Regioselective Iridium-catalyzed Asymmetric Monohydrogenation of 1,4-Dienes

Jianguo Liu, § Suppachai Krajangsri, § Thishana Singh, Giulia De Seriis, Napasawan Chumnanvej, Haibo Wu and Pher G. Andersson*

Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 106 91, Stockholm, Sweden. (*Pher.Andersson@su.se*)

Table of Contents

General procedure for substrate synthesis 3 1. Synthesis of protected alkyl phenol 3 2. Synthesis of <i>tert</i> -butyl dimethylsilane 3 3. Synthesis of triethyl silane 5 4. General procedure for the Birch reduction 6 5. Synthesis of functional substrates and acyclic substrates 12 6. Racemate preparation and <i>ee</i> determination of silyl enol ethers 18 7. General procedure for asymmetric hydrogenations 20 ¹ H and ¹³ C NMR Spectroscopic data of new compounds 29 GC Chromatograms 99	General methods						
1. Synthesis of protected alkyl phenol 3 2. Synthesis of <i>tert</i> -butyl dimethylsilane 3 3. Synthesis of triethyl silane 5 4. General procedure for the Birch reduction 6 5. Synthesis of functional substrates and acyclic substrates 12 6. Racemate preparation and <i>ee</i> determination of silyl enol ethers 18 7. General procedure for asymmetric hydrogenations 20 ¹ H and ¹³ C NMR Spectroscopic data of new compounds 29 GC Chromatograms 99	General procedure for substrate synthesis						
 Synthesis of <i>tert</i>-butyl dimethylsilane	1.	Synthesis of protected alkyl phenol	3				
 3. Synthesis of triethyl silane	2.	Synthesis of <i>tert</i> -butyl dimethylsilane	3				
 4. General procedure for the Birch reduction	3.	Synthesis of triethyl silane	5				
 5. Synthesis of functional substrates and acyclic substrates	4.	General procedure for the Birch reduction	6				
 6. Racemate preparation and <i>ee</i> determination of silyl enol ethers	5.	Synthesis of functional substrates and acyclic substrates	12				
 7. General procedure for asymmetric hydrogenations	6.	Racemate preparation and ee determination of silyl enol ethers					
¹ H and ¹³ C NMR Spectroscopic data of new compounds	7.	General procedure for asymmetric hydrogenations	20				
GC Chromatograms	¹ H and	d ¹³ C NMR Spectroscopic data of new compounds	29				
References117	References						

General methods

All reactions were conducted under nitrogen atmosphere using magnetic stirring.

CH₂Cl₂ was freshly distilled using CaH₂ under nitrogen atmosphere. THF was freshly distilled using sodium-benzophenone under nitrogen.

All reagents were used as supplied commercially without further purification. Chromatographic separations were performed on Kiesel gel 60 H silica gel (particle size: 0.063-0.100 mm) or Brockmann I, activated, basic Al₂O₃ (particle size: ~150 mesh). Thin layer chromatography (TLC) was performed on aluminum plates coated with Kieselgel 60 (0.20 mm, UV254) and visualized under ultraviolet light (v = 254 nm), or by staining with ethanolic phosphomolybdic acid and heating.

¹H NMR spectra were recorded on a Bruker 400 MHz or 500 MHz at 400/500 MHz in CDCl₃ and referenced internally to the residual CDCl₃ peak (7.26 ppm). ¹³C NMR spectra were recorded at 100/125 MHz in CDCl₃ and referenced to the central peak of CDCl₃ (77.0 ppm). Chemical shifts are reported in ppm (δ scale).

Enantiomeric excesses were determined either using chiral HPLC with a diode array detector at 220 nm and 254 nm or using a chiral GC with an MS detector. (Refer to the individual compounds for specific chromatographic details.) Racemic compounds were used for comparison.

HRMS data were obtained using a Bruker MicroTof ESI direct inlet probe and methane as reagent gas.

Optical rotations were recorded on an Autopol IV polarimeter from Rudolp Research Analytical, equipped with a sodium lamp (589 nm) and a 10 mm cell.

IR spectra were recorded on a Perkin-Elmer Spectrum One spectrometer using samples that were prepared in CHCl₃.

General procedure for substrate synthesis

1. Synthesis of protected alkyl phenol

These compounds have been previously reported.

To a round-bottomed flask 5.17g (1 equiv., 5 mL, 47.8 mmol) of phenol and 1.2g (0.1 equiv., 4.78 mmol) PPTS (pyridinium p-toluenesulfonate) was added, and purged with N₂ three times. Then 100 mL of dry DCM was added and stirred at room temperature. Ethyl vinyl ether, 7 mL (1.53 equiv., 73.1 mmol) was added dropwise to the solution and continued stirring for 2.5 hours. The solution was diluted with Et_2O and washed with brine. The water-layer was extracted with Et_2O three times. The combined organic layers was washed with NaOH solution (1M) and dried over MgSO₄. After concentration under vacuum, the residue was purified by distillation. (4 mmbar, 119 ^oC).

1-(1-ethoxyethoxy)-3-methylbenzene

Colourless oil. Yield = 65%.

¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.13 (m, 1H), 6.84 – 6.78 (m, 3H), 5.37 (q, *J* = 5.3 Hz, 1H), 3.86 – 3.75 (m, 1H),

3.59 - 3.47 (m, 1H), 2.33 (s, 3H), 1.50 (d, J = 5.3 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 139.4, 129.1, 122.5, 118.0, 114.0, 99.4, 61.3, 21.4, 20.3, 15.1. IR (Neat, cm⁻¹): v = 2978, 2931, 1602, 1585, 1489, 1444, 1381, 1256, 1158, 1119, 954, 860, 779.

HRMS (ESI): m/z calcd for C₁₁H₁₆NaO₂ [M + Na]⁺, 203.1043; found, 203.1034.

2. Synthesis of tert-butyl dimethylsilane

Aromatic phenol (1 equiv.) and imidazole (1.5 equiv.) were dissolved in dry DMF (4 mL/1mmol). To this mixture, TBDMSCl (1.3 equiv.) was added dropwise over 10 minutes. The mixture was stirred at room temperature, under nitrogen, overnight. The reaction was quenched with a saturated aqueous solution of NH_4Cl and the product was extracted 3 times with Et₂O. The combined organic layers was washed with water

and brine solution, dried over Na_2SO_4 and concentrated under vacuo. Flash chromatography on silica gel with 100% pentane as eluent yielded the desired product as colorless oil.

TBDMS O n-Bu *tert*-Butyl (3-butylphenoxy) dimethylsilane Colourless oil. Yield = 96%. R_f = 0.42, in pentane. 1H NMR (400 MHz, CDCl3): 7.13 (t, J = 7.6 Hz, 1H), 6.83

-6.76 (m, 1H), 6.67 (d, J = 8.1 Hz, 2H), 2.57 (t, J = 7.7 Hz, 2H), 1.68- 1.51 (m, 2H), 1.36 (h, J = 7.8 Hz, 2H), 1.01 (d, J = 1.1 Hz, 9H), 0.21 (d, J = 1.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): 155.6, 144.5, 129.0, 121.5, 120.2, 117.2, 35.6, 33.6, 25.7, 22.3, 18.2, 14.0, -4.4.

IR (Neat, cm-1): v = 2930, 1603, 1484, 1276, 1157, 1003, 972, 838, 780, 694. HRMS (ESI): m/z calcd for C₁₆H₂₈NaOSi [M + Na]⁺, 287.1802; found, 287.1785.

> n-Pent tert-Butyldimethyl (3-pentylphenoxy) silane Colourless oil. Yield = 70%. $R_f = 0.44$, in pentane.

¹H NMR (400 MHz, CDCl₃): 7.16-7.12 (m, 1H), 6.80 -

6.78 (m, 1H), 6.69-6.65 (m, 2H), 2.50 - 2.54(m, 2H), 1.64- 1.57 (m, 3H), 1.39-1.34(m, 3H), 1.01 (s, 9H), 0.96-0.89(m, 3H), 0.21 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): 155.5, 144.5, 129.0, 121.4, 120.2, 117.2, 35.8, 35.5, 33.5, 31.5, 31.1, 25.7, 22.6, 22.3, 18.2, 14.0, 14.0, -4.4.

IR (Neat, cm⁻¹): v = 2956,1584, 1484, 1275, 1157, 1004, 825, 728.

HRMS (ESI): m/z calcd for C₁₇H₃₀NaOSi [M + Na]⁺, 301.1958; found, 301.1952.

tert-Butyl (2,5-dimethylphenoxy) dimethylsilane

 \sim Colourless oil. Yield = 96%. R_f = 0.56, in pentane.

TBDMS 1 H NMR (400 MHz, CDCl₃) δ 7.03 (d, J = 7.5 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 6.61 (s, 1H), 2.29 (s, 3H), 2.19 (s, 3H), 1.05 (s, 9H), 0.24 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 153.6, 136.3, 130.6, 125.6, 121.7, 119.3, 25.8, 21.1, 18.3, 16.5, -4.2.

IR (Neat, cm⁻¹): v = 2957, 2859, 1617, 1580, 1472, 1411, 1127, 1002, 954, 854, 779. HRMS (ESI): m/z calcd for C₁₄H₂₅OSi [M + H]⁺, 237.1675; found, 237.1689.

TBDMS

tert-Butyldimethyl (*p*-tolyloxy) silane

Colourless oil. Yield = 94%. $R_f = 0.56$, in pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.1 Hz, 2H), 6.81 – 6.74 (m, 2H), 2.31 (s, 3H), 1.02 (s, 9H), 0.22 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 153.1, 130.4, 129.8, 119.8, 25.7, 20.6, 18.2, -4.5. IR (Neat, cm⁻¹): v = 2957, 2930, 2859, 1612, 1510, 1472, 1256, 915, 838, 779. HRMS (ESI): *m*/*z* calcd for C₁₃H₂₃OSi [M + H]⁺, 223.1518; found, 223.1521.

3. Synthesis of triethyl silane

Aromatic phenol (1 equiv.) and imidazole (1.5 equiv.) were dissolved in dry DMF (4 mL/1mmol). To this mixture, TESCl (1.3 equiv.) was added dropwise over 10 minutes. The mixture was stirred at room temperature under nitrogen atmosphere over night. The reaction was quenched with saturated aqueous solution of NH₄Cl and the product was extracted 3 times with Et₂O. The combined organic layers was washed with water and brine solution, dried over Na₂SO₄ and concentrated under vacuo. Flash chromatography on silica gel with 100% pentane as eluent yielded the desired product as a colorless oil.

triethyl (3-ethylphenoxy) silane

Colourless oil. Yield = 58%. $R_f = 0.77$, in pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, J = 7.8 Hz, 1H), 6.81 – 6.77 (m, 1H), 6.71 – 6.65 (m, 2H), 2.59 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H), 1.00 (t, J = 7.9 Hz, 9H), 0.74 (q, J = 8.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 145.8, 129.1, 120.8, 119.5, 117.0, 28.7, 15.5, 6.7, 5.0.

IR (Neat, cm⁻¹): v = 2960, 2877, 1603, 1584, 1484, 1274, 1157, 940, 809, 745 HRMS (ESI): m/z calcd for C₁₄H₂₅OSi [M + H]⁺, 237.1669; found, 237.1624.

TES^O n-B

n-Bu (3-Butylphenoxy) triethyl silane

Colourless oil. Yield = 87 %. $R_f = 0.38$, in pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.09 (m, 1H), 6.79 – 6.75 (m, 1H), 6.69 – 6.64 (m, 2H), 2.59 – 2.50 (m, 2H), 1.62 – 1.51 (m, 2H), 1.39 – 1.26 (m, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.91 (t, *J* = 7.3 Hz, 3H), 0.78 – 0.68 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 144.4, 129.0, 121.4, 120.0, 117.0, 35.5, 33.5, 22.3, 13.9, 6.6, 5.0.

IR (Neat, cm⁻¹): v = 2957, 2877, 1603, 1585, 1484, 1277, 1157, 1003, 976, 826, 746. HRMS (ESI): m/z calcd for C₁₆H₂₉OSi [M + H]⁺, 265.1988; found, 265.1991.

TES^O

triethyl (3-pentylphenoxy) silane

Colourless oil. Yield = 82%. R_f = 0.41, in pentane.

¹H NMR (400 MHz, CDCl₃): 7.13-7.10 (m, 1H), 6.78 -6.76 (m, 1H), 6.69 -6.65 (m, 2H), 2.57-2.53 (m, 2H), 1.63-1.54 (m, 2H), 1.37-1.30 (m, 2H), 1.03-0.98 (m, 9H), 0.94-0.87 (m, 3H), 0.77-0.71 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): 155.5, 144.5, 129.0, 121.4, 120.1, 117.0, 35.8, 35.5, 33.5, 31.5, 31.0, 22.6, 22.3, 14.0, 14.0, 6.7, 5.0.

IR (Neat, cm⁻¹): v = 2956, 1602, 1584, 1484, 1275, 1157, 1004, 978, 825, 728. HRMS (ESI): m/z calcd for C₁₇H₃₀NaOSi [M + Na]⁺, 301.1958; found, 301.1952. TES-0

(2,5-Dimethylphenoxy) triethyl silane

Colourless oil. Yield = 97%. R_f = 0.40, in pentane.

¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 7.5 Hz, 1H), 6.66 (d, J

= 7.6 Hz, 1H), 6.58 (s, 1H), 2.26 (s, 3H), 2.16 (s, 3H), 1.00 (t, *J* = 7.9 Hz, 9H), 0.76 (g, *J* = 8.3 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 153.8, 136.3, 130.5, 125.5, 121.6, 119.3, 21.1, 16.2, 6.7, 5.3.

IR (Neat, cm⁻¹): v = 2956, 2877, 1617, 1580, 1507, 1411, 1280, 1127, 1002, 836, 743. HRMS (ESI): m/z calcd for C₁₄H₂₅OSi [M + H]⁺, 237.1675; found, 237.1662.

TES

This compound has been previously reported. [6]

¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.1 Hz, 2H), 6.80 – 6.75 (m, 2H), 2.30 (s, 3H), 1.02 (t, J = 7.9 Hz, 9H), 0.75 (q, J = 8.5, 7.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 130.4, 129.8, 119.6, 20.5, 6.6, 5.0.

triethyl (4-propylphenoxy) silane

Colourless oil. Yield = 92%. R_f =0.36, in pentane. ¹H NMR (400 MHz, CDCl₃): 7.06 -7.02 (m, 2H), 6.81 -6.77 (m, 2H), 2.56-2.52 (m, 2H), 1.68- 1.56 (m, 2H), 1.05- 0.99 (m,

9H), 0.97-0.93 (m, 4H), 0.79-0.74 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): 153.4, 135.3, 129.2, 119.6, 37.3, 24.7, 13.8, 6.8, 6.7, 6.5, 5.0.

IR (Neat, cm⁻¹): v = 2958, 2877, 1609, 1510, 1458, 1260, 1168, 1016, 911, 806, 730. HRMS (ESI): m/z calcd for C₁₅H₂₆NaOSi [M + Na]⁺, 273.1645; found, 273.1645.

This compound was prepared following the procedure described in literature. [7].

TBDMSO

This compound was prepared following the procedure described in literature. [8].

4. General procedure for the Birch reduction

General Procedure: The reactions were carried out in a 3-necked round-bottomed flask with a dry ice condenser, an NH₃ (g) inlet, and a stopper for Li or Na addition. To the round-bottomed flask, 1.5 mL of *tert*-BuOH and 3 mL THF was added. Ammonia was condensed from commercial NH₃ (15 mL) tube into the mixture while cooling the flask in a dry ice/acetone bath. Addition of the Li (10 equiv.) was done at reflux temperature of NH₃, with a speed so as to prevent vigorous reaction/foaming. The cooling bath was removed and the reaction mixture was stirred at reflux conditions for 20 minutes. The substrate was dissolved in 2 mL dried THF then added to the reaction mixture at -30°C and continuously stirred for 2 hours. The reaction was cooled to -78°C. Solid NH₄Cl was added and the dry-ice/acetone bath was removed. The NH₃ was allowed to evaporate. Then saturated aqueous solution of

NH₄Cl was added. The mixture was extracted 3 times with pentane. The combined organic extracts were washed with brine and dried with Na₂SO₄. The solvent was removed and the product/s were purified either by distillation under reduced pressure or by chromatography on basic Al₂O₃ using pure pentane as eluent.

Procedure A: Li (10 equiv.) was used and reaction mixture was stirred at -30°C for 2 hours.

Procedure B: Li (60 equiv.) was used and reaction mixture was stirred at -30°C for 8 hours.

> 2-((5-Methylcyclohexa-1,4-dien-1-yl)oxy) tetrahydro-2H-pyran Colourless oil. Yield = 79%. $R_f = 0.8$, in 20/1 pentane/Et₂O. Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃): 5.38 (s, 1H), 5.23-5.16 (m, 1H), 4.97 (s, 1H), 3.88 (ddd, J = 11.6, 8.3, 3.3 Hz, 1H), 3.55 (dt, J = 11.0, 4.9 Hz, 1H), 2.75 (dd, J = 21.8, 6.0 Hz, 2H), 2.69- 2.59 (m, 2H), 1.98 -1.81 (m, 1H), 1.76 (ddd, J = 13.1, 9.6, 3.4 Hz, 1H), 1.68 (d, J = 1.9 Hz, 3H), 1.63 - 1.49 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 149.6, 130.5, 118.6, 95.8, 95.1, 62.4, 33.0, 30.5, 27.0, 25.3, 22.9, 19.3.

IR (Neat, cm⁻¹): v = 2942, 1699, 1668, 1441, 1394, 1197, 1136, 1039, 975, 776. HRMS (ESI): m/z calcd for $C_{12}H_{19}O_2$ [M + H]⁺, 195.1385; found, 195.1391.

> triisopropyl ((5-methylcyclohexa-1,4-dien-1-yl)oxy) silane Colourless oil. Yield = 68%. R_f = 0.42, in pentane. Followed procedure A for the birch reduction.

¹H NMR (400 MHz, CDCl₃): 5.36 (qt, J = 3.6, 1.8 Hz, 1H), 4.85 (tq, J = 3.6, 1.3 Hz, 1H), 2.81- 2.71 (m, 2H), 2.64 -2.54 (m, 2H), 2.05 -1.93 (m, 2H), 1.06- 0.96 (m, 13H), 0.73 - 0.64 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): 148.0, 136.4, 116.6, 100.5, 33.6, 29.6, 27.2, 12.0, 6.8, 6.8, 5.0.

IR (Neat, cm⁻¹): v = 2918, 1721, 1459, 1365, 1212, 1018, 880, 775.

HRMS (ESI): m/z calcd for C₁₆H₃₁OSi [M + H]⁺, 267.2144; found, 267.2129.

TIPS^{_O}

Colorless oil. Yield = 92%. $R_f = 0.40$, in pentane.

Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.40 – 5.33 (m, 1H), 4.87 – 4.82 (m, 0H), 2.78 – 2.68 (m, 2H), 2.59 – 2.51 (m, 2H), 1.72 – 1.66 (m, 3H), 0.93 (s, 9H), 0.15 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 147.9, 130.9, 118.5, 100.8, 35.4, 27.2, 22.9, 18.0, -4.4. IR (Neat, cm⁻¹): v = 2957, 2857, 1699, 1667, 1472, 1385, 1253, 1220, 1136, 937, 832, 780.

HRMS (ESI): m/z calcd for C₁₃H₂₄NaOSi [M + Na]⁺, 247.1489; found, 247.1500.

TBDMS^O

tert-Butyl ((5-ethylcyclohexa-1,4-dien-1-yl)oxy) dimethylsilane

Colorless oil. Yield = 95%. R_f = 0.41, in pentane. Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.40 – 5.34 (m, 1H), 4.87 – 4.82 (m, 1H), 2.80 – 2.70 (m, 2H), 2.57 (t, *J* = 7.9 Hz, 2H), 1.99 (q, *J* = 8.7, 8.1 Hz, 2H), 1.03 (t, *J* = 7.5 Hz, 3H), 0.93 (s, 9H), 0.15 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 148.1, 136.3, 116.7, 100.8, 33.7, 29.6, 27.2, 25.7, 18.0, 12.0, -4.4.

IR (Neat, cm⁻¹): v = 2959, 2858, 1698, 1666, 1462, 1381, 1214, 1142, 930.

HRMS (ESI): m/z calcd for C₁₄H₂₆OSi [M + Na]⁺, 238.1753; found, 238.1734.

n-Bu *tert*-Butyl ((5-butylcyclohexa-1,4-dien-1-yl) oxy) dimethylsilane

Colourless oil. Yield = 87%.

Followed procedure A for the birch reduction.

Et

¹H NMR (400 MHz, CDCl₃): 5.38-5.36 (m, 1H), 4.85-4.83(m, 1H), 2.77-2.72 (m, 2H), 2.59 - 2.54 (m, 2H), 2.00 - 1.95 (m, 2H), 1.43 - 1.26 (m, 4H), 0.94 - 0.87 (m, 15H), 0.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): 148.1, 134.9, 117.9, 100.8, 36.6, 33.6, 29.5, 27.2, 25.7, 22.4, 18.0, 14.0, -4.4.

IR (Neat, cm⁻¹): v = 2928, 1697, 1665, 1471, 1384, 1254, 1217, 1141, 932, 836, 778. HRMS (ESI): m/z calcd for C₁₆H₃₀NaOSi [M + Na]⁺, 289.1958; found, 289.1948.

TBDMS^O n-Pent

tert-Butyldimethyl ((5-pentylcyclohexa-1,4-dien-1-yl) oxy) silane

Colourless oil. Yield = 88%.

Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃): 5.38-5.35(m, 1H), 4.85-4.83(m, 1H), 2.77-2.72(m, 2H), 2.59-2.54(m, 2H), 2.00-1.95(m, 2H), 1.46- 1.26 (m, 6H), 0.94-0.87(m, 13H), 0.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): 148.1, 134.9, 117.9, 100.8, 36.9, 36.6, 33.6, 31.6, 29.5, 27.2, 27.0, 25.7, 25.7, 22.6, 22.4, 18.0, 14.1, 14.0, -4.4.

IR (Neat, cm⁻¹): v = 2928, 1697, 1463, 1254, 1217, 1141, 1006, 931, 836, 778, 684. HRMS (ESI): m/z calcd for C₁₇H₃₂NaOSi [M + Na]⁺, 303.2115; found, 303.2108.

tert-Butyl dimethyls

tert-Butyl ((2,5-dimethylcyclohexa-1,4-dien-1-yl)oxy) dimethylsilane

Colourless oil. Yield = 78%. $R_f = 0.41$, in pentane.

Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl3) δ 5.39 – 5.27 (m, 1H), 2.68 – 2.60 (m, 2H), 2.61 – 2.53 (m, 2H), 1.70 – 1.65 (m, 3H), 1.60 (s, 3H), 0.96 (s, 9H), 0.13 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 130.9, 118.9, 108.4, 36.1, 33.4, 25.9, 22.8, 18.2, 15.5, -3.7.

IR (Neat, cm⁻¹): v = 2929, 2857, 1711, 1681, 1472, 1385, 1253, 1195, 1099, 931, 834, 777.

HRMS (ESI): m/z calcd for C₁₄H₂₆OSi [M]⁺, 238.1753; found, 238.1758.

TBDMS O *tert*-Butyldimethyl ((4-methylcyclohexa-1,4-dien-1-yl)oxy) silane Colourless oil. Yield = 90%. R_f = 0.41, in pentane.

Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.36 – 5.30 (m, 1H), 4.87 – 4.79 (m, 1H), 2.71 – 2.57 (m, 4H), 1.67 (s, 3H), 0.92 (s, 9H), 0.14 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 148.2, 131.4, 118.1, 101.0, 77.3, 77.0, 76.7, 31.6, 31.3, 25.7, 22.7, 18.0, -4.4.

IR (Neat, cm⁻¹): v = 2956, 2877, 1699, 1667, 1458, 1372, 1202, 1005, 869, 743. HRMS (ESI): m/z calcd for C₁₃H₂₄OSiNa [M + Na]⁺, 224.1596; found, 224.1583.

¹H NMR (400 MHz, CDCl₃) δ 5.41 – 5.33 (m, 1H), 4.89 – 4.80 (m, 1H), 2.77 – 2.67 (m, 2H), 2.62 – 2.54 (m, 2H), 1.68 (s, 2H), 1.21 – 1.01 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 130.1, 118.5, 100.0, 35.4, 27.3, 22.9, 18.0

¹³C NMR (100 MHz, CDCl₃) δ 148.0, 130.1, 118.5, 100.0, 35.4, 27.3, 22.9, 18.0, 17.9,12.7.

IR (Neat, cm⁻¹): v = 2962, 2867, 1697, 1667, 1465, 1385, 1219, 1138, 883. HRMS (ESI): m/z calcd for C₁₄H₂₇OSi [M + H]⁺, 239.1831; found, 239.1809.

TES^O n-Bu

((5-Butylcyclohexa-1,4-dien-1-yl)oxy)triethylsilane Colourless oil. Yield = 60%. R_f = 0.30, in pentane.

Followed **procedure A** for the birch reduction. ¹H NMR (400 MHz, CDCl3) δ 5.39 – 5.33 (m, 1H), 4.87 – 4.82 (m, 1H), 2.79 – 2.69 (m, 2H), 2.58 (t, *J* = 7.9 Hz, 2H), 1.98 (t, *J* = 7.3 Hz, 2H), 1.45 – 1.35 (m, 2H), 1.34 – 1.26 (m, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.90 (t, *J* = 7.2 Hz, 3H), 0.68 (q, *J* = 8.1 Hz, 1.26 (m, 2H), 1.26 (m, 2H), 1.26 (m, 2H), 0.99 (m, 2H), 0.

6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 134.9, 117.9, 100.4, 36.6, 33.6, 29.5, 27.2, 22.4, 14.0, 6.7, 5.1.

IR (Neat, cm⁻¹): v = 2955, 2876, 1697, 1665, 1458, 1382, 1213, 1141, 1005, 928, 744. HRMS (ESI): m/z calcd for C₁₆H₃₀NaOSi [M + Na]⁺, 289.1958; found, 289.1962.

TES^O n-Pent

triethyl ((5-pentylcyclohexa-1,4-dien-1-yl) oxy) silane Colourless oil. Mixture of starting material and birch product, Birch reaction conversion = 62%.

Followed **procedure B** for the birch reduction. ¹H NMR (400 MHz, CDCl₃): 7.12 (t, *J* = 7.7 Hz, 1H), 6.77 (dt, *J* = 7.6, 1.2 Hz, 1H), 6.71 - 6.64 (m, 2H), 5.37 (dq, *J* = 3.4, 1.7 Hz, 2H), 4.85 (ddt, *J* = 3.5, 2.3, 1.3 Hz, 2H), 2.80 - 2.70 (m, 3H), 2.63 - 2.50 (m, 5H), 2.04 - 1.94 (m, 3H), 1.65 - 1.51 (m, 3H), 1.51 - 1.19 (m, 14H), 1.06 - 0.81 (m, 35H), 0.80 - 0.64 (m, 17H). ¹³C NMR (100 MHz, CDCl₃): δ 155.5, 148.1, 144.5, 144.4, 134.9, 134.9, 129.0,

121.4, 120.1, 117.9, 117.0, 100.4, 36.9, 36.6, 35.8, 35.5, 33.6, 33.5, 31.6, 31.5, 31.0, 29.5, 27.2, 27.0, 22.6, 22.6, 22.4, 22.3, 14.1, 14.0, 14.0, 13.9, 7.7, 6.7, 6.6, 5.1, 5.0. IR (Neat, cm⁻¹): v = 2956, 1715, 1589, 1456, 1364, 1217, 1017, 849, 729. HRMS (ESI): m/z calcd for C₁₇H₃₂NaOSi [M + Na]⁺, 303.2115; found, 303.2021.

((2,5-Dimethylcyclohexa-1,4-dien-1-yl)oxy) triethyl silane Colourless oil. Yield = 59%. $R_f = 0.42$, in pentane. Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.37 – 5.32 (m, 1H), 2.68 – 2.53 (m, 4H), 1.67 (s, 3H), 1.60 (s, 3H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.67 (q, *J* = 8.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 130.9, 118.9, 108.4, 36.0, 33.2, 22.8, 15.3, 6.8, 6.4, 5.6.

IR (Neat, cm⁻¹): v = 2955, 2877, 1710, 1445, 1365, 1237, 1196 1155, 1005, 927, 801. HRMS (ESI): m/z calcd for C₁₄H₂₇OSi [M + H]⁺, 239.1831; found, 239.1802.

TES

triethyl ((4-methylcyclohexa-1,4-dien-1-yl)oxy) silane

Colourless oil. Yield = 78%. $R_f = 0.23$, in pentane. Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.36 – 5.31 (m, 1H), 4.85 – 4.82 (m, 1H), 2.65 (s, 3H), 1.67 (s, 3H), 0.98 (t, J = 7.9 Hz, 9H), 0.67 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 148.2, 131.4, 118.2, 100.6, 31.6, 31.2, 22.7, 6.8, 6.7, 6.4, 5.1.

IR (Neat, cm⁻¹): v = 2956, 2877, 1699, 1667, 1458, 1372, 1202, 1005, 869, 743. HRMS (ESI): m/z calcd for C₁₃H₂₄OSi [M + H]⁺, 225.1675; found, 225.1672.

triethyl ((4-propylcyclohexa-1,4-dien-1-yl) oxy) silane Colourless oil. Yield = 87%.

Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃): 5.34 (t, J = 1.6 Hz, 1H), 4.84 (d,

J = 1.8 Hz, 1H), 2.66 (s, 4H), 1.94 (t, *J* = 7.6 Hz, 2H), 1.43 (q, *J* = 7.5 Hz, 2H), 0.98

(t, J = 7.9 Hz, 9H), 0.94 - 0.84 (m, 4H), 0.67 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): 148.2, 135.1, 117.6, 100.7, 38.9, 31.2, 29.8, 20.8, 13.8, 6.8, 6.7, 6.4, 5.1.

IR (Neat, cm⁻¹): v = 2957, 1697, 1664, 1508, 1458, 1377, 1203, 1071, 1016, 868, 743. HRMS (ESI): m/z calcd for C₁₆H₃₁OSi [M + H]⁺, 267.2144; found, 267.2137.

1-(1-Ethoxyethoxy)-5-methylcyclohexa-1,4-diene

Colourless oil. Yield = 97%.

Followed **procedure** A for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.40 – 5.34 (m, 1H), 5.19 (q, J = 5.2 Hz, 1H), 4.80 – 4.73 (m, 1H), 3.76 – 3.66 (m, 1H), 3.51 – 3.41 (m, 1H), 2.79 – 2.70 (m, 2H), 2.61 (t, J = 7.8 Hz, 2H), 1.70 – 1.65 (m, 3H), 1.39 (d, J = 5.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.9, 130.6, 118.5, 97.5, 95.1, 61.7, 33.3, 26.9, 22.8, 20.2, 15.2.

IR (Neat, cm⁻¹): v = 2976, 2883, 1699, 1665, 1446, 1380, 1206, 1144, 1123, 953, 773. HRMS (ESI): m/z calcd for C₁₁H₁₈NaO₂ [M + Na]⁺, 205.1199; found, 205.1216.

1-(Ethoxymethoxy)-5-methylcyclohexa-1,4-diene Colourless oil. Yield = 97%. Followed **procedure A** for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.42 – 5.35 (m, 1H), 5.02 (s, 2H), 4.90 (td, *J* = 3.5, 1.1 Hz, 1H), 3.65 (q, *J* = 7.1 Hz, 2H), 2.80 – 2.71 (m, 2H), 2.61 (t, *J* = 7.8 Hz, 2H), 1.72 – 1.65 (m, 3H), 1.22 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.0, 130.4, 118.6, 95.1, 91.9, 64.2, 32.9, 26.9, 22.9, 15.1.

IR (Neat, cm⁻¹): v = 2974, 2886, 1700, 1668, 1388, 1200, 1131, 1065, 1005, 776. HRMS (ESI): m/z calcd for C₁₀H₁₆NaO₂ [M + Na]⁺, 191.1043; found, 191.1051.

5 tert-Butyl(2-(5-((tert-butyl dimethylsilyl) oxy) cyclohexa-1,4-dien-1-yl)ethoxy) dimethylsilane Colourless oil. Yield = 70%. Followed procedure

B for the birch reduction.

¹H NMR (400 MHz, CDCl₃) δ 5.41 – 5.39 (m, 1H), 4.83 – 4.81 (m, 1H), 3.70 (t, J = 6.9 Hz, 2H), 2.77-2.72 (m, 2H), 2.66 - 2.55 (m, 2H), 2.26 - 2.13 (m, 2H), 0.94 - 0.85 (m, 19H), 0.14 (s, 6H), 0.05 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 148.0, 132.0, 120.0, 100.6, 62.1, 40.3, 34.1, 27.2, 25.9, 25.7, 18.3, 18.0, -4.4, -5.3.

IR (Neat, cm⁻¹): v = 2857, 1698, 1665, 1604, 1585, 1472, 1387, 1255, 1220, 1099, 1005, 931, 836, 776, 662.

HRMS (ESI): m/z calcd for C₂₀H₄₀NaO₂Si₂ [M + Na]⁺, 391.2459; found, 391.2452.

¹H NMR (400 MHz, CDCl₃) δ 5.41 - 5.33 (m, 1H), 4.83-4.81 (m, 1H), 3.68 (t, *J* = 7.0 Hz, 2H), 2.75 - 2.60 (m, 4H), 2.24 - 2.16 (m, 2H), 0.94 - 0.87 (m, 20H), 0.13 (s, 6H), 0.04 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 148.1, 132.4, 119.6, 101.0, 76.7, 62.3, 40.1, 31.2, 30.3, 26.0, 25.7, 18.4, 18.0, -4.4, -5.3.

IR (Neat, cm⁻¹): v = 2929, 1697, 1665, 1472, 1377, 1254, 1204, 1100, 1050, 1005, 939, 882, 837, 776, 680.

HRMS (ESI): m/z calcd for C₂₀H₄₀NaO₂Si₂ [M + Na]⁺, 391.2459; found, 391.2449.

Synthesis of functional substrates and acyclic substrates 5.

In a schlenk flask, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide.HCl (24.4 mmol, 1.3 equiv.) and NMe(OMe).HCl (28.8 mmol, 1.5 equiv.) were dissolved in 60 mL of CH₃CN under N₂ atmosphere. Then Et₃N (24.4 mmol, 1.3 equiv.) was added at room temperature. A solution of phenol carboxylic acid (18.8 mmol, 1 equiv.) was added using an addition funnel. The reaction mixture was stirred overnight at room temperature. The solvent was removed under vacuum. The crude residue was diluted with EtOAc and 2M HCl was added. The reaction mixture was extracted twice with EtOAc, washed with H₂O and brine, and dried over Na₂SO₄. The solvent was removed and the product was purified by column chromatography.

EtOAc/pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 7.9 Hz, 1H), 6.81 – 6.73 (m, 2H), 6.72 – 6.67 (m, 1H), 6.12 (s, 1H), 3.61 (s, 3H), 3.19 (s, 3H), 2.96 - 2.88 (m, 2H), 2.79 - 2.71 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 156.2, 142.9, 129.6, 120.3, 115.5, 113.2, 61.2, 33.5, 32.2, 30.6.

IR (Neat, cm⁻¹): v = br 3284, 2938, 1668, 1603, 1585, 1485, 1442, 1278, 1158, 993,839, 782.

HRMS (ESI): m/z calcd for C₁₁H₁₅NNaO₃ [M + Na]⁺, 232.0944; found, 232.0942.

3-(3-hydroxyphenyl)-N-methoxy-N-methylpropanamide (8.1 mmol) and imidazole (12.15 mmol) were dissolved in 45 mL of dry DMF in a 100 mL round-bottomed flask. TBDMSCl (10.5 mmol) was added to the mixture. The reaction was stirred overnight at room temperature under N₂ atmosphere. Then a saturated aqueous solution of NH₄Cl was added. The mixture was extracted with ether, washed several times with H₂O, brine and dried over Na₂SO₄. The solvent was removed and the product was purified by column chromatography (40/60 of EtOAc/pentane) to yield the desired product.

Colourless oil. Yield = 94%. $R_f = 0.50$, in 40/60 EtOAc/pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 7.8 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.73 – 6.65 (m, 2H), 3.61 (s, 3H), 3.18 (s, 3H), 2.94 – 2.86 (m, 2H), 2.75 – 2.67 (m, 2H), 0.98 (s, 9H), 0.19 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 155.6, 142.8, 129.2, 121.3, 120.1, 117.6, 61.1, 33.7, 32.1, 30.5, 25.6, 18.1, -4.5.

IR (Neat, cm⁻¹): v = 2932, 2858, 1668, 1603, 1585, 1485, 1442, 1278, 1158, 993, 839, 782.

HRMS (ESI): m/z calcd for C₁₇H₂₉NNaO₃S [M + Na]⁺, 346.1809; found, 346.1805.

3-(3-((*tert*-butyldimethylsilyl)oxy)phenyl)-*N*-methoxy-*N*-methylpropanamide (5.7 mmol) was dissolved in 50 mL of dry THF and cooled to 0 °C. Then MeMgBr (2.5M, 2.3 mL, 5.7 mmol) was slowly added to the substrate solution. The reaction mixture was stirred at room temperature for 1 hour. Then a saturated aqueous solution of NH₄Cl was added. The mixture was extracted with ether (3 x 20mL), washed several times with H₂O, brine and dried over Na₂SO₄. The solvent was removed under vacuum and the product was purified by column chromatography (10/90 of EtOAc/pentane) to yield the desired product.

TBDMSO 0 **4-(3-((***tert***-Butyldimethylsilyl)oxy) phenyl) butan-2one** Colourless oil. Yield = 89%. R_f = 0.40, in 10/90 EtOAc/pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.10 (m, 1H), 6.79 – 6.74 (m, 1H), 6.70 – 6.65 (m, 2H), 2.87 – 2.80 (m, 2H), 2.77 – 2.70 (m, 2H), 2.14 (s, 3H), 0.98 (s, 9H), 0.19 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 207.8, 155.7, 142.5, 129.3, 121.2, 120.0, 117.7, 45.1, 30.0, 29.6, 25.7, 18.2, -4.4.

IR (Neat, cm⁻¹): v = 2930, 2858, 1719, 1602, 1585, 1486, 1272, 1158, 978, 839, 782. HRMS (ESI): m/z calcd for C₁₆H₂₆NaO₂Si [M + Na]⁺, 301.1594; found, 301.1598.

4-(3-((*tert*-Butyldimethylsilyl)oxy)phenyl)butan-2-one (4.3 mmol) was dissolved in 40 mL of toluene with 0.97 mL (17.2 mmol) ethylene glycol and 10 mol% of *p*-toluenesulphonic acid monohydrate, in a 100 mL round-bottomed flask connected to a Dean and Stark apparatus. The reaction mixture was heated overnight at 130 °C. The solvent was removed under vacuum and the product was purified by column chromatography (5/95 of Et₂O/pentane) to yield the desired product.

6.79 (d, J = 7.6 Hz, 1H), 6.70 – 6.63 (m, 2H), 4.02 – 3.94 (m, 4H), 2.70 – 2.61 (m, 2H), 1.98 – 1.90 (m, 2H), 1.37 (s, 3H), 0.98 (s, 9H), 0.19 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 155.6, 143.7, 129.1, 121.3, 120.1, 117.3, 109.6, 64.7, 40.9, 30.1, 25.7, 24.0, 18.1, -4.5.

IR (Neat, cm⁻¹): v = 2955, 2859, 1604, 1585, 1487, 1259, 1158, 1056, 964, 841, 781. HRMS (ESI): m/z calcd for C₁₈H₃₀NaO₃Si [M + Na]⁺, 345.1856; found, 345.1853.

4-(3-((*tert*-Butyldimethylsilyl)oxy)phenyl) butan-2-one (5.45 mmol) was dissolved in 50 mL of toluene with 1.8 mL (21.8 mmol) 1,3-propandiol and 10 mol% of *p*-toluenesulphonic acid monohydrate, in a 100 mL round-bottomed flask connected to a Dean and Stark apparatus. The reaction mixture was heated overnight at 130 °C. The solvent was removed under vacuum and the product was purified by column chromatography (5/95 of Et₂O/pentane) to yield the desired product.

tert-Butyldimethyl(3-(2-(2-methyl-1,3-dioxan-2-yl)ethyl)phenoxy)silane

Colourless oil. Yield = 67%. R_f = 0.40, in 10/90 EtOAc/pentane.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 7.8 Hz, 1H), 6.82 - 6.79 (m, 1H), 6.70 (t, J = 1.9 Hz, 1H), 6.67 - 6.63 (m, 1H), 4.00 - 3.85 (m, 4H), 2.71 - 2.61 (m, 2H), 2.03 - 1.95 (m, 2H), 1.84 - 1.73 (m, 1H), 1.71 - 1.61 (m, 1H), 1.45 (s, 3H), 0.98 (s, 9H), 0.19 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 155.6, 144.0, 129.1, 121.3, 120.2, 117.3, 98.8, 59.7, 39.7, 29.6, 25.7, 25.5, 21.3, 18.2, -4.4.

IR (Neat, cm⁻¹): v = 2956, 2859, 1603, 1584, 1485, 1258, 1155, 1091, 967, 840, 781. HRMS (ESI): m/z calcd for C₁₉H₃₂NaO₃Si [M + Na]⁺, 359.2013; found, 359.1998.

The Birch product was synthesized following the general Birch reduction **procedure A** . For this substrate, 30 equiv. of Li was used and the reaction time was 4 hours.

HRMS (ESI): m/z calcd for C₁₈H₃₂NaO₃Si [M + Na]⁺, 347.2013; found, 347.2013.

The Birch product was synthesized following the general Birch reduction **procedure A** . For this substrate, 30 equiv. of Li was used and the reaction time was 4 hours.

TBDMSO TBDMSO $^{\circ}$ $^{\circ}$ $^{\circ}$

4.86 - 4.81 (m, 1H), 3.97 - 3.84 (m, 4H), 2.79 - 2.69 (m, 2H), 2.59 (t, J = 8.0 Hz, 2H), 2.10 - 2.02 (m, 2H), 1.86 - 1.80 (m, 2H), 1.79 - 1.70 (m, 1H), 1.68 - 1.60 (m, 1H), 1.40 (s, 3H), 0.92 (s, 9H), 0.14 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 148.0, 134.5, 117.9, 100.8, 99.0, 59.7, 35.7, 33.9, 30.5, 27.2, 25.7, 25.5, 21.2, 18.0, -4.4.

IR (Neat, cm⁻¹): v = 2954, 2858, 1697, 1665, 1472, 1381, 1247, 1092, 929, 834, 778. HRMS (ESI): m/z calcd for C₁₉H₃₄NaO₃Si [M + Na]⁺, 361.2169; found, 361.2158.

In the dried round bottom flask, 1-bromo-4-(2-methylprop-1-en-1-yl)benzene was dissolved in dried THF under nitrogen gas. The solution was cooled to -78 °C, then *t*-BuLi was slowly added. The reaction mixture was stirred for 1 hour. Then a solution of *N*-methoxy-*N*-methylpropionamide in THF was slowly added to the lithium aryl solution. The mixture stirred further at the same temperature for another 1 hour. the reaction was quenched by adding saturated NH₄Cl then extracted with Et₂O. The combined organic phase was dried over Na₂SO₄, and the solvent was removed under

vacuum. The crude product was purified by silica column chromatography with 5% EtOAc/Pentane to provide the pure product as a colorless oil.

1-(4-(2-methylprop-1-en-1-yl)phenyl)propan-1-one Colorless oil 268 mg 63% yield ($R_f = 0.65$ Pentane/EtOAc 9:1)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.89 (m, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.29 (s, 1H), 2.99 (q, J = 7.3 Hz,

2H), 1.93 (d, *J* = 1.3 Hz, 3H), 1.89 (d, *J* = 1.2 Hz, 3H), 1.22 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.15, 143.33, 138.01, 134.19, 128.65, 127.81, 124.47, 31.57, 27.04, 19.55, 8.25.

IR (Neat, cm⁻¹): v = 2976,1682, 1602, 1225, 1181, 952, 872, 786. HRMS-ESI; m/z [M⁺+Na] Calcd. for C₁₃H₁₆NaO = 211.1099. Found: 211.1094.

The solution of 1-(4-(2-methylprop-1-en-1-yl)phenyl)propan-1-one and TBDMSCl in dry THF under N₂ was cooled to -78 °C. TBDMSCl was added to the reaction mixture which was slowly warmed up to room temperature and stirred for 48 hours. The reaction was quenched with saturated NaHCO₃ and extracted with Et₂O, dried over Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by column chromatography (Deactivated-silica) with Pentane as eluent.

(Z)-*tert*-butyldimethyl((1-(4-(2-methylprop-1-en-1-yl) phenyl)prop-1-en-1-yl)oxy) silane

Colorless oil 67 mg 64% yield ($R_f = 0.60$ Pentane/Et₂O 100:1) ¹H NMR (400 MHz, Benzene-*d*₆) δ 7.53 – 7.47 (m, 2H), 7.18

(d, J = 8.2 Hz, 2H), 6.27 (s, 1H), 5.21 (q, J = 6.8 Hz, 1H), 1.76 (d, J = 6.9 Hz, 3H), 1.72 (dd, J = 6.6, 1.2 Hz, 3H), 1.05 (s, 9H), 0.02 (s, 6H). ¹³C NMR (101 MHz, C₆D6) δ 150.79, 138.35, 137.94, 135.17, 128.84, 125.91, 125.75, 105.58, 26.93, 26.17, 19.50, 18.64, 12.01, -3.72.

IR (Neat, cm⁻¹): v = 2929,1652, 1602, 1471, 1319, 1255, 1060, 838, 779.HRMS-ESI; m/z [M⁺+Na] Calcd. for C₁₉H₃₁NaOSi = 303.2144. Found: 303.2123.

Was prepared following the procedure described for 1-(4-(2-methylprop-1-en-1-yl)phenyl) propan-1-one.

(E)-1-(4-(but-2-en-2-yl)phenyl)propan-1-one

White solid (m.p. 44.5-45.7) 240 mg 47% yield ($R_f = 0.65$ Pentane/EtOAc 9:1)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (dd, J = 8.7, 2.0 Hz, 2H), 7.44 (dd, J = 8.6, 1.9 Hz, 2H), 6.04 – 5.96 (m, 1H),

2.99 (q, *J* = 7.3 Hz, 2H), 2.08 – 2.01 (m, 3H), 1.83 (dd, *J* = 6.9, 1.1 Hz, 3H), 1.22 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.33, 148.32, 134.85, 134.76, 128.00, 125.43, 124.82, 31.64, 15.19, 14.44, 8.30.

IR (Neat, cm⁻¹): v = 2978, 1679, 1602, 1409, 1225, 952, 792.

HRMS-ESI; m/z [M⁺+Na] Calcd. for C₁₃H₁₆NaO = 211.1099. Found: 211.1092.

Was prepared following the procedure described for (*Z*)-*tert*-butyldimethyl((1-(4-(2-methylprop-1-en-1-yl)phenyl)prop-1-en-1-yl)oxy)silane.

(((Z)-1-(4-((E)-but-2-en-2-yl)phenyl)prop-1-en-1-yl)oxy) triisopropylsilane

Colorless oil 199 mg 69% yield (Rf = 0.68 Pentane/ Et_2O 100:1)

OTIPS ¹H NMR (400 MHz, Benzene- d_6) δ 7.55 – 7.50 (m, 2H), 7.34 – 7.29 (m, 2H), 5.83 (m, 1H), 5.10 (q, J = 6.8 Hz, 1H), 1.87 – 1.84 (m, 3H), 1.81 (d, J = 6.9 Hz, 3H), 1.60 (dd, J = 6.9, 1.0 Hz, 3H), 1.13 (q, J = 4.2 Hz, 21H). Containing 8% E isomer silvl enolate.

 13 C NMR (101 MHz, C₆D6) δ 151.81, 143.40, 139.11, 135.48, 126.19, 125.49, 122.33, 105.01, 67.84, 25.87, 18.26, 15.35, 14.30, 14.03, 12.00.

IR (Neat, cm⁻¹): v = 2925, 2867, 1649, 1464, 1322, 1080, 1051, 883, 681.

HRMS-ESI; m/z [M⁺+Na] Calcd. for C₂₂H₃₆NaOSi = 367.2433. Found: 367.24396.

Alkyl bromide was added to a suspension of Mg turnings (activated by I_2) in THF (20 mL) at room temperature. The mixture was refluxed for 40 minutes. The mixture was cooled to room temperature and added dropwise to a solution of amide in 20 mL THF at 0 °C, then stirred at room temperature overnight. The reaction was quenched with saturated NH₄Cl, extracted with Et₂O, dried over Na₂SO₄ and purified by column chromatography 5%EtOAc/Pentane to yield desired product.

(*E*)-1,5-diphenylhex-4-en-1-one

White solid (m.p.52.4-53.8) 2.224 g, 56.8% yield (R_f = Pentane/EtOAc 9:1) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (dt, *J* = 8.5, 1.7

Hz, 2H), 7.59 - 7.54 (m, 1H), 7.50 - 7.44 (m, 2H), 7.39 - 7.39

7.34 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 5.86 – 5.78 (m, 1H), 3.16 – 3.11 (m, 2H), 2.66 (q, *J* = 7.5 Hz, 2H), 2.08 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 199.59, 143.67, 137.00, 135.95, 132.96, 128.57, 128.13, 128.03, 126.65, 126.59, 125.64, 38.37, 23.57, 15.84. IR (Neat, cm⁻¹): v = 3056, 2984, 1685, 1597, 1447, 1362, 1202, 974, 757, 691. HRMS-ESI; *m*/*z* [M⁺+Na] Calcd. for C₁₈H₁₈NaO = 273.1250. Found: 273.1255.

tert-butyl (((1*Z*,4*E*)-1,5-diphenylhexa-1,4-dien-1-yl)oxy) dimethylsilane.

Colorless oil 140 mg, 48% yield ($R_f = 0.43$ Pentane/Et₂O 100:1)

¹H NMR (400 MHz, Benzene- d_6) δ 7.51 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.88 – 5.78 (m, 1H), 5.23 (q, J = 6.8 Hz, 2H), 1.86 (s, 3H), 1.77 (d, J = 6.9 Hz, 3H), 1.65 – 1.59 (m, 3H), 1.07 (s, 9H), 0.03 (s, 6H).

¹³C NMR (101 MHz, C₆D6) δ 150.20, 144.25, 140.19, 135.75, 128.51, 127.93, 126.94, 126.87, 126.37, 126.13, 110.26, 26.50, 26.11, 25.97, 18.60, 16.04, -3.78. IR (Neat, cm⁻¹): v = 2956, 2929, 1648, 1599, 1492, 1444, 1332, 1256, 1075, 1022, 839, 696.

HRMS-ESI; m/z [M⁺+Na] Calcd. For C₂₄H₃₂OSiNa = 387.2115. Found: 387.2123.

(*Z*)-*tert*-butyldimethyl((5-methyl-1-phenylhexa-1,4-dien-1-yl)oxy) silane

Colorless oil 250 mg, 47% yield ($R_f = 0.23$ Pentane 100%) ¹H NMR (400 MHz, Benzene- d_6) δ 7.52 – 7.48 (m, 2H), 7.15 – 7.03 (m, 3H), 5.36 – 5.29 (m, 1H), 5.19 (t, J = 7.2 Hz, 0H),

3.10 (t, J = 7.1 Hz, 1H), 1.67 (d, 1H), 1.63 (s, 1H), 1.04 (s, 2H), 0.00 (s, 1H). ¹³C NMR (101 MHz, C₆D6) δ 149.62, 140.31, 131.80, 128.29, 127.78, 126.30, 123.57, 111.16, 26.12, 25.87, 25.84, 18.59, 17.88, -3.80. IR (Neat, cm⁻¹): v = 2958, 2858, 1647, 1462, 1445, 1331, 1256, 1096, 838, 780, 697. HRMS-ESI; m/z [M⁺+H] Calcd. For C₁₉H₃₁OSi = 303.2139. Found: 303.2127.

6. Racemate preparation and *ee* determination of silyl enol ethers

Procedure A: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst A and E and then the crude hydrogenated products were hydrolyzed to cyclohexanone using 1 mL of 2M HCl in 1mL of co-solvent (Et₂O:Pentane). The mixture was stirred overnight at room temperature. The reaction mixture was extracted with pentane and dried over Na₂SO₄. After removing the solvent, the hydrolyzed product was injected into a chiral GC. GC sample: 1 mg/mL, Et₂O. The *ee*'s of the following compounds (2a', 3a', 4a', 5a', 6a', 7a', 19a' and 20a') were determined using procedure A.

Procedure B: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst A and E, and then the crude hydrogenated products were passed through a short plug of silica, using Et_2O :Pentane(1/1) as an eluent. After removing the solvent, the hydrogenated products were injected into a chiral GC. GC sample: 1 mg/mL, Et_2O . The *ee*'s of the following compounds (8a', 9a', 10a', 11a', 12a', 13a', 14a', 16a' and 17a') were determined using this procedure B.

Procedure C: The freshly prepared silvl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst **A** and **E** and then the crude hydrogenated products were passed through a short plug of silica, using Et_2O :Pentane(1/1) as an eluent After removing the solvent, the hydrogenated products were oxidized by using the Saegusa oxidation reaction shown in the scheme below. Recently a modification was reported by Herzon [9] for the Saegusa oxidation. After working up the Saegusa oxidation and purification, the oxidized product was injected to a chiral GC. GC sample: 1 mg/mL, Et_2O . The *ee* of the following compound (**15a'**) was determined using procedure **C**.

Procedure D: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst **A** and **E** and then the crude hydrogenated products were passed through a short plug of silica, using Et_2O :Pentane(1/1) as an eluent. After removing the solvent, the hydrogenated products were oxidized using the Saegusa oxidation in procedure **C**. After working up the Saegusa oxidation and purification, the oxidized product was hydrolyzed using 1 mL of 2M HCl in 1mL of co-solvent (Et_2O :Pentane). The mixture was stirred overnight at room temperature. The reaction mixture was extracted with pentane and dried over Na₂SO₄. After removing the solvent, the final hydrolyzed product was injected to chiral GC. GC sample: 1 mg/mL, Et_2O . The *ee*'s of the following compounds (**18a'** and **21a'**) were determined using procedure **D**.

7. General procedure for asymmetric hydrogenations

A glass vial was charged with freshly prepared substrate (0.5 mmol), K_3PO_4 (10 mol%) and Ir-complex (0.5 mol%). PhCF₃ (4 mL) was added and the vial was placed in a high-pressure hydrogenation apparatus. The reactor was purged three times with Ar, then filled to the required pressure with H₂. The reaction was stirred at room temperature for 12 hours (unless otherwise stated). The crude product was purified through on a column of silica. The *ee* values were determined using chiral GC.

TBDMS O tert-Butyldimethyl ((5-methylcyclohex-1-en-1-yl)oxy) silane Colourless oil. Yield = 58% (NMR yield using internal standard 1,3,5-trimethoxybenzene.) $R_f = 0.4$ in pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.87 – 4.82 (m, 1H), 2.07 – 1.97 (m, 3H), 1.80 – 1.56 (m, 3H), 1.17 – 1.04 (m, 1H), 0.96 (d, *J* = 6.4 Hz, 3H), 0.92 (s, 9H), 0.12 (s, 3H), 0.12 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 150.0, 103.8, 38.3, 30.6, 29.3, 25.7, 23.4, 21.6, 18.0, -4.3.

IR (Neat, cm⁻¹): v = 2954, 2928, 2857, 1670, 1472, 1461, 1369, 1256, 1194, 890, 834, 778.

HRMS (ESI): m/z calcd for C₁₃H₂₇OSi [M + Na]⁺, 227.1831; found, 227.1813.

 $[a]_D^{23} = 50.7 (c = 0.140 \text{ in CHCl}_3)$

GC-MS: column Chiraldex β -DM, 60 °C isothermal, $t_R = 23.5 \text{ min (major)}/24.9 \text{ min (minor)}$, 96% *ee*.

Triethyl ((5-methylcyclohex-1-en-1-yl)oxy)silane

Colourless oil. Yield = 79%. (Isolated yield, observed 12% over reduction product.) $R_f = 0.3$ in pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.88 – 4.83 (m, 1H), 2.07 – 1.99 (m, 3H), 1.78 – 1.56 (m, 3H), 1.16 – 1.03 (m, 1H), 1.01 – 0.94 (m, 9H), 0.65 (q, *J* = 8.4, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 149.9, 103.3, 38.3, 30.5, 29.4, 23.4, 21.6, 6.7, 5.1.

IR (Neat, cm⁻¹): v = 2954, 2913, 2877, 1669, 1457, 1369, 1238, 1188, 1005, 886, 744. HRMS (ESI): m/z calcd for C₁₃H₂₇OSi [M + Na]⁺, 227.1831; found, 227.1848.

 $[a]_{D}^{23} = 46.4$ (c = 0.345 in CHCl₃)

GC-MS: column Chiraldex β -DM, 60 °C isothermal, t_R = 24.2 min (major)/26.5 min (minor), 94% *ee*.

Et Triethyl ((5-ethylcyclohex-1-en-1-yl) oxy) silane

Colourless oil. Yield = 56%. (Isolated yield, observed 11% hydrolysis product.) $R_f = 0.32$ in pentane.

¹H NMR (400 MHz, CDCl₃): 4.88 -4.84 (m, 1H), 2.04-2.00 (m, 3H), 1.74-1.64 (m, 3H), 1.35-1.21(m, 4H), 0.99-0.89 (m, 12H), 0.68-0.62 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): 150.1, 103.5, 36.3, 36.2, 28.9, 28.3, 23.4, 11.5, 6.7, 5.1. IR (Neat, cm⁻¹): v = 2917, 1669, 1461, 1371, 1188, 1016, 899, 870, 743.

HRMS (ESI): m/z calcd for C₁₄H₂₉OSi [M + H]⁺, 241.1982; found, 241.1990. [a]²³_D = -9.524, (c = 0.1050, CHCl₃).

GC-MS: column Chiraldex β -3p, 80 °C isothermal, t_R = 207.6 min (minor)/211.5 min (major), 99% *ee*.

TBDMS^O n-Bu *tert*-Butyl ((5-butylcyclohex-1-en-1-yl) oxy) dimethylsilane

Colourless oil. Yield = 54% (NMR yield using internal standard 1,3,5-trimethoxybenzene). $R_f = 0.38$ in pentane.

¹H NMR (400 MHz, CDCl₃): 4.88 -4.83 (m, 1H), 2.06-2.00 (m, 3H), 1.74-1.54 (m, 3H), 1.35-1.26(m, 8H), 0.93-0.91 (m, 12H), 0.13-0.12 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): 150.2, 103.9, 36.6, 36.0, 34.4, 29.2, 28.8, 25.7, 25.7, 23.4, 22.9, 18.0, 14.1, -4.3.

IR (Neat, cm⁻¹): v = 2918, 1671, 1462, 1362, 1255, 1112, 1020, 928, 833, 776. HRMS (ESI): m/z calcd for C₁₆H₃₂NaOSi [M + Na]⁺, 291.2115; found, 291.2109. $[\boldsymbol{a}]_{\boldsymbol{p}}^{23} = +36.413$, (c = 0.1843, CHCl₃).

GC-MS: column Chiraldex β -DM, 70 °C isothermal, t_R = 67.9 min (minor)/69.7 min (major), 92% *ee*.

TES

n-Bu

((5-Butylcyclohex-1-en-1-yl) oxy) triethyl silane Colourless oil. Yield = 55% (Isolated yield). $R_f = 0.30$ in pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.85 (q, J = 2.9, 2.1 Hz, 1H), 2.10 – 1.97 (m, 3H), 1.76 – 1.56 (m, 3H), 1.29 (t, J = 5.3 Hz, 6H), 1.16 – 1.04 (m, 1H), 0.97 (t, J = 7.9 Hz, 9H), 0.93 – 0.85 (m, 3H), 0.65 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 150.1, 103.5, 36.6, 36.0, 34.5, 29.2, 28.8, 23.4, 22.9, 14.1, 6.7, 5.1.

IR (Neat, cm⁻¹): v = 2956, 2917, 1669, 1458, 1371, 1184, 1005, 744.

HRMS-ESI; m/z [M⁺+Na] = 291.2106, calcd. For C₁₆H₃₂NaOsi: 291.2115.

HRMS (ESI): m/z calcd for C₁₆H₃₂NaOSi [M + Na]⁺, 291.2115; found, 291.2106. [a]_p²³ = 12.8 (c = 0.143 in CHCl₃)

GC-MS: column Chiraldex β -DM, 70 °C isothermal, t_R = 132.2 min (major)/126.8 min (minor), 95% *ee*.

TBDMS^O^{n-Pent} *tert*-Butyldimethyl ((5-pentylcyclohex-1-en-1-yl) oxy) silane

Colourless oil. Yield = 78% (NMR yield using internal standard 1,3,5-trimethoxybenzene). $R_f = 0.38$ in pentane.

¹H NMR (400 MHz, CDCl₃): 4.86-4.83(m, 1H), 2.06-1.99(m, 3H), 1.72-1.57(m, 3H), 1.34-1.26(m, 9H), 0.93-0.91(m, 12H), 0.13-0.11(m, 6H).

¹³C NMR (100 MHz, CDCl₃): 150.2, 103.9, 36.6, 36.3, 36.0, 34.4, 32.1, 29.2, 28.8, 27.4, 26.6, 25.7, 23.4, 22.9, 22.7, 18.0, 14.1, -4.3, -4.5.

IR (Neat, cm⁻¹): v = 2927, 1670, 1462, 1362, 1255, 1196, 1179, 1051, 939, 836, 777, 671.

HRMS (ESI): *m*/*z* calcd for C₁₇H₃₄OSi [M]⁺, 283.2379; found, 282.2358.

 $[a]_D^{23} = +32.022, (c = 0.1781, CHCl_3).$

GC-MS: column Chiraldex β -DM, 80 °C isothermal, t_R = 68.1 min (minor)/70.2 min (major), 96% *ee*.

Triethyl ((5-pentylcyclohex-1-en-1-yl) oxy) silane Colourless oil. Yield = 70% (NMR yield using internal standard 1,3,5-trimethoxybenzene). $R_f = 0.36$ in pentane.

GC-MS: column Chiraldex β -DM, 80 °C isothermal, t_R = 67.9 min (minor)/69.9 min (major), 95% *ee*.

tert-butyldimethyl ((4-methylcyclohex-1-en-1-yl) oxy) silane
Colourless oil. Yield = 45% (NMR yield using internal
standard 1.3.5-Trimethoxybenzene).
$$R_f = 0.40$$
 in pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.85 – 4.79 (m, 1H), 2.16 – 1.91 (m, 3H), 1.74 – 1.56 (m, 3H), 1.39 – 1.22 (m, 1H), 0.94 (d, *J* = 6.3 Hz, 3H), 0.91 (s, 9H), 0.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 103.7, 32.3, 31.3, 29.6, 28.3, 25.7, 21.3, 18.0, - 4.4.

IR (Neat, cm⁻¹): v = 2954, 2928, 2857, 1670, 1461, 1370, 1256, 1194, 879, 777. HRMS (ESI): m/z calcd for C₁₃H₂₇OSi [M + Na]⁺, 227.1831; found, 227.1830. [a]_D²³= 46.1 (c = 0.193 in CHCl₃)

GC-MS: column Chiraldex β -DM, 80°C isothermal, t_R = 48.2 min (major)/46.9 min (minor), 80% *ee*.

Triethyl ((4-methylcyclohex-1-en-1-yl)oxy) silane

Colourless oil. Yield = 75%. (Isolated yield, observed 20% over reduction product.) $R_f = 0.36$ in pentane.

¹H NMR (400 MHz, CDCl₃): 4.88 -4.77 (m, 1H), 2.18 - 1.92 (m, 3H), 1.77 - 1.54 (m, 4H), 1.50 - 1.23 (m, 3H), 0.95 (dt, J = 16.4, 8.0 Hz, 21H), 0.72 - 0.46 (m, 11H). ¹³C NMR (100 MHz, CDCl₃): 150.2, 103.3, 33.1, 32.3, 31.3, 29.6, 29.3, 28.4, 21.3, 6.9, 6.8, 6.7, 6.4, 5.1, 4.9.

IR (Neat, cm⁻¹): v = 2914, 1670, 1457, 1414, 1370, 1237, 1190, 1073, 1017, 865, 742. HRMS (ESI): m/z calcd for C₁₃H₂₆NaOSi [M + Na]⁺, 249.1645; found, 249.1652. [a]²³_D = +23.348, (c = 0.2273, CHCl₃).

GC-MS: column Chiraldex β -DM, 80 °C isothermal, t_R = 77.5 min (minor)/79.4 min (major), 95% *ee*.

Triethyl ((4-propylcyclohex-1-en-1-yl) oxy) silane

Colourless oil. Yield = 56%. (Isolated yield, observed 24% over reduction product.) $R_f = 0.36$ in pentane.

¹H NMR (400 MHz, CDCl₃): 4.88 - 4.79 (m, 1H), 2.18 -1.93 (m, 3H), 1.80 - 1.55 (m, 3H), 1.52 -1.17 (m, 9H), 1.01 - 0.83 (m, 18H), 0.66 (t, J = 7.8 Hz, 6H), 0.55 (dq, J = 19.6, 7.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): 150.4, 103.3, 38.3, 33.1, 33.1, 30.4, 29.7, 29.4, 27.3, 20.3, 14.4, 6.9, 6.8, 6.7, 6.4, 5.1, 5.0.

IR (Neat, cm⁻¹): v = 2876, 1670, 1458, 1415, 1374, 1188, 1017, 865, 770.

HRMS (ESI): m/z calcd for C₁₅H₃₀OSiNa [M + Na]⁺, 277.1958; found, 277.1961.

 $[a]_D^{23} = +31.364, (c = 0.2195, CHCl_3).$

GC-MS: column Chiraldex β -DM, 70 °C isothermal, t_R = 104.2 min (major)/111.9 min (minor), 92% *ee*.

tert-Butyl ((2,5-dimethylcyclohex-1-en-1-yl)oxy) dimethyl silane

Colourless oil. Yield = 81%. (Isolated yield, remaining 1% aromatized starting material) $R_f = 0.40$ in pentane.

¹H NMR (400 MHz, CDCl3) δ 2.12 – 2.00 (m, 2H), 1.98 – 1.88 (m, 1H), 1.81 – 1.61 (m, 3H), 1.60 (s, 3H), 1.23 – 1.10 (m, 1H), 0.97 (s, 9H), 0.14 (d, J = 1.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 111.0, 38.8, 31.2, 30.0, 25.9, 21.7, 18.2, 16.2, - 3.7.

IR (Neat, cm⁻¹): v = 2954, 2927, 1688, 1461, 1256, 1177, 835, 777.

HRMS (ESI): m/z calcd for C₁₄H₁₈NaOSi [M + H]⁺, 241.1982; found, 241.1979. [a]²³_p= -11.3 (c = 0.154 in CHCl₃)

GC-MS: column Chiraldex β -3P, 90 °C isothermal, t_R = 37.6 min (major)/35.7 min (minor), 95% *ee*.

TES

((2,5-dimethylcyclohex-1-en-1-yl)oxy) triethyl silane

Colourless oil. Yield = 79%. (Isolated yield, remaining 0.05% aromatized starting material). $R_f = 0.27$ in pentene.

¹H NMR (400 MHz, CDCl3) δ 2.08 – 1.97 (m, 2H), 1.95 – 1.86 (m, 1H), 1.78 – 1.69 (m, 2H), 1.66 – 1.59 (m, 4H), 1.58 (s, 1H), 1.03 – 0.92 (m, 12H), 0.65 (q, *J* = 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 110.8, 38.7, 31.1, 30.0, 21.6, 16.0, 6.8, 5.7. IR (Neat, cm⁻¹): v = 2954, 2911, 1689, 1457, 1378, 1185, 1005, 803, 742. HRMS (ESI): *m/z* calcd for C₁₄H₂₈NaOSi [M + Na]⁺, 263.1802; found, 263.1789. [**a**]²³_{**p**} = -45.4 (*c* = 0.275 in CHCl₃) **GC-MS**: column Chiraldex β -DM, 100 °C isothermal, t_R = 32.6 min (major)/31.9 min (minor), 98% *ee*.

pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.88 – 4.80 (m, 1H), 3.72 – 3.59 (m, 4H), 2.47 – 2.11 (m, 3H), 2.11 – 1.86 (m, 6H), 1.87 – 1.04 (m, 12H), 0.95 – 0.83 (m, 31H), 0.12 (d, J = 1.5 Hz, 6H), 0.05 (s, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 211.7, 149.9, 103.9, 61.1, 60.5, 48.1, 41.5, 39.3, 39.1, 36.5, 35.7, 31.3, 31.1, 28.6, 26.0, 25.9, 25.7, 25.3, 23.3, 18.3, 18.0, -4.3, -4.4, -5.3, -5.4.

IR (Neat, cm⁻¹): v = 2928, 1670, 1463, 1361, 1255, 1199, 1103, 835, 775.

HRMS (ESI): m/z calcd for C₂₀H₄₂O₂Si₂ [M + Na]⁺, 393.2616; found, 393.2624.

 $[a]_D^{23} = +22.286, (c = 0.1753, CHCl_3).$

GC-MS: column Beta-dex 225, 125 °C isothermal, $t_R = 20.4 \text{ min (minor)}/22.5 \text{ min (major)}, 97\% ee.$

tert-Butyl(2-(4-((*tert*-butyldimethylsilyl)oxy) cyclohex-3-en-1-yl)ethoxy)dimethylsilane

S Colourless oil. Conversion = 94%. $R_f = 0.38$ in pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.83-4.81 (m, 1H), 3.67 (dt, J = 13.4, 6.7 Hz, 4H), 2.54 – 1.82 (m, 9H), 1.82 – 1.15 (m, 13H), 0.96 – 0.83 (m, 34H), 0.11 (d, J = 6.7 Hz, 8H), 0.06 (s, 11H).

¹³C NMR (100 MHz, CDCl₃) δ 212.2, 150.4, 103.6, 61.4, 61.0, 40.8, 38.8, 38.3, 32.7, 30.4, 30.0, 29.5, 29.2, 26.0, 25.7, 18.4, 18.0, -3.6, -4.4, -4.5, -5.3.

HRMS (ESI): m/z calcd for $C_{20}H_{42}O_2Si_2$ [M + Na]⁺, 393.2616; found, 393.2612. [$\pi^{123} = +20.225$ ($\alpha = 0.178$ CUCL)

 $[a]_D^{23} = +20.225 \ (c = 0.178, \text{CHCl}_3)$

GC-MS: column Beta-dex 225, 125 °C isothermal, $t_R = 29.3 \text{ min (major)}/38.4 \text{ min (minor)}$, 94% *ee*.

tert-Butyldimethyl ((5-(2-(2-methyl-1,3-dioxolan-2yl) ethyl) cyclohex-1-en-1-yl) oxy) silane Colourless oil. Yield = 89%. R_f = 0.46, in 10/90 EtOAc/pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.87 – 4.81 (m, 1H), 3.99 – 3.88 (m, 4H), 2.09 – 1.98 (m, 3H), 1.77 – 1.54 (m, 6H), 1.46 – 1.33 (m, 2H),

1.31 (s, 3H), 1.19 – 1.05 (m, 1H), 0.91 (s, 9H), 0.11 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 149.9, 110.2, 103.9, 64.6, 36.7, 34.7, 30.4, 28.7, 25.7, 23.8, 23.4, 18.0, -4.5.

IR (Neat, cm⁻¹): v = 2929, 2858, 1670, 1472, 1374, 1256, 1195, 1069, 836, 778.

HRMS (ESI): m/z calcd for C₁₈H₃₄NaO₃Si [M + Na]⁺, 349.2169; found, 349.2164.

GC-MS: column Chiraldex β -6TBDM, 80 °C isothermal, $t_R = 170.6$ min (major)/168.3 min (minor), 95% *ee*.

tert-Butyldimethyl ((5-(2-(2-methyl-1,3-dioxan-2-yl) ethyl) cyclohex-1-en-1-yl) oxy) silane

Colourless oil. Yield = 82%. R_f = 0.46, in 10/90 EtOAc/pentane.

¹H NMR (400 MHz, CDCl₃) δ 4.87 – 4.82 (m, 1H),

3.97 - 3.83 (m, 3H), 2.09 - 1.98 (m, 7H), 1.80 - 1.57 (m, 3H), 1.45 - 1.31 (m, 3H), 1.39 (s, 3H), 0.91 (s, 5H), 0.12 (s, 3H), 0.11 (s, 3H),

¹³C NMR (100 MHz, CDCl₃) δ 149.9, 103.9, 99.3, 59.6, 36.5, 35.8, 34.8, 29.8, 28.7, 27.3, 25.7, 25.5, 23.4, 20.7, 18.0, -4.3, -4.5.

IR (Neat, cm⁻¹): v = 2953, 2858, 1670, 1472, 1369, 1248, 1195, 1100, 836, 778.

HRMS (ESI): m/z calcd for C₁₉H₃₆NaO₃Si [M + Na]⁺, 363.2326; found, 363.2333.

GC-MS: column Chiraldex β -6TBDM, 80 °C isothermal, $t_R = 171.6$ min (major)/168.1 min (minor), 98% *ee*.

(Z)-tert-butyl((1-(4-isobutylphenyl)prop-1-en-1yl)oxy)dimethylsilane

Colourless oil. Yield = 81%. (Isolated yield, observed 3% over reduction product.) $R_f = 0.23$ in pentane.

¹H NMR (400 MHz, Benzene- d_6) δ 7.50 – 7.45 (m, 2H), 6.98 (d, J = 8.3 Hz, 2H), 5.19 (q, J = 6.8 Hz, 1H), 2.34 (d, J = 7.2 Hz, 2H), 1.77 (d, J = 6.8 Hz, 2H), 1.05 (s, 9H), 0.84 (d, J = 6.6 Hz, 6H), 0.02 (s, 6H).

¹³C NMR (101 MHz, C₆D6) δ 150.85, 141.06, 138.02, 129.06, 126.07, 105.25, 45.39, 26.14, 22.47, 18.62, 11.98, -3.77.

IR (Neat, cm⁻¹): v = 2956, 2859, 1654, 1509, 1471, 1464, 1319, 1255, 1116, 1059, 871, 839, 779.

HRMS-ESI; m/z [M⁺+Na] Calcd. for C₁₉H₃₂NaOSi = 327.2115. Found: 327.2120.

(Z)-tert-butyldimethyl((5-methyl-1-phenylhex-1-en-1yl)oxy) silane.

Colourless oil. Yield = 78%. (Isolated yield, observed 3% over reduction product.) $R_f = 0.33$ in pentane.

¹H NMR (400 MHz, Benzene- d_6) δ 7.55 – 7.51 (m, 2H), 7.17 – 7.11 (m, 3H), 7.10 – 7.04 (m, 1H), 5.15 (t, J = 7.2 Hz, 1H), 2.38 – 2.29 (m, 2H), 1.66 – 1.54 (m, 1H), 1.37 – 1.28 (m, 2H), 1.05 (s, 9H), 0.93 (d, J = 6.6 Hz, 6H), 0.01 (s, 6H).

¹³C NMR (101 MHz, C₆D6) δ 149.74, 140.44, 127.73, 126.31, 112.47, 39.23, 28.25, 26.12, 24.68, 22.80, 18.59, -3.78.

IR (Neat, cm⁻¹): v = 2955, 1650, 1471, 1335, 1256, 1080, 838, 779. HRMS-ESI; m/z [M⁺+Na] Calcd. for C₁₉H₃₂NaOSi = 327.2115. Found: 327.2117.

(*S*,*Z*)-((1-(4-(*sec*-butyl)phenyl)prop-1-en-1-yl)oxy) triisopropylsilane.

Colourless oil. Yield = 82%. (Isolated yield, observed 2% over reduction product.) $R_f = 0.30$ in pentane.

OTIPS ¹H NMR (400 MHz, Benzene- d_6) δ 7.51 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 8.1 Hz, 2H), 5.07 (q, J = 6.8 Hz, 1H), 2.48 – 2.36 (m, 2H), 1.81 (d, J = 6.8 Hz, 3H), 1.55 – 1.41 (m, 2H), 1.18 – 1.06 (m, 18H), 0.76 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, C₆D6) δ 151.91, 147.03, 138.74, 127.01, 126.47, 104.71, 41.73, 31.48, 22.08, 18.35, 18.20, 13.98, 12.39, 11.96. IR (Neat, cm⁻¹): v = 2961, 2867, 1651, 1463, 1378, 1321, 1064, 883, 681.

HRMS-ESI; m/z [M⁺+Na] Calcd. for C₂₂H₃₉OSi = 347.2765. Found: 347.2775.

 $[a]_{D}^{23} = 15.0 \ (c = 0.340 \ \text{in CHCl}_{3})$

GC-MS: column Chiraldex β -DM, 120 °C isothermal, t_R = 32.0 min (major)/33.5 min (minor), 99% *ee*.

(*R*,*Z*)-*tert*-butyl((1,5-diphenylhex-1-en-1-yl)oxy) dimethylsilane.

Colourless oil. Yield = 93%. (Isolated yield, observed 5% over reduction product.) $R_f = 0.74$ in 4% Et₂O/pentane.

¹H NMR (400 MHz, Benzene- d_6) δ 7.54 – 7.47 (m, 2H), 7.24 – 7.02 (m, 8H), 5.10 (t, J = 7.1 Hz, 1H), 2.64 (h, J = 6.9 Hz, 1H), 2.20 (q, J = 7.7 Hz, 2H), 1.73 – 1.57 (m, 2H), 1.20 (d, J = 7.0 Hz, 3H), 0.98 (s, 9H), -0.08 (d, J = 4.9 Hz, 6H). ¹³C NMR (101 MHz, C₆D6) δ 149.85, 147.62, 140.39, 128.72, 127.76, 127.45, 126.27, 112.05, 40.28, 38.81, 26.10, 25.07, 22.47, 18.53, -3.84. IR (Neat, cm⁻¹): v = 2957, 1648, 1493, 1331, 1256, 1068, 876, 838, 779. HRMS-ESI; m/z [M⁺+Na] Calcd. for C₂₄H₃₄NaOSi = 389.2271. Found: 389.2284. [a]²³_D = 22.8 (c = 0.464 in CHCl₃) SFC-HPLC: column OJ-H 10% MeOH, t_R = 6.2 min (major)/7.4 min (minor), 98% *ee*.

This compound has been previously reported. [10]

This compound has been previously reported. [11]

'n-Pr

C

This compound has been previously reported. [12]

This compound has been previously reported. [13]

OTBDMS

4-(2-((tert-Butyldimethylsilyl) oxy) ethyl)cyclohex-2-en-1-one Colourless oil. Yield = 62%. $R_f = 0.29$, in 10/90 EtOAc/pentane. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (ddd, J = 10.2, 2.8, 1.3 Hz, 1H), 5.97 (ddd, J = 10.2, 2.5, 0.8 Hz, 1H), 3.82 - 3.67 (m, 2H), 2.68 - 2.57 (m, 1H), 2.56 - 2.44 (m, 1H), 2.37 (ddd, J = 16.8, 12.1, 4.9 Hz, 1H), 2.19 - 2.07 (m, 1H), 1.82 - 1.54 (m, 4H), 0.90 (s, 9H), 0.06 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 199.9, 155.3, 128.9, 60.4, 37.3, 36.9, 33.0, 28.6, 25.9, 18.3, -5.3, -5.4. IR (Neat, cm⁻¹): v = 2928, 1688, 1463, 1389, 1255, 1106, 836, 776. HRMS (ESI): m/z calcd for C₁₄H₂₆NaO₂Si [M + Na]⁺, 277.1587; found, 277.1594.

 $[a]_{p}^{23} = +29.078 \ (c = 0.1408, \text{CHC}]_{3}$

5-(2-(2-Methyl-1,3-dioxolan-2-yl) ethyl) cyclohex-2-en-1-one Colourless oil. Yield = 56%. $R_f = 0.30$ in 30/70 EtOAc/pentane. ¹H NMR (400 MHz, CDCl3) δ 6.96 (ddd, J = 10.0, 5.7, 2.2 Hz, 1H), 6.01 (ddd, J = 10.1, 2.5, 1.1 Hz, 1H), 4.00 - 3.87 (m, 4H), 2.59 - 2.38 (m, 2H), 2.20 - 1.98 (m, 3H), 1.72 - 1.59 (m, 2H),

1.54 - 1.43 (m, 2H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.8, 149.7, 129.8, 109.8, 64.7, 44.5, 36.2, 35.3, 32.2, 29.9, 23.8.

IR (Neat, cm⁻¹): v = 2927, 1682, 1455, 1377, 1251, 1218, 1135, 1055, 947, 836, 756. HRMS (ESI): m/z calcd for C₁₂H₁₈NaO₃ [M + Na]⁺, 233.1148; found, 233.1156. $[a]_{D}^{23} = -15.20 \ (c = 0.125, \text{CHCl}_3)$

5-(2-(2-Methyl-1,3-dioxan-2-yl)ethyl) cyclohex-2-en-1-one Colourless oil. Yield = 51%. $R_f = 0.28$ in 30/70 EtOAc/pentane. ¹H NMR (400 MHz, CDCl₃) δ 6.97 (ddd, J = 10.1, 5.7, 2.2 Hz, 1H), 6.02 (ddt, J = 10.1, 2.6, 1.1 Hz, 1H), 4.03 - 3.75 (m, 4H), 2.62 - 2.37 (m, 2H), 2.21 - 1.98 (m, 3H), 1.92 -1.61 (m, 3H),

1.61 - 1.45 (m, 4H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 199.9, 149.8, 149.5, 129.8, 98.9, 59.7, 44.5, 44.1, 40.5, 36.1, 35.5, 34.7, 32.3, 32.2, 29.3, 25.5, 20.3.

IR (Neat, cm⁻¹): v = 2924, 1668, 1455, 1386, 1248, 1095, 967, 879, 845, 753. HRMS (ESI): m/z calcd for C₁₃H₂₀NaO₃ [M + Na]⁺, 247.1305; found, 247.1313. $[a]_{D}^{23} = -28.986 (c = 0.1375, CHCl_3)$

Asymmetric hydrogenation of substrate 1 at 5 and 10 minutes using PVP

		P.Ph N S-Ph									
MeO n-Pen	0.5	0.5 mol% [Ir(COD)L] ⁺ BArF - MeC		0	MeO + 1a	MeO R +		MeO + 1c		O 1d	n-Pen O + 1e
	-	Entry	Time	Additive	1	1a	1b	1c	1d	1e	-
		1	10 min	PVP	51.8	38.7	-	-	-	9.5	
		2	5 min	PVP	75.5	20	-	-	-	4.5	
		3	5 min	-	72	11	-	-	9	8	

10

200

190 180

170

110 100 f1 (ppm) 90 80

70 60 50

40

30 20 10

140

130 120

150

160

-600 -400 -200 -0 -200

GC Chromatograms

Print Date: 30 Sep 2016 12:06:17

Chromatogram Plots

Print Date: 19 Jan 2017 14:46:45

Chromatogram Plots

S105

Print Date: 05 Feb 2017 12:35:01

S115

References

- 1. Harrowven, D. C.; Lucas, M. C.; Howes, P. D. Tetrahedron 2001, 57, 791.
- Williams, D. B. G.; Simelane, S. B.; Lawton, M.; Kinfe, H. H. *Tetrahedron* 2010, 66, 4573.
- 3. Liu, T.; Shao, X.; Wu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2012, 51, 540.
- 4. Collins, K. D.; Ruehling, A.; Lied, F. Glorius, F. Chem. Eur. J. 2014, 20, 3800.
- 5. B. Wang, H.-X. Sun, Z.-H. Sun and G.-Q. Lin, Adv. Synth. Catal. 2009, 351, 415.
- 6. Sridhar, M.; Raveendra, J.; China Ramanaiah, B.; Narsaiah, C. *Tetrahedron Lett.* 2011, **52**, 5980.
- 7. Gao, F.; Webb, J. D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 1474.
- 8. Toop, H. D.; Don, A. S.; Morris, J. C. Org. Biomol. Chem. 2015, 13, 11593.
- 9. Herzon, S. B.; Lu, L.; Woo, C. M.; Gholap, S. L. J. Am. Chem. Soc. 2011, 133, 7260.
- Miyazawa, M.; Dejima, Y.; Takahashi, T.; Matsuda, N.; Ishikawa, R. J. Essent. Oil Res. 2011, 23, 58.
- 11. Winkler, C. K.; Clay, D.; Entner, M.; Plank, M.; Faber, K. Chem. Eur. J. 2014, 20, 1403.
- Ohnemüller, U. K.; Nising, C. F.; Nieger, M.; Bräse, S. Eur. J. Org. Chem. 2006, 6,1533.
- (a) Zhu, L.; Lauchli, R.; Loo, M.; Shea, K. J. Org. Lett. 2007, 9, 2269; (b) Brozek, L. A. J.; Sieber, D.; Morken, J. P. Org. Lett. 2011, 13, 995; (c) Matveenko, M.; Liang, G.; Lauterwasser, E. M. W.; Zubia, E.; Trauner, D. J. Am. Chem. Soc. 2012, 134, 9291.