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Introduction
Heritability of a phenotypic trait accounts for the
proportion of phenotypic variance that is due to
the additive genetic variation, which disentangles
the genetic influences on this trait from the envi-
ronmental effects. Given that monozygotic (MZ)
twins are genetically identical while dizygotic
(DZ) twins share 50% genes on average, the clas-
sical twin study provides an important method to
measure heritability without genetic data.

Although there are a few existing software tools
(e.g. OpenMx and SOLAR) for analysing heri-
tability, they employ iterative estimation meth-
ods that are time-consuming and prone to con-
vergence failure. We developed a freely avail-
able Matlab-based tool, called Accelerated Per-
mutation Inference for the ACE model (APACE)
for imaging or non-imaging data, implementing a
non-iterative heritability method that is so fast to
enable permutation inference (Chen et al., 2013;
Chen et al., 2014). Importantly, with permuta-
tion we can make inference on spatial statistics,
like cluster size and mass, and arbitrary but useful
summary statistics, like unweighted mean heri-
tability, variance-weighted mean heritability, me-
dian (Q2) of heritabilities, third quartile (Q3) of
heritabilities, etc. In this work we evaluate a fur-
ther speed-up to the APACE code.

Methods
Previous versions of APACE sequentially anal-
ysed each voxel/element. The tool now uses
vectorization and allows the parallelization. The
vectorised APACE tool works by estimating all
voxel-wise heritabilities simultaneously using
vector operations instead of “for” loops. With
parallelization, permutations can be divided into
multiple job runs that can be allocated and exe-
cuted in parallel.

We applied our vectorised APACE tool to a real
dataset with a sample of 111 subjects, includ-
ing 16 MZ twin pairs, 25 DZ twin pairs and
29 unrelated subjects. These participants were
all male with an age range of 10–13. Dur-
ing the experiment, subjects performed an IAPS
matching task while viewing emotionally salient
scenes. Amygdala is our target brain region of
this analysis since it is purported to play a criti-
cal role in emotional processing. With the use of
voxel-wise, cluster-based and summary statistics,
we conducted 1000 permutations and 1000 boot-
strap replications, with 100 per job, and obtained
FWE-corrected permutation-based p-values and
bootstrapping confidence intervals (CI’s).

Results
The 1000 permutation analysis using vectorised
APACE is 13.99% faster than the original code.

Figure 1 shows the significant area within the
amygdala (in green) at FWE level α = 0.05 using
cluster size statistic, where the cluster-forming
threshold is specified with p = 0.05 for a 50-50
mixture of chi-square distributions 0.5χ2

0+ 0.5χ2
1,

i.e. u = 2.71. With permutation, a cluster of 97
voxels with a p-value of p = 0.023 was found
to be significant after the FWE correction. Fig-
ure 2 shows the estimated heritability map for this

Figure 1: The FWE-corrected p-value image after
−log10 transformation of the significant cluster for the
amygdala (in green) using cluster size statistic with the

cluster-forming threshold of p = 0.05.

Figure 2: The heritability image of the significant
cluster within the amygdala (in green) after the FWE

correction, with voxel-wise heritability estimates
ranging between 0.44 and 0.70.

significant cluster obtained using the cluster size
inference, with a heritability range of 0.44–0.70.

Table 1 illustrates the estimates, permutation-
based p-values and 95% bootstrapping CI’s
for heritability h2 and common environmen-
tal component c2, each assessed with 6 voxel-
wise summary statistics. We also found
that voxel-wise heritability was not significant
(min(pFWE) = 0.138) but was significant cluster-
wise (min(pFWE) = 0.023 and min(pFWE) = 0.037

for cluster size and mass respectively). No per-
mutation test is available for c2 since twins are not
exchangeable when c2 = 0, and only 95% boot-
strapping CI’s were obtained.

 

(For h
2
) Estimate P-value CI 

Mean 0.433 0.002 (0.212, 0.593) 

wMean 0.417 0.002 (0.206, 0.583) 

Q2 0.428 0.002 (0.197, 0.610) 

Q3 0.526 0.005 (0.309, 0.703) 

Mean(h
2
>Q2) 0.534 0.010 (0.313, 0.703) 

Mean(h
2
>Q3) 0.594 0.010 (0.375, 0.759) 

(For c
2
) Estimate P-value CI 

Mean 0.004 / (0.000, 0.158) 

wMean 0.002 / (0.000, 0.136) 

Q2 0.000 / (0.000, 0.458) 

Q3 0.000 / (0.000, 0.621) 

Mean(c
2
>Q2) 0.137 / (0.011, 0.392) 

Mean(c
2
>Q3) 0.137 / (0.011, 0.531) 

 

Table 1: The estimates, permutation-based p-values
and 95% bootstrapping CI’s for heritability h2

assessed with unweighted mean (Mean),
variance-weighted mean (wMean), median (Q2), third
quartile (Q3), mean of h2 above Q2 (Mean(h2 > Q2))

and mean of h2 exceeding Q3 (Mean(h2 > Q3)) for the
amygdala are shown. The p-values derived from

significant statistics with level α = 0.05 are coloured in
red. The estimates and 95% bootstrapping CI’s for

common environmental component c2 of Mean,
wMean, Q2, Q3, Mean(c2 > Q2) and Mean(c2 > Q3)

are also shown. CI’s and p-values that are not
applicable are displayed with a slash symbol.

Conclusions
Our modified vectorised APACE tool further ac-
celerates the calculations, and the parallel execu-
tion enables a better job allocation. The current
vectorised APACE is freely accessible on the link:
https://github.com/nicholst/APACE, where an ex-
ample script is also provided in the readme docu-
ment for job parallelization.

References
[1] Chen X, et al. (2013), OHBM, Poster.

[2] Chen X, et al. (2014), OHBM, Poster.


