Oxford Centre for Functional MRI of the Brain, University of Oxford, UK. 2. Global Imaging Unit, GlaxoSmithKline, Brentford, UK. 3. F I\/I F% I B
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. 4. Wellcome Trust Centre for Neuroimaging, UCL Oxford Centre for Functional MRI of the Brain

Institute of Neurology, London, UK. 5. Department of Statistics & Warwick Manufacturing Group, University of Warwick, Coventry, UK.

Introduction Permutation strategies Evaluation method
Permutation methods provide exact control of false positives and allow the When some of the covariates are nuisance effects, more than one To assess the impact of pivotality, eight scenarios of heteroscedasticity and
use of non-standard statistics, making only weak assumptions about the permutation strategy is possible. Various different methods have been imbalance were simulated (Table 3). The resulting distributions of the G and
data. However, even under these weak assumptions, the standard statistics proposed, in which the design matrix M is partitioned into effects of F statistic were compared using the two-sample Kolmogorov-Smirnov test.
may behave erratically in some circumstances. For example, while a single interest, X, and nuisance effects, Z, and parts of the design are shuflled By comparing the distributions of the same statistic obtained in different
permutation test may be valid, the null distribution may vary from voxel to differently (Table 2). variance settings, this evaluation strategy mimics what is observed when
voxel. This variation in null distribution is known as a violation of the variances for each voxel varies across space in the same imaging
pivotality; when pivotality does not hold, even though the familywise error Table 2: A number of methods are available to obtain parameter estimates experiment. Typically, the variances are not assumed to the same. The same
rate may be controlled overall, the risk of false positives may be greater in and construct a reference distribution in the presence of nuisance variables. eight scenarios were used to evaluate control over error rates and power.
some places in the image, and smaller in others. Here we introduce to Method Model
neuroimaging a new statistic, the G-statistic, a generalisation of the F- Draper-Stoneman Y = PXB+Zy+e To evaluate the permutation strategies, we simulated various experimental
statistic that is robust to heteroscedasticity, that can be used in various Still-White PRzY = XB+e designs with continuous and discrete regressors, different degrees of non-
. . Freedman—Lane (PRz+Hz)Y = XB+Zv+e ) ) S . ) ) )
useful cases, and preserves pivotality. Manly PY = X8+ Zvy+e orthogonality, different error distributions, and different sample sizes. This
ter Braak (PRM+HM)Y = XB+Zy+e diverse set parameters allowed a total of other 1536 different simulation
Kennedy PRzY = RzX3+ € . ) ) )
Huh-Jhun PQR,Y = QRzX0 + ¢ scenarios, which were used to assess the methods in terms of their error
2 (& -StatlStIC Parametric Y = XB+Zy+e e~N(0,0°1)
Consider the common analysis of a neuroimaging experiment. At each
voxel, vertex, face or edge (or any other imaging unit), we have a linear Results
model expressed as:
Y =M +e€ The distribution of the G-statistic was robust to heteroscedasticity, even Figure 2: Heatmaps for the comparison of the distributions
with large variance differences across groups, in contrast to the distribution obtained under different variance settings for identical sample

where Y contains the experimental data, M contains the regressors, g the
regression coefficients, which are to be estimated, and ¢ the residuals. For a

sizes. In each map, the cells below the main diagonal contain the

of the commonly used F statistic, which varied across tests in the presence o e o
results for the pairwise F statistic, and above, for the G statistic.

of heteroscedasticity (Figure 2).

linear null hypothesis that C'gp = 0, where C is a contrast vector, if rank(C) The percentages refer to the fraction of the 1000 tests in which
— 1. the Student's ¢ statistic can be calculated as: the distribution of the statistic for one variance setting was
S ' In addition, the G-statistic not only controlled the error rate, but it was also found different than for another in the same simulation scenario.
2 generally just as, or even more powerful than F (Table 3). Each variance setting is indicated by letters (a—e), corresponding
1 . . .
_ NN -1 ~ 2 to the same letters in Table 3. Smaller percentages indicate
t= ¢ C (C (M'M) C /\/ — rank (M) robustness of the statistic to heteroscedasticity. Confidence

intervals (95%) are shown in parenthesis.

If rank(C) > 1, the F statistic can be calculated as: Table 3: The eight different simulation scenarios, each with its own same sample

sizes and different variances, along with the proportion of error type | and power (%)
for the statistics F and G. Confidence intervals (95%) are shown in parenthesis. The Simulation scenario 1 Simulation scenario 2

~/ _1 A~
/ / —1 ) / Al A
P C (C (M M) C C' € € letters in the last column (marked with a star, x) indicate the variance (a) 0.4% (a) 1.3%
ank ( C) N — rank (M) . . {in th o / A ‘ . 04-16) | (01-09) | (04-16) | (02-1.0) 02-12) | (01-09) | 03-14) | (08-22
configurations represented in the pairwise comparisons shown in Figure 2. 24.5% BROMD 1:0% | 09% | 0.6% 00.7% ISR 0-6% | 0.7% | 0.2%
(21.9-27.3) 05-18) | ©5-17) | (0.3-1.3) (99.6-100.0) 03-13) | ©3-14) | (0.1-0.7)

. . . . . 44.5% | 1.1% 0.4% 0.9% 100.0% | 1.1% 0.7°/ O.6°/
If, however, the variances for the observations differ, i.e., in the presence of Proportion of error type 1 Power @iicare)| 05-20 (RSN (010 06-1000)| (06-20) [
. . . Simulation Sample sizes for Variances for
: * 65:4% | 1.4% 0.5% 1.2% 100.0% 5°/ 0°/ 7°/
heteroskedasticity, we demonstrate in the results that t and F are no longer scenario each VG each VG 7 G 7 o B (d) 0Tl
pivotal and not guaranteed to be the same throughout the image, therefore 5,1 (a) 5.9 (4675) (4878 201 (I17-27)  23.8 (213-265) 100.0% | 89.8% | 77.0% | 51:3% (WS A A AL
) ) i ) ) ) ) 1.2,1 () 9 (3.7-64) 3 (41-69)  28.3(25.6-31.2)  31.9 (29.1-34.9) (99.6-100.0)| (87.8-91.5) | (74.3-79.5) | (48.2-54.4) (99.6-100.0)] (99.6-100.0)| (99.6-100.0)| (99.6-100.0)
creating difficulties when controlling the familywise error-rate (FWER). This 1 8, 4 11 () 7 (36-62) 5(3460)  20.3 (266322  32.6 (208356
< th £ the FWER 1 dvi ) T 1,1.2 (d) 9 (37-6.4) 6 (3561)  29.9 (271-328)  32.0 (202:35.) _ _ _ _ _ _
1S the case even 1t the p-values are assessed via permutation tests. 1o 1,5 (e) 9 (29-53) 1(30-55)  14.0 (120-163)  14.1 (12.1-164) Simulation scenario 3 Simulation scenario 4
solve this issue, we propose the use of a robust statistic that is invariant 5.1 (a)  GT(ISY 6606283 201 (0430 383 (53414 (@) B 1.0%
: .. : 12,1 (b) 0 (3.8-65) 6 (3561) 424 (304455) 48.8 (15.7-519) 03-14) | ©1-09 | ©2-12) | ©3-14 05-18) | (03-13) | 03-14) | ©5-17)
with respect to heteroskedasticity, G, which can be computed as: 2 20, 5 11 (c) 0 (3865) S (1574)  44.6 (1L6477)  48.9 (158520) 79.9% 06% | 06% | 0.6% P 05% | 08% | 0.6%
1, 1.2 (d) 1 (48-78) 2 (4.9-79) 42.3 (39.3-454)  46.7 (43.6-49.8) (77.3-82.3) (03-1.3) | (0.3-1.3) | (0.3-1.3) (b) (02-12) | (04-16) | (0.3-1.3)
y » ) 1,5 (e) 9 (46-75) 2 (1979) 195 (172-221)  19.0 (167-216) S 7o, 2% [ om 100.0%100.0% [N 0.3% | 0.7%
,(p C (C/(M/WM)—lc) C/’(ﬁ 5,1 (a) 2 (4.0-6.8) 0 (3.8-6.5) 90.4 (884-92.1)  92.3 (90.5-93.8) (94.1-96.7) | (0.3-1.4) (03-1.3) | (0.3-1.3) (99.6-100.0)|(99.6-100.0) (0.1-0.9) | (0.3-14)
G = 12,1 (6) 9 (37-64) 1(39-66)  99.7 (91909} 99.8 (89.3-100) 99.4% | 1.6% | 0.5% [BNENS 0.8% 100.0% [ 100.0% [ 100.0% [SSEIN 0.5%
A - S 3 80, 30 1, 1 (¢) 3 (5.0-8.0) 2 (49-19) 99.8 (99.3-100)  99.8 (99.3-100) (98.7-99.7) | (1.0-26) | (0.2-1.2) (0.4-1.6) (99.6-100.0)|(99.6-100.0)|(99.6—100.0) (0.2-1.2)
1,1.2 (d) 4 (33-59) 4(3359)  99.6 (990998)  99.6 (99.0-098)
100.0% | 99.6% | 95.5% | 80.8% 100.0% | 100.0% | 100.0% | 43.5%
, _ . 1,5 (e) 4 (33-5.9) 4 (3359) 729 (10.1-756)  72.9 (70.1-75.6) (99.6-100.0)| (99.0-99.8) | (94.0-96.6) | (78.2-83.1) () (99.6-100.0)| 99.6-100.0)| 99.6-100.0) | (40.5-46.6) ()
where W is a diagonal matrix that has elements: 15, 10, 5, 1 (a) 4 (5.081) 7(4473) 102 (85122  19.4 (17.1220)
36,24,1.2,1 (b)) 53169 56 (4372  37.8 319409) 45.6 (125-487) , , , , , ,
4 40, 30, 20, 10 1,1,1, 1 (¢) 7 (44-73) 0 (3764) 722 (693749) 74.9 (121775) Simulation scenario 3 Simulation scenario 6 Legend
Zn/e Rn’n’ 1,1.2,2.4,3.6 (d) 1 (2-2*4-4) 7 (2-7*5-1) 34 6 (31 7*37-6) 44.6 (41 6*47-7) (a) 2.0% 2 3% (a) 1.4% 2.2% ( Unbalanced scenarios A
W, = ~9n 1,5, 10, 15 (e) 5 (34-6.0) 2 (3.1-55) 780117 15.7 (136-181) (1a-31) | (15-34) 08-23) | (15-33) -
€,. €gn, 1,1 (a) 3 (32-5.7) 3(3257)  20.9 (1.1528)  29.9 (2711-328) | 2.5% (b) o) G
5 4,4 1,1.2 (D) 3 (3.25.7) 3 (3257 30.6 (27.8-335)  30.6 (27.8-33.5) 13-3.) (1.7-3.7) (0.8-23) 13-3.) 0
1,5 (¢) 9 (5.5-8.6) 9 (5586)  14.5 (125-168)  14.5 (12.5-16.8) G
and where R, are the n'diagonal elements of the residual forming matrix, 1, 1 (a) 3 (24-46) 3 (2446)  92.6 (08-9L1) 926 (H059L]) 15-34) | (17137 15-53) | (1331 l o
6 20, 20 1,1.2 (b) 4 (33-5.9) 4(3359) 905 (885922)  90.5 (885-022)
and g, is the variance group to which the n-th observation belongs. The s & 43359 40359 537 (0668 537 (06.568) Simulation scenario 7 Simulation scenario 8 Balanced scenarios
. : . . .
remaining denominator term, A, is given by: 11,1, 1 (a) 6 (4372 54371 110 (92130) 8.8 (12107) 23% | 57% O 2.3% | 2.3% o G
7 4,4, 4,4 1, 1.2, 2.4, 3.6 (b) 2 (4.0-6.8) 4 (3.3-5.9) 5 (5.1-82) 7 8 (6.3-9.6) 15-34) | 4.4-7.3) (1.5-34) | (1.5-34) F
S w2 1,5, 10, 15 (¢) 7 (44-73) 8 (3663) 58574 6.9 (5586) 70/ T 7 0°/ 20/ ©
A=1+ 2(s=1) 1 ] — =nco 17 1,1,1,1 (a) 6 (3.5-6.1) 5(3460)  78.7 (1618L1)  78.1 (75.4-80.6) (0) s (b) % of non-identical distributions
s(s4+2) > trace(W)
9 2ineg It 8 20, 20, 20, 20 1,1.2,24,36  (b) 6 (35-6.1) 6 (13-72)  40.7 (317438)  45.5 (12.4-486) 24| 3.0 26 3% 5 30/ _—
1,5, 10, 15 (¢) 7 (36-62) 8 (3663  11.6 (98137)  19.3 (IT0-219) (12,4;162) 2143 IRZ | ¢ loveristoter) 100
where s = rank(C). The matrix W can be seen as a weighting matrix, the
square root of which normalises the model such that the errors have then
unit variance and can be ignored. It can also be seen as being itself a
variance estimator. Regarding the different permutation strategies, we found that the Publication in Neurol mage
: . Freedman-Lane and Smith methods produced the best control over error
Figure 1: The W matrix is constructed from
the estimated variances of the error terms. rates and power (Table 4). All the results presented in this poster, as well as more (theory, restricted
exchangeability, implementation of the randomise algorithm, and
o : : : 09.221.
o Table 4: A summary of the results for the 1536 simulations with different examples), have just been published in Neurolmage (2014;92:381-97).
o parameters. The amount of error type | is calculated for the 768 simulations
o : O without signal. Confidence intervals (Cl) at 95% were computed around the
-
. o nominal level a = 0.05, and the observed amount of errors for each regression
o2 scenario and for each method was compared with this interval. Methods that Neurolmage
O 2 mostly remain within the Cl are the most appropriate. Methods that frequently ———
- . |
o produce results below the interval are conservative;those above are invalid. Power ij;fj:f;“;‘;r‘}f{‘:j‘jf‘cecfr’;‘f:j;fjjji‘ﬂjﬁigﬁf’j&m @
o was calculated for the remaining 768 simulations, which contained signal. -
o2
Proportion of error type I
o7 Method — Average
~ = Within c1 Below CI Above C1 power
€| — 01
o - O Draper—Stoneman 86.33% 8.20% 5.47% 72.96%
% = Still-White 67.84% 14.58% 17.58% 71.82%
o Freedman-Lane 88.67% 8.46% 2.86% 73.09%
3VGs |&|— o W= o2 ter Braak 83.59% 11.07% 5.34% 73.38%
o7 Kennedy 77.60% 1.04% 21.35% 74.81%
O 03 Manly 73.31% 15.89% 10.81% 73.38%
. % Smith 89.32% 7.81% 2.86% 72.90%
2| — U3
05’ Huh—Jhun 85.81% 9.24% 4.95% 71.62%
% Parametric T7A4T% 14.84% 7.68% 72.73%
The G-statistic can be used with the general linear model (GLM), and only http://bit.1y/1jKIBlq

requires the definition of the variance groups, i.e., the sets of observations
that share the same variance. The exact value of the variance is not assumed

to be known. The G-statistic is a generalisation of various well known n Conclusion n References
statistics, including the F-statistic itself.
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