Regioselective Iridium-catalyzed Asymmetric Monohydrogenation of 1,4-Dienes

Jianguo Liu,§ Suppachai Krajangsri,§ Thishana Singh, Giulia De Seriis, Napasawan Chumnanvej, Haibo Wu and Pher G. Andersson*
Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory, 106 91, Stockholm, Sweden. (Pher.Andersson@su.se)

Table of Contents

General methods 2
General procedure for substrate synthesis 3

1. Synthesis of protected alkyl phenol 3
2. Synthesis of tert-butyl dimethylsilane 3
3. Synthesis of triethyl silane 5
4. General procedure for the Birch reduction 6
5. Synthesis of functional substrates and acyclic substrates 12
6. Racemate preparation and ee determination of silyl enol ethers 18
7. General procedure for asymmetric hydrogenations. 20
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectroscopic data of new compounds 29
GC Chromatograms 99
References 117

General methods

All reactions were conducted under nitrogen atmosphere using magnetic stirring. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was freshly distilled using CaH_{2} under nitrogen atmosphere. THF was freshly distilled using sodium-benzophenone under nitrogen.
All reagents were used as supplied commercially without further purification. Chromatographic separations were performed on Kiesel gel 60 H silica gel (particle size: $0.063-0.100 \mathrm{~mm}$) or Brockmann I, activated, basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (particle size: ~ 150 mesh). Thin layer chromatography (TLC) was performed on aluminum plates coated with Kieselgel $60(0.20 \mathrm{~mm}$, UV254) and visualized under ultraviolet light ($v=254$ nm), or by staining with ethanolic phosphomolybdic acid and heating.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 MHz or 500 MHz at $400 / 500 \mathrm{MHz}$ in CDCl_{3} and referenced internally to the residual CDCl_{3} peak (7.26 ppm). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $100 / 125 \mathrm{MHz}$ in CDCl_{3} and referenced to the central peak of CDCl_{3} (77.0 ppm). Chemical shifts are reported in ppm (δ scale).
Enantiomeric excesses were determined either using chiral HPLC with a diode array detector at 220 nm and 254 nm or using a chiral GC with an MS detector. (Refer to the individual compounds for specific chromatographic details.) Racemic compounds were used for comparison.
HRMS data were obtained using a Bruker MicroTof ESI direct inlet probe and methane as reagent gas.
Optical rotations were recorded on an Autopol IV polarimeter from Rudolp Research Analytical, equipped with a sodium lamp (589 nm) and a 10 mm cell.
IR spectra were recorded on a Perkin-Elmer Spectrum One spectrometer using samples that were prepared in CHCl_{3}.

General procedure for substrate synthesis

1. Synthesis of protected alkyl phenol

These compounds have been previously reported.

To a round-bottomed flask 5.17 g (1 equiv., $5 \mathrm{~mL}, 47.8 \mathrm{mmol}$) of phenol and $1.2 \mathrm{~g}(0.1$ equiv., 4.78 mmol) PPTS (pyridinium p-toluenesulfonate) was added, and purged with N_{2} three times. Then 100 mL of dry DCM was added and stirred at room temperature. Ethyl vinyl ether, 7 mL (1.53 equiv., 73.1 mmol) was added dropwise to the solution and continued stirring for 2.5 hours. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. The water-layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers was washed with NaOH solution (1M) and dried over MgSO_{4}. After concentration under vacuum, the residue was purified by distillation. (4 mmbar, $119{ }^{\circ} \mathrm{C}$).

1-(1-ethoxyethoxy)-3-methylbenzene

Colourless oil. Yield $=65 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.13$ (m, 1H), $6.84-$ $6.78(\mathrm{~m}, 3 \mathrm{H}), 5.37(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.75(\mathrm{~m}, 1 \mathrm{H})$, $3.59-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,139.4,129.1,122.5,118.0,114.0,99.4,61.3$, 21.4, 20.3, 15.1.

IR (Neat, cm^{-1}): $v=2978,2931,1602,1585,1489,1444,1381,1256,1158,1119$, 954, 860, 779 .
HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 203.1043; found, 203.1034.

2. Synthesis of tert-butyl dimethylsilane

Aromatic phenol (1 equiv.) and imidazole (1.5 equiv.) were dissolved in dry DMF (4 $\mathrm{mL} / 1 \mathrm{mmol}$). To this mixture, TBDMSCl (1.3 equiv.) was added dropwise over 10 minutes. The mixture was stirred at room temperature, under nitrogen, overnight. The reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the product was extracted 3 times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers was washed with water
and brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. Flash chromatography on silica gel with 100% pentane as eluent yielded the desired product as colorless oil.

tert-Butyl (3-butylphenoxy) dimethylsilane
Colourless oil. Yield $=96 \% \mathrm{R}_{\mathrm{f}}=0.42$, in pentane.
1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): 7.13 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 $-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.51(\mathrm{~m}, 2 \mathrm{H})$, 1.36 (h, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.21(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 155.6, 144.5, 129.0, 121.5, 120.2, 117.2, 35.6, 33.6, 25.7, 22.3, 18.2, 14.0, -4.4.

IR (Neat, $\mathrm{cm}-1$): $v=2930,1603,1484,1276,1157,1003,972,838,780,694$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 287.1802; found, 287.1785 .

TBDMS ${ }^{-}{ }^{\text {O-Pent }}$ tert-Butyldimethyl (3-pentylphenoxy) silane
Colourless oil. Yield $=70 \% . \mathrm{R}_{\mathrm{f}}=0.44$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.16-7.12 (m, 1H), $6.80-$ $6.78(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.34($ $\mathrm{m}, 3 \mathrm{H}$), 1.01 (s, 9H), 0.96-0.89(m, 3H), 0.21 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 155.5, $144.5,129.0,121.4,120.2,117.2,35.8,35.5$, $33.5,31.5,31.1,25.7,22.6,22.3,18.2,14.0,14.0,-4.4$.
IR (Neat, cm^{-1}): $v=2956,1584,1484,1275,1157,1004,825,728$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 301.1958; found, 301.1952.

tert-Butyl (2,5-dimethylphenoxy) dimethylsilane

Colourless oil. Yield $=96 \%$. $\mathrm{R}_{\mathrm{f}}=0.56$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 1.05 (s, 9H), 0.24 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,136.3,130.6,125.6,121.7,119.3,25.8,21.1$, 18.3, 16.5, -4.2.

IR (Neat, cm^{-1}): $v=2957,2859,1617,1580,1472,1411,1127,1002,954,854,779$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 237.1675$; found, 237.1689.

tert-Butyldimethyl (p-tolyloxy) silane

Colourless oil. Yield $=94 \% . \mathrm{R}_{\mathrm{f}}=0.56$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-$ $6.74(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,130.4,129.8,119.8,25.7,20.6,18.2,-4.5$.
IR (Neat, cm^{-1}): $v=2957,2930,2859,1612,1510,1472,1256,915,838,779$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 223.1518$; found, 223.1521.

3. Synthesis of triethyl silane

Aromatic phenol (1 equiv.) and imidazole (1.5 equiv.) were dissolved in dry DMF (4 $\mathrm{mL} / 1 \mathrm{mmol}$). To this mixture, TESCl (1.3 equiv.) was added dropwise over 10 minutes. The mixture was stirred at room temperature under nitrogen atmosphere over night. The reaction was quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the product was extracted 3 times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers was washed with water and brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. Flash chromatography on silica gel with 100% pentane as eluent yielded the desired product as a colorless oil.

triethyl (3-ethylphenoxy) silane
Colourless oil. Yield $=58 \% . \mathrm{R}_{\mathrm{f}}=0.77$, in pentane.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-$ $6.77(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.74(\mathrm{q}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.5,145.8,129.1,120.8,119.5,117.0,28.7,15.5$, 6.7, 5.0.

IR (Neat, cm^{-1}): $v=2960,2877,1603,1584,1484,1274,1157,940,809,745$
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 237.1669$; found, 237.1624.

(3-Butylphenoxy) triethyl silane

Colourless oil. Yield $=87 \% \mathrm{R}_{\mathrm{f}}=0.38$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.79-$ $6.75(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.26(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.78-0.68(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.4,144.4,129.0,121.4,120.0,117.0,35.5,33.5$, 22.3, 13.9, 6.6, 5.0.

IR (Neat, cm^{-1}): $v=2957,2877,1603,1585,1484,1277,1157,1003,976,826,746$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 265.1988$; found, 265.1991.

triethyl (3-pentylphenoxy) silane
Colourless oil. Yield $=82 \% . \mathrm{R}_{\mathrm{f}}=0.41$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.13-7.10 (m, 1H), 6.78-6.76 $(\mathrm{m}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.30(\mathrm{~m}$, 2 H), 1.03-0.98 (m, 9H), 0.94-0.87 (m, 3H), 0.77-0.71 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $155.5,144.5,129.0,121.4,120.1,117.0,35.8,35.5$, $33.5,31.5,31.0,22.6,22.3,14.0,14.0,6.7,5.0$.
IR (Neat, cm^{-1}): $v=2956,1602,1584,1484,1275,1157,1004,978,825,728$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 301.1958; found, 301.1952.

(2,5-Dimethylphenoxy) triethyl silane
Colourless oil. Yield $=97 \% \mathrm{R}_{\mathrm{f}}=0.40$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.76$ (q, $J=8.3 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,136.3,130.5,125.5,121.6,119.3,21.1,16.2$, 6.7, 5.3.

IR (Neat, cm^{-1}): $v=2956,2877,1617,1580,1507,1411,1280,1127,1002,836,743$. HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 237.1675$; found, 237.1662.

This compound has been previously reported. [6]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-$ $6.75(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.75(\mathrm{q}, J=8.5,7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,130.4,129.8,119.6,20.5,6.6,5.0$.

triethyl (4-propylphenoxy) silane
Colourless oil. Yield $=92 \% \mathrm{R}_{\mathrm{f}}=0.36$, in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.06 -7.02 (m, 2H), 6.81 -6.77
$(\mathrm{m}, 2 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.99(\mathrm{~m}$, $9 \mathrm{H}), 0.97-0.93(\mathrm{~m}, 4 \mathrm{H}), 0.79-0.74(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 153.4, 135.3, 129.2, 119.6, 37.3, 24.7, 13.8, 6.8, 6.7, 6.5, 5.0.

IR (Neat, cm^{-1}): $v=2958,2877,1609,1510,1458,1260,1168,1016,911,806,730$. HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 273.1645; found, 273.1645.

TBDMSO OTBDMS This compound was prepared following the procedure described in literature. [7].

This compound was prepared following the procedure described in literature. [8].

4. General procedure for the Birch reduction

General Procedure: The reactions were carried out in a 3-necked round-bottomed flask with a dry ice condenser, an $\mathrm{NH}_{3}(\mathrm{~g})$ inlet, and a stopper for Li or Na addition. To the round-bottomed flask, 1.5 mL of tert -BuOH and 3 mL THF was added. Ammonia was condensed from commercial $\mathrm{NH}_{3}(15 \mathrm{~mL})$ tube into the mixture while cooling the flask in a dry ice/acetone bath. Addition of the Li (10 equiv.) was done at reflux temperature of NH_{3}, with a speed so as to prevent vigorous reaction/foaming. The cooling bath was removed and the reaction mixture was stirred at reflux conditions for 20 minutes. The substrate was dissolved in 2 mL dried THF then added to the reaction mixture at $-30^{\circ} \mathrm{C}$ and continuously stirred for 2 hours. The reaction was cooled to $-78^{\circ} \mathrm{C}$. Solid $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the dry-ice/acetone bath was removed. The NH_{3} was allowed to evaporate. Then saturated aqueous solution of
$\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted 3 times with pentane. The combined organic extracts were washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the product/s were purified either by distillation under reduced pressure or by chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ using pure pentane as eluent.
Procedure A: Li (10 equiv.) was used and reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 2 hours.
Procedure B: Li (60 equiv.) was used and reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 8 hours.

2-((5-Methylcyclohexa-1,4-dien-1-yl)oxy) tetrahydro-2H-pyran Colourless oil. Yield $=79 \% . \mathrm{R}_{\mathrm{f}}=0.8$, in $20 / 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$. Followed procedure \mathbf{A} for the birch reduction.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.38(\mathrm{~s}, 1 \mathrm{H}), 5.23-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.88$ (ddd, $J=11.6,8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=11.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=21.8,6.0 \mathrm{~Hz}$, 2H), 2.69-2.59 (m, 2H), $1.98-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.76$ (ddd, $J=13.1,9.6,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 149.6,130.5,118.6,95.8,95.1,62.4,33.0,30.5,27.0$, 25.3, 22.9, 19.3.

IR (Neat, cm^{-1}): $v=2942,1699,1668,1441,1394,1197,1136,1039,975,776$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 195.1385; found, 195.1391.

triisopropyl ((5-methylcyclohexa-1,4-dien-1-yl)oxy) silane
Colourless oil. Yield $=68 \% . \mathrm{R}_{\mathrm{f}}=0.42$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.36 (qt, $\left.J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85(\mathrm{tq}, J=3.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.96(\mathrm{~m}, 13 \mathrm{H})$, 0.73-0.64 (m, 6H).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $148.0,136.4,116.6,100.5,33.6,29.6,27.2,12.0,6.8$, 6.8, 5.0.

IR (Neat, cm^{-1}): $v=2918,1721,1459,1365,1212,1018,880,775$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 267.2144$; found, 267.2129 .

tert-Butyldimethyl ((5-methylcyclohexa-1,4-dien-1-yl)oxy) silane
Colorless oil. Yield $=92 \% . \mathrm{R}_{\mathrm{f}}=0.40$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 0 \mathrm{H}), 2.78-2.68$ (m, 2H), $2.59-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,130.9,118.5,100.8,35.4,27.2,22.9,18.0,-4.4$.
IR (Neat, cm^{-1}): $v=2957,2857,1699,1667,1472,1385,1253,1220,1136,937,832$, 780.

HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}, 247.1489$; found, 247.1500.

tert-Butyl ((5-ethylcyclohexa-1,4-dien-1-yl)oxy) dimethylsilane
Colorless oil. Yield $=95 \% . \mathrm{R}_{\mathrm{f}}=0.41$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.70$ $(\mathrm{m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{q}, J=8.7,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3 H), 0.93 ($\mathrm{s}, 9 \mathrm{H}$), 0.15 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.1,136.3,116.7,100.8,33.7,29.6,27.2,25.7$, 18.0, 12.0, -4.4.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): ~ v=2959,2858,1698,1666,1462,1381,1214,1142,930$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 238.1753; found, 238.1734.

Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.38-5.36 (m, 1H), 4.85-4.83(m, 1H), 2.77-2.72 (m, 2H), $2.59-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.94-0.87(\mathrm{~m}$, 15 H), 0.16 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 148.1, 134.9, 117.9, 100.8, 36.6, 33.6, 29.5, 27.2, 25.7, 22.4, 18.0, 14.0, -4.4.

IR (Neat, cm^{-1}): $v=2928,1697,1665,1471,1384,1254,1217,1141,932,836,778$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 289.1958; found, 289.1948.

tert-Butyldimethyl ((5-pentylcyclohexa-1,4-dien-1-yl) oxy) silane
Colourless oil. Yield $=88 \%$.

Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.38-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.83(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 2 \mathrm{H})$, $2.59-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 13 \mathrm{H}), 0.16(\mathrm{~s}$, 6 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 148.1, 134.9, 117.9, 100.8, 36.9, 36.6, 33.6, 31.6, 29.5, 27.2, 27.0, 25.7, 25.7, 22.6, 22.4, 18.0, 14.1, 14.0, -4.4.

IR (Neat, cm^{-1}): $v=2928,1697,1463,1254,1217,1141,1006,931,836,778,684$. HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 303.2115; found, 303.2108.
 tert-Butyl ((2,5-dimethylcyclohexa-1,4-dien-1-yl)oxy) dimethylsilane
Colourless oil. Yield $=78 \% . \mathrm{R}_{\mathrm{f}}=0.41$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 5.39-5.27(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.53$ (m, 2H), $1.70-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.4,130.9,118.9,108.4,36.1,33.4,25.9,22.8$, 18.2, 15.5, -3.7.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): ~ v=2929,2857,1711,1681,1472,1385,1253,1195,1099,931,834$, 777.

HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}$, 238.1753; found, 238.1758.

TBDMS $^{-}{ }^{-1} \begin{aligned} & \text { tert-Butyldimethyl ((4-methylcyclohexa-1,4-dien-1-yl)oxy) } \\ & \text { silane }\end{aligned}$

Colourless oil. Yield $=90 \% . \mathrm{R}_{\mathrm{f}}=0.41$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.36-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.79(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.57$ (m, 4H), $1.67(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,131.4,118.1,101.0,77.3,77.0,76.7,31.6$, 31.3, 25.7, 22.7, 18.0, -4.4.

IR (Neat, cm^{-1}): $v=2956,2877,1699,1667,1458,1372,1202,1005,869,743$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$, 224.1596; found, 224.1583.

triethyl ((5-ethylcyclohexa-1,4-dien-1-yl) oxy) silane Colourless oil. Yield $=80 \% . \mathrm{R}_{\mathrm{f}}=0.41$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.67$ (m, 2H), $2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 2 \mathrm{H}), 1.21-1.01(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,130.1,118.5,100.0,35.4,27.3,22.9,18.0$, 17.9,12.7.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): ~ v=2962,2867,1697,1667,1465,1385,1219,1138,883$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$, 239.1831; found, 239.1809.

((5-Butylcyclohexa-1,4-dien-1-yl)oxy)triethylsilane
Colourless oil. Yield $=60 \% . R_{f}=0.30$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 5.39-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.69$ (m, 2H), $2.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.34-$ $1.26(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{q}, J=8.1 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.1,134.9,117.9,100.4,36.6,33.6,29.5,27.2$, 22.4, 14.0, 6.7, 5.1.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): ~ v=2955,2876,1697,1665,1458,1382,1213,1141,1005,928,744$. HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 289.1958; found, 289.1962.

triethyl ((5-pentylcyclohexa-1,4-dien-1-yl) oxy) silane
Colourless oil. Mixture of starting material and birch product, Birch reaction conversion $=62 \%$.
Followed procedure \mathbf{B} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{dq}, J=3.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{ddt}, J=3.5,2.3,1.3 \mathrm{~Hz}$,
$2 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 5 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.51(\mathrm{~m}$, $3 \mathrm{H}), 1.51-1.19(\mathrm{~m}, 14 \mathrm{H}), 1.06-0.81(\mathrm{~m}, 35 \mathrm{H}), 0.80-0.64(\mathrm{~m}, 17 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5,148.1,144.5,144.4,134.9,134.9,129.0$, $121.4,120.1,117.9,117.0,100.4,36.9,36.6,35.8,35.5,33.6,33.5,31.6,31.5,31.0$, $29.5,27.2,27.0,22.6,22.6,22.4,22.3,14.1,14.0,14.0,13.9,7.7,6.7,6.6,5.1,5.0$. IR (Neat, cm^{-1}): $v=2956,1715,1589,1456,1364,1217,1017,849,729$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 303.2115; found, 303.2021.

((2,5-Dimethylcyclohexa-1,4-dien-1-yl)oxy) triethyl silane
Colourless oil. Yield $=59 \% . R_{f}=0.42$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.37-5.32(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4,130.9,118.9,108.4,36.0,33.2,22.8,15.3,6.8$, 6.4, 5.6.

IR (Neat, cm^{-1}): $v=2955,2877,1710,1445,1365,1237,11961155,1005,927,801$. HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 239.1831$; found, 239.1802.

triethyl ((4-methylcyclohexa-1,4-dien-1-yl)oxy) silane
Colourless oil. Yield $=78 \% . \mathrm{R}_{\mathrm{f}}=0.23$, in pentane.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.36-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.82(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.2,131.4,118.2,100.6,31.6,31.2,22.7,6.8,6.7$, 6.4, 5.1.

IR (Neat, cm^{-1}): $v=2956,2877,1699,1667,1458,1372,1202,1005,869,743$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$, 225.1675; found, 225.1672.

triethyl ((4-propylcyclohexa-1,4-dien-1-yl) oxy) silane Colourless oil. Yield $=87 \%$.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.34(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 4 \mathrm{H}), 1.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.98$ (t, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.94-0.84(\mathrm{~m}, 4 \mathrm{H}), 0.67(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 148.2, 135.1, 117.6, 100.7, 38.9, 31.2, 29.8, 20.8, 13.8, 6.8, 6.7, 6.4, 5.1.

IR (Neat, cm^{-1}): $v=2957,1697,1664,1508,1458,1377,1203,1071,1016,868,743$. HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 267.2144$; found, 267.2137.

1-(1-Ethoxyethoxy)-5-methylcyclohexa-1,4-diene
Colourless oil. Yield $=97 \%$.
Followed procedure \mathbf{A} for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-$ $4.73(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 149.9,130.6,118.5,97.5,95.1,61.7,33.3,26.9,22.8$, 20.2, 15.2.

IR (Neat, cm^{-1}): $v=2976,2883,1699,1665,1446,1380,1206,1144,1123,953,773$. HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 205.1199; found, 205.1216.

 1-(Ethoxymethoxy)-5-methylcyclohexa-1,4-diene
 Colourless oil. Yield $=97 \%$.
 Followed procedure \mathbf{A} for the birch reduction.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{td}, J=3.5,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-$ $1.65(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,130.4,118.6,95.1,91.9,64.2,32.9,26.9,22.9$, 15.1.

IR (Neat, cm^{-1}): $v=2974,2886,1700,1668,1388,1200,1131,1065,1005,776$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 191.1043; found, 191.1051.

tert-Butyl(2-(5-((tert-butyl dimethylsilyl) oxy) cyclohexa-1,4-dien-1-yl)ethoxy) dimethylsilane
Colourless oil. Yield $=70 \%$. Followed procedure
B for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=$
$6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.85$ (m, 19H), 0.14 (s, 6H), 0.05 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.0,132.0,120.0,100.6,62.1,40.3,34.1,27.2$, 25.9, 25.7, 18.3, 18.0, -4.4, -5.3.

IR (Neat, cm^{-1}): $v=2857,1698,1665,1604,1585,1472,1387,1255,1220,1099$, 1005, 931, 836, 776, 662.
HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{NaO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 391.2459; found, 391.2452.

tert-Butyl(2-(4-((tert-butyl dimethylsilyl) oxy) cyclohexa-1,4-dien-1-yl)ethoxy) dimethylsilane
Colourless oil. Yield $=76 \%$. Followed procedure B for the birch reduction.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.41-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.75-2.60 (m, 4H), 2.24-2.16 (m, 2H), 0.94-0.87 (m, 20H), 0.13 (s, 6H), 0.04 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,132.4,119.6,101.0,76.7,62.3,40.1,31.2$, 30.3, 26.0, 25.7, 18.4, 18.0, -4.4, -5.3.

IR (Neat, cm^{-1}): $v=2929,1697,1665,1472,1377,1254,1204,1100,1050,1005$, 939, 882, 837, 776, 680.
HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{NaO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 391.2459$; found, 391.2449 .

5. Synthesis of functional substrates and acyclic substrates

In a schlenk flask, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide. $\mathrm{HCl}(24.4 \mathrm{mmol}$, 1.3 equiv.) and $\mathrm{NMe}(\mathrm{OMe}) . \mathrm{HCl}(28.8 \mathrm{mmol}, 1.5$ equiv.) were dissolved in 60 mL of $\mathrm{CH}_{3} \mathrm{CN}$ under N_{2} atmosphere. Then $\mathrm{Et}_{3} \mathrm{~N}(24.4 \mathrm{mmol}, 1.3$ equiv.) was added at room temperature. A solution of phenol carboxylic acid ($18.8 \mathrm{mmol}, 1$ equiv.) was added using an addition funnel. The reaction mixture was stirred overnight at room temperature. The solvent was removed under vacuum. The crude residue was diluted with EtOAc and 2 M HCl was added. The reaction mixture was extracted twice with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the product was purified by column chromatography.

3-(3-Hydroxyphenyl)- N -methoxy- N -methyl propanamide
Colourless oil. Yield $=89 \% . \mathrm{R}_{\mathrm{f}}=0.48$, in $70 / 30$ EtOAc/pentane.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.72-$ $6.67(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.71$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,156.2,142.9,129.6,120.3,115.5,113.2,61.2$, 33.5, 32.2, 30.6.

IR (Neat, cm^{-1}): $v=$ br_3284, 2938, 1668, 1603, 1585, 1485, 1442, 1278, 1158, 993, 839, 782.
HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 232.0944$; found, 232.0942.

3-(3-hydroxyphenyl)- N-methoxy- N-methylpropanamide (8.1 mmol) and imidazole (12.15 mmol) were dissolved in 45 mL of dry DMF in a 100 mL round-bottomed flask. TBDMSCl (10.5 mmol) was added to the mixture. The reaction was stirred overnight at room temperature under N_{2} atmosphere. Then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with ether, washed several times with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the product was purified by column chromatography ($40 / 60$ of $\mathrm{EtOAc} /$ pentane) to yield the desired product.

3-(3-((tert-Butyldimethylsilyl)oxy)phenyl)- N -methoxy- N-methyl propanamide

Colourless oil. Yield $=94 \% . \mathrm{R}_{\mathrm{f}}=0.50$, in $40 / 60 \mathrm{EtOAc} /$ pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ $-6.65(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 2 \mathrm{H})$, 0.98 (s, 9H), 0.19 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,155.6,142.8,129.2,121.3,120.1,117.6,61.1$, 33.7, 32.1, 30.5, 25.6, 18.1, -4.5.

IR (Neat, cm^{-1}): $v=2932,2858,1668,1603,1585,1485,1442,1278,1158,993,839$, 782.

HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}, 346.1809$; found, 346.1805 .

3-(3-((tert-butyldimethylsilyl)oxy)phenyl)- N -methoxy- N -methylpropanamide (5.7 mmol) was dissolved in 50 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. Then MeMgBr $(2.5 \mathrm{M}, 2.3 \mathrm{~mL}, 5.7 \mathrm{mmol})$ was slowly added to the substrate solution. The reaction mixture was stirred at room temperature for 1 hour. Then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with ether (3 x 20 mL), washed several times with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the product was purified by column chromatography (10/90 of $\mathrm{EtOAc} /$ pentane) to yield the desired product.

4-(3-((tert-Butyldimethylsilyl)oxy) phenyl) butan-2one
Colourless oil. Yield $=89 \% . \mathrm{R}_{\mathrm{f}}=0.40$, in $10 / 90$ EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.65$ $(\mathrm{m}, 2 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}$, 6 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8,155.7,142.5,129.3,121.2,120.0,117.7,45.1$, 30.0, 29.6, 25.7, 18.2, -4.4.

IR (Neat, cm^{-1}): $v=2930,2858,1719,1602,1585,1486,1272,1158,978,839,782$. HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 301.1594$; found, 301.1598 .

4-(3-((tert-Butyldimethylsilyl)oxy)phenyl)butan-2-one (4.3 mmol) was dissolved in 40 mL of toluene with $0.97 \mathrm{~mL}(17.2 \mathrm{mmol})$ ethylene glycol and $10 \mathrm{~mol} \%$ of p toluenesulphonic acid monohydrate, in a 100 mL round-bottomed flask connected to a Dean and Stark apparatus. The reaction mixture was heated overnight at $130^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the product was purified by column chromatography ($5 / 95$ of $\mathrm{Et}_{2} \mathrm{O}$ /pentane) to yield the desired product.

tert-Butyldimethyl(3-(2-(2-methyl-1,3-dioxolan-2yl)ethyl)phenoxy) silane
Colourless oil. Yield $=49 \% . R_{f}=0.47$, in $10 / 90$
EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.61(\mathrm{~m}$, $2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.37$ (s, 3H), 0.98 (s, 9H), 0.19 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,143.7,129.1,121.3,120.1,117.3,109.6,64.7$, 40.9, 30.1, 25.7, 24.0, 18.1, -4.5.

IR (Neat, cm^{-1}): $v=2955,2859,1604,1585,1487,1259,1158,1056,964,841,781$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 345.1856$; found, 345.1853.

4-(3-((tert-Butyldimethylsilyl)oxy)phenyl) butan-2-one (5.45 mmol) was dissolved in 50 mL of toluene with $1.8 \mathrm{~mL}(21.8 \mathrm{mmol}) 1,3$-propandiol and $10 \mathrm{~mol} \%$ of p toluenesulphonic acid monohydrate, in a 100 mL round-bottomed flask connected to a Dean and Stark apparatus. The reaction mixture was heated overnight at $130^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the product was purified by column chromatography ($5 / 95$ of $\mathrm{Et}_{2} \mathrm{O} /$ pentane) to yield the desired product.

tert-Butyldimethyl(3-(2-(2-methyl-1,3-dioxan-2yl)ethyl)phenoxy)silane
Colourless oil. Yield $=67 \% . \mathrm{R}_{\mathrm{f}}=0.40$, in $10 / 90$ EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.85(\mathrm{~m}$, $4 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,144.0,129.1,121.3,120.2,117.3,98.8,59.7$, 39.7, 29.6, 25.7, 25.5, 21.3, 18.2, -4.4.

IR (Neat, cm^{-1}): $v=2956,2859,1603,1584,1485,1258,1155,1091,967,840,781$. HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 359.2013$; found, 359.1998.

The Birch product was synthesized following the general Birch reduction procedure A . For this substrate, 30 equiv. of Li was used and the reaction time was 4 hours.

tert-Butyldimethyl ((5-(2-(2-methyl-1,3-dioxolan-2-yl) ethyl) cyclohexa-1,4-dien-1-yl) oxy) silane
Colourless oil. Quantitative yield. $\mathrm{R}_{\mathrm{f}}=0.53$, in 10% EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.42-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.86$ $-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 4 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9,134.3,117.9,109.9,100.8,64.7,37.0,33.8$, 31.2, 27.2, 25.7, 23.9, 18.0, -4.4.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): v=2953,2858,1697,1665,1472,1376,1215,1126,1057,930,836$, 779.

HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 347.2013$; found, 347.2013.

The Birch product was synthesized following the general Birch reduction procedure A. For this substrate, 30 equiv. of Li was used and the reaction time was 4 hours.

tert-Butyldimethyl((5-(2-(2-methyl-1,3-dioxan-2-yl) ethyl) cyclohexa-1,4-dien-1-yl) oxy) silane
Colourless oil. Yield $=86 \% . \mathrm{R}_{\mathrm{f}}=0.46$, in $10 / 90$ EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 5.43-5.37(\mathrm{~m}, 1 \mathrm{H})$, $4.86-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.84(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,134.5,117.9,100.8,99.0,59.7,35.7,33.9$, 30.5, 27.2, 25.7, 25.5, 21.2, 18.0, -4.4.

IR (Neat, cm^{-1}): $v=2954,2858,1697,1665,1472,1381,1247,1092,929,834,778$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 361.2169$; found, 361.2158 .

In the dried round bottom flask, 1-bromo-4-(2-methylprop-1-en-1-yl)benzene was dissolved in dried THF under nitrogen gas. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, then t BuLi was slowly added. The reaction mixture was stirred for 1 hour. Then a solution of N -methoxy- N -methylpropionamide in THF was slowly added to the lithium aryl solution. The mixture stirred further at the same temperature for another 1 hour. the reaction was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under
vacuum. The crude product was purified by silica column chromatography with 5% $\mathrm{EtOAc} / \mathrm{Pentane}$ to provide the pure product as a colorless oil.

1-(4-(2-methylprop-1-en-1-yl)phenyl)propan-1-one
Colorless oil $268 \mathrm{mg} 63 \%$ yield $\left(\mathrm{R}_{\mathrm{f}}=0.65\right.$ Pentane/EtOAc 9:1)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.94$ - 7.89 (m, 2H), 7.30 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.29 (s, 1H), 2.99 (q, $J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.93$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.15,143.33,138.01,134.19,128.65,127.81$, 124.47, 31.57, 27.04, 19.55, 8.25.

IR (Neat, cm^{-1}): $v=2976,1682,1602,1225,1181,952,872,786$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}=211.1099$. Found: 211.1094.

The solution of 1-(4-(2-methylprop-1-en-1-yl)phenyl)propan-1-one and TBDMSCl in dry THF under N_{2} was cooled to $-78^{\circ} \mathrm{C}$. TBDMSCl was added to the reaction mixture which was slowly warmed up to room temperature and stirred for 48 hours. The reaction was quenched with saturated NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum. The crude product was purified by column chromatography (Deactivated-silica) with Pentane as eluent.

(Z)-tert-butyldimethyl((1-(4-(2-methylprop-1-en-1-yl) phenyl)prop-1-en-1-yl)oxy) silane

Colorless oil $67 \mathrm{mg} 64 \%$ yield $\left(\mathrm{R}_{\mathrm{f}}=0.60\right.$ Pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 100:1)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Benzene- d_{6}) $\delta 7.53$ - 7.47 (m, 2H), 7.18 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.72 (dd, $J=6.6,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, C ${ }_{6}$ D6) $\delta 150.79$, 138.35, 137.94, 135.17, 128.84, 125.91, $125.75,105.58,26.93,26.17,19.50,18.64,12.01,-3.72$.
IR (Neat, cm^{-1}): $v=2929,1652,1602,1471,1319,1255,1060,838,779$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right] \mathrm{Calcd}$. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NaOSi}=303.2144$. Found: 303.2123.

Was prepared following the procedure described for 1-(4-(2-methylprop-1-en-1yl)phenyl) propan-1-one.

(E)-1-(4-(but-2-en-2-yl)phenyl)propan-1-one
White solid (m.p. 44.5-45.7) $240 \mathrm{mg} 47 \%$ yield $\left(\mathrm{R}_{\mathrm{f}}=0.65\right.$ Pentane/EtOAc 9:1)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.90$ (dd, $J=8.7,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.04-5.96(\mathrm{~m}, 1 \mathrm{H})$, $2.99(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{dd}, J=6.9,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.33,148.32,134.85,134.76,128.00,125.43$, 124.82, 31.64, 15.19, 14.44, 8.30.

IR (Neat, cm^{-1}): $v=2978,1679,1602,1409,1225,952,792$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}=211.1099$. Found: 211.1092.

Was prepared following the procedure described for (Z)-tert-butyldimethyl((1-(4-(2-methylprop-1-en-1-yl)phenyl)prop-1-en-1-yl)oxy)silane.

(((Z)-1-(4-((E)-but-2-en-2-yl)phenyl)prop-1-en-1-yl)oxy) triisopropylsilane
Colorless oil $199 \mathrm{mg} 69 \%$ yield $\left(\mathrm{Rf}=0.68\right.$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$
100:1)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Benzene- d_{6}) $\delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=6.9,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{q}, J=4.2 \mathrm{~Hz}, 21 \mathrm{H})$. Containing $8 \% E$ isomer silyl enolate.
${ }^{13} \mathrm{C}$ NMR (101 MHz, C ${ }_{6}$ D6) δ 151.81, 143.40, 139.11, 135.48, 126.19, 125.49, 122.33, 105.01, 67.84, 25.87, 18.26, 15.35, 14.30, 14.03, 12.00.

IR (Neat, cm^{-1}): $v=2925,2867,1649,1464,1322,1080,1051,883,681$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NaOSi}=367.2433$. Found: 367.24396.
Alkyl bromide was added to a suspension of Mg turnings (activated by I_{2}) in THF (20 mL) at room temperature. The mixture was refluxed for 40 minutes. The mixture was cooled to room temperature and added dropwise to a solution of amide in 20 mL THF at $0{ }^{\circ} \mathrm{C}$, then stirred at room temperature overnight. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography $5 \% \mathrm{EtOAc} /$ Pentane to yield desired product.

(\boldsymbol{E})-1,5-diphenylhex-4-en-1-one

White solid (m.p.52.4-53.8) $2.224 \mathrm{~g}, 56.8 \%$ yield $\left(\mathrm{R}_{\mathrm{f}}=\right.$ Pentane/EtOAc 9:1)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.99$ (dt, $J=8.5,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44$ (m, 2H), $7.39-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.86-5.78(\mathrm{~m}, 1 \mathrm{H}), 3.16-$ $3.11(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 199.59,143.67,137.00,135.95,132.96,128.57$, 128.13, 128.03, 126.65, 126.59, 125.64, 38.37, 23.57, 15.84.

IR (Neat, cm^{-1}): $v=3056,2984,1685,1597,1447,1362,1202,974,757,691$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}=273.1250$. Found: 273.1255.

tert-butyl (((1Z,4E)-1,5-diphenylhexa-1,4-dien-1-yl)oxy)

 dimethylsilane.Colorless oil $140 \mathrm{mg}, 48 \%$ yield $\left(\mathrm{R}_{\mathrm{f}}=0.43\right.$ Pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 100:1)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Benzene- d_{6}) $\delta 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.65-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, C ${ }_{6}$ D6) $\delta 150.20,144.25,140.19,135.75,128.51,127.93$, 126.94, 126.87, 126.37, 126.13, 110.26, 26.50, 26.11, 25.97, 18.60, 16.04, -3.78.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): v=2956,2929,1648,1599,1492,1444,1332,1256,1075,1022$, 839, 696.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. For $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{OSiNa}=387.2115$. Found: 387.2123.

6. Racemate preparation and ee determination of silyl enol ethers

Procedure A: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst \mathbf{A} and \mathbf{E} and then the crude hydrogenated products were hydrolyzed to cyclohexanone using 1 mL of 2 M HCl in 1 mL of cosolvent ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane $)$. The mixture was stirred overnight at room temperature. The reaction mixture was extracted with pentane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent, the hydrolyzed product was injected into a chiral GC. GC sample: 1 $\mathrm{mg} / \mathrm{mL}, \mathrm{Et}_{2} \mathrm{O}$. The $e e$'s of the following compounds ($\mathbf{2 a}^{\prime}, \mathbf{3 a}^{\prime}, \mathbf{4 a}^{\prime}, \mathbf{5 a}^{\prime}, \mathbf{6 a}^{\prime}, \mathbf{7 a}^{\prime}, \mathbf{1 9 a}^{\prime}$ and 20a') were determined using procedure \mathbf{A}.

Procedure B: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst \mathbf{A} and \mathbf{E}, and then the crude hydrogenated products were passed through a short plug of silica, using $\mathrm{Et}_{2} \mathrm{O}$:Pentane (1/1) as an eluent. After removing the solvent, the hydrogenated products were injected into a chiral GC. GC sample: $1 \mathrm{mg} / \mathrm{mL}, \mathrm{Et}_{2} \mathrm{O}$. The $e e$'s of the following compounds (8a', 9a', 10a', 11a', 12a', 13a', 14a', 16a' and 17a') were determined using this procedure \mathbf{B}.

8a'

$11 \mathbf{a}^{\prime}$

$16 a^{\prime}$

9a'

13a'

$17 \mathbf{a}^{\prime}$

Procedure C: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic $\operatorname{Ir}-\mathrm{N}, \mathrm{P}$ catalyst \mathbf{A} and \mathbf{E} and then the crude hydrogenated products were passed through a short plug of silica, using $\mathrm{Et}_{2} \mathrm{O}: \operatorname{Pentane}(1 / 1)$ as an eluent After removing the solvent, the hydrogenated products were oxidized by using the Saegusa oxidation reaction shown in the scheme below. Recently a modification was reported by Herzon [9] for the Saegusa oxidation. After working up the Saegusa oxidation and purification, the oxidized product was injected to a chiral GC. GC sample: $1 \mathrm{mg} / \mathrm{mL}, \mathrm{Et}_{2} \mathrm{O}$. The ee of the following compound (15a') was determined using procedure \mathbf{C}.

Procedure D: The freshly prepared silyl enol ether 1,4-cyclohexadiene was hydrogenated by the racemic Ir-N,P catalyst \mathbf{A} and \mathbf{E} and then the crude hydrogenated products were passed through a short plug of silica, using $\mathrm{Et}_{2} \mathrm{O}: \operatorname{Pentane}(1 / 1)$ as an eluent. After removing the solvent, the hydrogenated products were oxidized using the Saegusa oxidation in procedure C. After working up the Saegusa oxidation and purification, the oxidized product was hydrolyzed using 1 mL of 2 M HCl in 1 mL of co-solvent ($\mathrm{Et}_{2} \mathrm{O}:$ Pentane $)$. The mixture was stirred overnight at room temperature. The reaction mixture was extracted with pentane and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent, the final hydrolyzed product was injected to chiral GC. GC sample: $1 \mathrm{mg} / \mathrm{mL}, \mathrm{Et}_{2} \mathrm{O}$. The $e e$'s of the following compounds (18a' and 21a') were determined using procedure \mathbf{D}.

18a'

21a'

7. General procedure for asymmetric hydrogenations

A glass vial was charged with freshly prepared substrate $(0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (10 $\mathrm{mol} \%$) and Ir-complex ($0.5 \mathrm{~mol} \%$). $\mathrm{PhCF}_{3}(4 \mathrm{~mL})$ was added and the vial was placed in a high-pressure hydrogenation apparatus. The reactor was purged three times with Ar , then filled to the required pressure with H_{2}. The reaction was stirred at room temperature for 12 hours (unless otherwise stated). The crude product was purified through on a column of silica. The ee values were determined using chiral GC.

tert-Butyldimethyl ((5-methylcyclohex-1-en-1-yl)oxy) silane Colourless oil. Yield $=58 \%$ (NMR yield using internal standard 1,3,5-trimethoxybenzene.) $\mathrm{R}_{\mathrm{f}}=0.4$ in pentane.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.56$ $(\mathrm{m}, 3 \mathrm{H}), 1.17-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.12$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,103.8,38.3,30.6,29.3,25.7,23.4,21.6,18.0$, 4.3.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): v=2954,2928,2857,1670,1472,1461,1369,1256,1194,890,834$, 778.

HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 227.1831; found, 227.1813.
$[\boldsymbol{a}]_{D}^{23}=50.7\left(c=0.140\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
GC-MS: column Chiraldex β-DM, $60^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=23.5 \mathrm{~min}$ (major) $/ 24.9 \mathrm{~min}$ (minor), $96 \% \mathrm{ee}$.

Triethyl ((5-methylcyclohex-1-en-1-yl)oxy)silane
Colourless oil. Yield $=79 \%$. (Isolated yield, observed 12% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.3$ in pentane.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88-4.83(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.56$ $(\mathrm{m}, 3 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 9 \mathrm{H}), 0.65(\mathrm{q}, ~ J=8.4,7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,103.3,38.3,30.5,29.4,23.4,21.6,6.7,5.1$.
IR (Neat, cm^{-1}): $v=2954,2913,2877,1669,1457,1369,1238,1188,1005,886,744$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 227.1831; found, 227.1848.
$[a]_{D}^{23}=46.4\left(c=0.345\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
GC-MS: column Chiraldex β-DM, $60{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=24.2 \mathrm{~min}$ (major) $/ 26.5 \mathrm{~min}$ (minor), 94% ee.

Triethyl ((5-ethylcyclohex-1-en-1-yl) oxy) silane
Colourless oil. Yield $=56 \%$. (Isolated yield, observed 11% hydrolysis product.) $\mathrm{R}_{\mathrm{f}}=0.32$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.88-4.84(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}$, $3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 12 \mathrm{H}), 0.68-0.62(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 150.1, 103.5, 36.3, 36.2, 28.9, 28.3, 23.4, 11.5, 6.7, 5.1.
IR (Neat, cm^{-1}): $v=2917,1669,1461,1371,1188,1016,899,870,743$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}, 241.1982$; found, 241.1990.
$[\boldsymbol{a}]_{D}^{23}=-9.524,\left(c=0.1050, \mathrm{CHCl}_{3}\right)$.
GC-MS: column Chiraldex $\beta-3 \mathrm{p}, 80^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=207.6 \mathrm{~min}(\mathrm{minor}) / 211.5 \mathrm{~min}$ (major), 99% ee.

TBDMS ${ }^{-}{ }^{\text {O-Bu }}$ tert-Butyl ((5-butylcyclohex-1-en-1-yl) oxy) dimethylsilane
 Colourless oil. Yield $=54 \%$ (NMR yield using internal

standard 1,3,5-trimethoxybenzene). $\mathrm{R}_{\mathrm{f}}=0.38$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.88-4.83(\mathrm{~m}, 1 \mathrm{H}), ~ 2.06-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.54(\mathrm{~m}$, $3 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.91(\mathrm{~m}, 12 \mathrm{H}), 0.13-0.12(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 150.2, 103.9, 36.6, 36.0, 34.4, 29.2, 28.8, 25.7, 25.7, 23.4, 22.9, 18.0, 14.1, -4.3.

IR (Neat, cm^{-1}): $v=2918,1671,1462,1362,1255,1112,1020,928,833,776$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 291.2115; found, 291.2109.
$[\boldsymbol{a}]_{D}^{23}=+36.413,\left(c=0.1843, \mathrm{CHCl}_{3}\right)$.
GC-MS: column Chiraldex β-DM, $70{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=67.9 \mathrm{~min}($ minor $) / 69.7 \mathrm{~min}$ (major), 92% ee.

((5-Butylcyclohex-1-en-1-yl) oxy) triethyl silane
Colourless oil. Yield $=55 \%$ (Isolated yield). $\mathrm{R}_{\mathrm{f}}=0.30$ in pentane.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.85(\mathrm{q}, J=2.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.76$ $-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=5.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.16-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.93-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR (100 MHz, CDCl_{3}) $\delta 150.1,103.5,36.6,36.0,34.5,29.2,28.8,23.4,22.9$, 14.1, 6.7, 5.1.

IR (Neat, cm^{-1}): $v=2956,2917,1669,1458,1371,1184,1005,744$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]=291.2106$, calcd. For $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NaOsi}$: 291.2115 .
HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 291.2115; found, 291.2106 .
$[\boldsymbol{a}]_{D}^{23}=12.8\left(c=0.143\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
GC-MS: column Chiraldex β-DM, $70^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=132.2 \mathrm{~min}$ (major) $/ 126.8$ \min (minor), 95% ee.

tert-Butyldimethyl ((5-pentylcyclohex-1-en-1-yl) oxy) silane
Colourless oil. Yield $=78 \%$ (NMR yield using internal standard 1,3,5-trimethoxybenzene). $\mathrm{R}_{\mathrm{f}}=0.38$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.86-4.83(m, 1H), 2.06-1.99(m, 3H), 1.72-1.57(m, 3H), $1.34-1.26(\mathrm{~m}, 9 \mathrm{H}), 0.93-0.91(\mathrm{~m}, 12 \mathrm{H}), 0.13-0.11(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}^{1}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 150.2, 103.9, 36.6, 36.3, 36.0, 34.4, 32.1, 29.2, 28.8, 27.4, 26.6, 25.7, 23.4, 22.9, 22.7, 18.0, 14.1, -4.3, -4.5.

IR (Neat, $\left.\mathrm{cm}^{-1}\right): v=2927,1670,1462,1362,1255,1196,1179,1051,939,836,777$, 671.

HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{OSi}[\mathrm{M}]^{+}, 283.2379$; found, 282.2358 .
$[\boldsymbol{a}]_{D}^{23}=+32.022,\left(c=0.1781, \mathrm{CHCl}_{3}\right)$.
GC-MS: column Chiraldex β-DM, $80{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=68.1 \mathrm{~min}($ minor $) / 70.2 \mathrm{~min}$ (major), 96% ee.

Triethyl ((5-pentylcyclohex-1-en-1-yl) oxy) silane Colourless oil. Yield $=70 \%$ (NMR yield using internal standard 1,3,5-trimethoxybenzene). $\mathrm{R}_{\mathrm{f}}=0.36$ in pentane.
GC-MS: column Chiraldex β-DM, $80{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=67.9 \mathrm{~min}($ minor $) / 69.9 \mathrm{~min}$ (major), 95% ee.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.85-4.79(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.56$
$(\mathrm{m}, 3 \mathrm{H}), 1.39-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,103.7,32.3,31.3,29.6,28.3,25.7,21.3,18.0$, 4.4.

IR (Neat, cm^{-1}): $v=2954,2928,2857,1670,1461,1370,1256,1194,879,777$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 227.1831; found, 227.1830.
$[\boldsymbol{a}]_{D}^{23}=46.1\left(c=0.193\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
GC-MS: column Chiraldex β-DM, $80^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=48.2 \mathrm{~min}($ major $) / 46.9 \mathrm{~min}$ (minor), 80% ee.

Triethyl ((4-methylcyclohex-1-en-1-yl)oxy) silane
Colourless oil. Yield $=75 \%$. (Isolated yield, observed 20% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.36$ in pentane.
${ }^{1}{ }^{1} \mathrm{~N}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.88-4.77(m, 1H), 2.18-1.92(m, 3H), 1.77-1.54 (m, $4 \mathrm{H}), 1.50-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{dt}, J=16.4,8.0 \mathrm{~Hz}, 21 \mathrm{H}), 0.72-0.46(\mathrm{~m}, 11 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 150.2, 103.3, 33.1, 32.3, 31.3, 29.6, 29.3, 28.4, 21.3, 6.9, 6.8, 6.7, 6.4, 5.1, 4.9.

IR (Neat, cm^{-1}): $v=2914,1670,1457,1414,1370,1237,1190,1073,1017,865,742$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 249.1645; found, 249.1652.
$[\boldsymbol{a}]_{D}^{23}=+23.348,\left(c=0.2273, \mathrm{CHCl}_{3}\right)$.
GC-MS: column Chiraldex β-DM, $80^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=77.5 \mathrm{~min}($ minor $) / 79.4 \mathrm{~min}$ (major), 95% ee.

Triethyl ((4-propylcyclohex-1-en-1-yl) oxy) silane

Colourless oil. Yield $=56 \%$. (Isolated yield, observed 24% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.36$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.88-4.79 (m, 1H), 2.18-1.93
$(\mathrm{m}, 3 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.17(\mathrm{~m}, 9 \mathrm{H}), 1.01-0.83(\mathrm{~m}, 18 \mathrm{H}), 0.66(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.55$ (dq, $J=19.6,7.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (100 MHz, CDCl_{3}): 150.4, 103.3, 38.3, 33.1, 33.1, 30.4, 29.7, 29.4, 27.3, 20.3, 14.4, 6.9, 6.8, 6.7, 6.4, 5.1, 5.0.

IR (Neat, cm^{-1}): $v=2876,1670,1458,1415,1374,1188,1017,865,770$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{OSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$, 277.1958; found, 277.1961.
$[\boldsymbol{a}]_{D}^{23}=+31.364,\left(c=0.2195, \mathrm{CHCl}_{3}\right)$.
GC-MS: column Chiraldex β-DM, $70{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=104.2 \mathrm{~min}$ (major) $/ 111.9$ \min (minor), $92 \% e e$.

tert-Butyl ((2,5-dimethylcyclohex-1-en-1-yl)oxy) dimethyl silane
Colourless oil. Yield $=81 \%$. (Isolated yield, remaining 1% aromatized starting material) $\mathrm{R}_{\mathrm{f}}=0.40$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.61$ $(\mathrm{m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,111.0,38.8,31.2,30.0,25.9,21.7,18.2,16.2$, 3.7.

IR (Neat, cm^{-1}): $v=2954,2927,1688,1461,1256,1177,835,777$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaOSi}[\mathrm{M}+\mathrm{H}]^{+}$, 241.1982; found, 241.1979.
$[\boldsymbol{a}]_{D}^{23}=-11.3\left(c=0.154\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
GC-MS: column Chiraldex $\beta-3 \mathrm{P}, 90^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=37.6 \mathrm{~min}$ (major) $/ 35.7 \mathrm{~min}$ (minor), 95% ee.

((2,5-dimethylcyclohex-1-en-1-yl)oxy) triethyl silane

Colourless oil. Yield $=79 \%$. (Isolated yield, remaining 0.05% aromatized starting material). $\mathrm{R}_{\mathrm{f}}=0.27$ in pentene.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 2.08-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.65(\mathrm{q}, J=8.0 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,110.8,38.7,31.1,30.0,21.6,16.0,6.8,5.7$.
IR (Neat, cm^{-1}): $v=2954,2911,1689,1457,1378,1185,1005,803,742$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 263.1802; found, 263.1789.
$[\boldsymbol{a}]_{\boldsymbol{D}}^{23}=-45.4\left(c=0.275\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

GC-MS: column Chiraldex β-DM, $100{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=32.6 \mathrm{~min}$ (major) $/ 31.9 \mathrm{~min}$ (minor), 98% ee.

tert-Butyl(2-(3-((tert-butyldimethylsilyl)oxy) cyclohex-3-en-1-yl)ethoxy)dimethylsilane
Colourless oil. Conversion $=89 \% . \mathrm{R}_{\mathrm{f}}=0.40$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.88-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.59(\mathrm{~m}, 4 \mathrm{H}), 2.47-2.11$ $(\mathrm{m}, 3 \mathrm{H}), 2.11-1.86(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.04(\mathrm{~m}, 12 \mathrm{H}), 0.95-0.83(\mathrm{~m}, 31 \mathrm{H}), 0.12(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.05$ (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.7,149.9,103.9,61.1,60.5,48.1,41.5,39.3,39.1$, $36.5,35.7,31.3,31.1,28.6,26.0,25.9,25.7,25.3,23.3,18.3,18.0,-4.3,-4.4,-5.3,-$ 5.4.

IR (Neat, cm^{-1}): $v=2928,1670,1463,1361,1255,1199,1103,835,775$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 393.2616; found, 393.2624.
$[a]_{D}^{23}=+22.286,\left(c=0.1753, \mathrm{CHCl}_{3}\right)$.
GC-MS: column Beta-dex $225,125^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=20.4 \mathrm{~min}($ minor $) / 22.5 \mathrm{~min}$ (major), 97% ee.

tert-Butyl(2-(4-((tert-butyldimethylsilyl)oxy) cyclohex-3-en-1-yl)ethoxy)dimethylsilane
Colourless oil. Conversion $=94 \% . \mathrm{R}_{\mathrm{f}}=0.38$ in pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.83-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dt}, \mathrm{J}=13.4,6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.54$ $-1.82(\mathrm{~m}, 9 \mathrm{H}), 1.82-1.15(\mathrm{~m}, 13 \mathrm{H}), 0.96-0.83(\mathrm{~m}, 34 \mathrm{H}), 0.11(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 8 \mathrm{H})$, 0.06 (s, 11H).
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.2,150.4,103.6,61.4,61.0,40.8,38.8,38.3,32.7$, $30.4,30.0,29.5,29.2,26.0,25.7,18.4,18.0,-3.6,-4.4,-4.5,-5.3$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 393.2616; found, 393.2612.
$[\boldsymbol{a}]_{D}^{23}=+20.225\left(c=0.178, \mathrm{CHCl}_{3}\right)$
GC-MS: column Beta-dex $225,125{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=29.3 \mathrm{~min}$ (major) $/ 38.4 \mathrm{~min}$ (minor), 94% ee.

tert-Butyldimethyl ((5-(2-(2-methyl-1,3-dioxolan-2yl) ethyl) cyclohex-1-en-1-yl) oxy) silane
Colourless oil. Yield $=89 \% . \mathrm{R}_{\mathrm{f}}=0.46$, in $10 / 90$
EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.87-4.81(\mathrm{~m}, 1 \mathrm{H})$, $3.99-3.88(\mathrm{~m}, 4 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,110.2,103.9,64.6,36.7,34.7,30.4,28.7,25.7$, 23.8, 23.4, 18.0, -4.5.

IR (Neat, cm^{-1}): $v=2929,2858,1670,1472,1374,1256,1195,1069,836,778$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 349.2169$; found, 349.2164 .
GC-MS: column Chiraldex β-6TBDM, $80{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=170.6 \mathrm{~min}$ (major)/168.3 min (minor), 95% ee.

tert-Butyldimethyl ((5-(2-(2-methyl-1,3-dioxan-2-yl) ethyl) cyclohex-1-en-1-yl) oxy) silane
Colourless oil. Yield $=82 \% . \mathrm{R}_{\mathrm{f}}=0.46$, in $10 / 90$
EtOAc/pentane.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87-4.82(\mathrm{~m}, 1 \mathrm{H})$, $3.97-3.83(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 7 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 3 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 5 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$,
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,103.9,99.3,59.6,36.5,35.8,34.8,29.8,28.7$, $27.3,25.7,25.5,23.4,20.7,18.0,-4.3,-4.5$.
IR (Neat, cm^{-1}): $v=2953,2858,1670,1472,1369,1248,1195,1100,836,778$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 363.2326$; found, 363.2333.
GC-MS: column Chiraldex $\beta-6 T B D M, 80{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=171.6 \mathrm{~min}$ (major)/168.1 min (minor), 98% ee.

(Z)-tert-butyl((1-(4-isobutylphenyl)prop-1-en-1-

 yl)oxy)dimethylsilaneColourless oil. Yield $=81 \%$. (Isolated yield, observed 3\% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.23$ in pentane.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Benzene- d_{6}) $\delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.19(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}$, $9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, C ${ }_{6}$ D6) $\delta 150.85,141.06,138.02,129.06,126.07,105.25,45.39$, 26.14, 22.47, 18.62, 11.98, -3.77.

IR (Neat, cm^{-1}): $v=2956,2859,1654,1509,1471,1464,1319,1255,1116,1059$, 871, 839, 779.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaOSi}=327.2115$. Found: 327.2120.

(Z)-tert-butyldimethyl((5-methyl-1-phenylhex-1-en-1yl)oxy) silane.
Colourless oil. Yield $=78 \%$. (Isolated yield, observed 3% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.33$ in pentane.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Benzene- d_{6}) $\delta 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.10-$ $7.04(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.37$ $-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, C $\left.{ }_{6} \mathrm{D} 6\right) ~ \delta 149.74,140.44,127.73,126.31,112.47,39.23,28.25$, 26.12, 24.68, 22.80, 18.59, -3.78.

IR (Neat, cm^{-1}): $v=2955,1650,1471,1335,1256,1080,838,779$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaOSi}=327.2115$. Found: 327.2117.

(S,Z)-((1-(4-(sec-butyl)phenyl)prop-1-en-1-yl)oxy) triisopropylsilane.
Colourless oil. Yield $=82 \%$. (Isolated yield, observed 2% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.30$ in pentane.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Benzene- d_{6}) $\delta 7.51$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 18 \mathrm{H}), 0.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, C 6 D6) $\delta 151.91,147.03,138.74,127.01,126.47,104.71,41.73$, 31.48, 22.08, 18.35, 18.20, 13.98, 12.39, 11.96.

IR (Neat, cm^{-1}): $v=2961,2867,1651,1463,1378,1321,1064,883,681$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{OSi}=347.2765$. Found: 347.2775.
$[\boldsymbol{a}]_{D}^{23}=15.0\left(c=0.340\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
GC-MS: column Chiraldex β-DM, $120{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{R}}=32.0 \mathrm{~min}$ (major) $/ 33.5 \mathrm{~min}$ (minor), 99% ee.

(R, Z)-tert-butyl((1,5-diphenylhex-1-en-1-yl)oxy) dimethylsilane.
Colourless oil. Yield $=93 \%$. (Isolated yield, observed 5\% over reduction product.) $\mathrm{R}_{\mathrm{f}}=0.74$ in $4 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Benzene- d_{6}) $\delta 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.02(\mathrm{~m}, 8 \mathrm{H}), 5.10(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~h}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6}$ D6) $\delta 149.85,147.62,140.39,128.72,127.76,127.45$, $126.27,112.05,40.28,38.81,26.10,25.07,22.47,18.53,-3.84$.
IR (Neat, cm^{-1}): $v=2957,1648,1493,1331,1256,1068,876,838,779$.
HRMS-ESI; $m / z\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NaOSi}=389.2271$. Found: 389.2284. $[\boldsymbol{a}]_{\boldsymbol{D}}^{23}=22.8\left(c=0.464\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
SFC-HPLC: column OJ-H $10 \% \mathrm{MeOH}, \mathrm{t}_{\mathrm{R}}=6.2 \mathrm{~min}$ (major) $/ 7.4 \mathrm{~min}$ (minor), 98% $e e$.

This compound has been previously reported. [10]

4-(2-((tert-Butyldimethylsilyl) oxy) ethyl)cyclohex-2-en-1-one Colourless oil. Yield $=62 \% . \mathrm{R}_{\mathrm{f}}=0.29$, in $10 / 90 \mathrm{EtOAc} /$ pentane . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.91$ (ddd, $J=10.2,2.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97$ (ddd, $J=10.2,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.82-3.67$ (m, 2H), $2.68-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=16.8,12.1$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.54(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$,
0.06 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 199.9,155.3,128.9,60.4,37.3,36.9,33.0,28.6,25.9$, 18.3, -5.3, -5.4.

IR (Neat, cm^{-1}): $v=2928,1688,1463,1389,1255,1106,836,776$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 277.1587$; found, 277.1594.
$[\boldsymbol{a}]_{\boldsymbol{D}}^{23}=+29.078\left(c=0.1408, \mathrm{CHCl}_{3}\right)$

5-(2-(2-Methyl-1,3-dioxolan-2-yl) ethyl) cyclohex-2-en-1-one Colourless oil. Yield $=56 \% . \mathrm{R}_{\mathrm{f}}=0.30$ in $30 / 70 \mathrm{EtOAc} /$ pentane . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.96$ (ddd, $J=10.0,5.7,2.2 \mathrm{~Hz}$, 1 H), 6.01 (ddd, $J=10.1,2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.87(\mathrm{~m}, 4 \mathrm{H})$, $2.59-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,149.7,129.8,109.8,64.7,44.5,36.2,35.3$, 32.2, 29.9, 23.8.

IR (Neat, cm^{-1}): $v=2927,1682,1455,1377,1251,1218,1135,1055,947,836,756$. HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, 233.1148; found, 233.1156.
$[\boldsymbol{a}]_{\boldsymbol{D}}^{23}=-15.20\left(c=0.125, \mathrm{CHCl}_{3}\right)$

5-(2-(2-Methyl-1,3-dioxan-2-yl)ethyl) cyclohex-2-en-1-one

Colourless oil. Yield $=51 \% . \mathrm{R}_{\mathrm{f}}=0.28$ in $30 / 70 \mathrm{EtOAc} /$ pentane . ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{ddd}, J=10.1,5.7,2.2 \mathrm{~Hz}$, 1 H), 6.02 (ddt, $J=10.1,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.75(\mathrm{~m}, 4 \mathrm{H})$, 2.62-2.37 (m, 2H), 2.21-1.98 (m, 3H), 1.92-1.61 (m, 3H), $1.61-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9,199.9,149.8,149.5,129.8,98.9,59.7,44.5$, $44.1,40.5,36.1,35.5,34.7,32.3,32.2,29.3,25.5,20.3$.
IR (Neat, cm^{-1}): $v=2924,1668,1455,1386,1248,1095,967,879,845,753$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 247.1305$; found, 247.1313.
$[\boldsymbol{a}]_{D}^{23}=-28.986\left(c=0.1375, \mathrm{CHCl}_{3}\right)$
Asymmetric hydrogenation of substrate $\mathbf{1}$ at 5 and 10 minutes using PVP

Asymmetric hydrogenation of substrate 2 at 5 minutes using $\mathrm{K}_{3} \mathrm{PO}_{4}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectroscopic data of new compounds

${ }^{-1000}$
.

20	190			160							90	10	70	60	50				
Ј0	0	180	170	160	150	140	130	120	110	m)	90	80	70	60	50	40	30	20	10

Sk－161012－TBDMS－DIENE6．10．fid
型摂 琶

SK-161221-TES-DIENE3.10.fid
 $\underbrace{\text { NiN }}$ $\sqrt{\text { ang jon }}$

嚆號

SK-161012-TES-DIENE6.10.fid

ig6-93-2-h c 0127/11
$1+1$!

SK-161212-7-116.61A. .ado

N|
 (
/ $1 /$

SK-170410-8-182column.10.fid

SK-170419-8-192-13C.11.fid
䓂

H1

$\stackrel{\text { 8. }}{\substack{2}}$

 $\#$
1

SK-161229-8-019.10.fid

SK-161229-8-019.11.fid

$\begin{gathered} \tilde{\tilde{u}} \\ \stackrel{\sim}{4} \\ \mid \end{gathered}$

SK-170531-8-221.11.fid

SK－170416－8－195．11．fid

SK-170119-8-041.10.fid

ig6-96-43-p-161026 C H/10

Sk-161223-8-014column.10.fid

$\int 1$,

OTIPS

SK-170510-8-245column_2.10.fid
笑

[^0]

GC Chromatograms

2a'

$7 \mathbf{a}^{\prime}$

Print Date: 30 Sep 2016 12:06:17
Chromatogram Plots

12a'

Print Date: 19 Jan 2017 14:46:45
Chromatogram Plots

MS Data Review All Plots - 12/12/2016 2:45 PM
File: cilvariarwsidatalyianguol1.4 dinelyg6-96-42-80.sms
File: c:lvariarwsidatalyianguol1,4 dinelig6-96-43. sms

Print Date: 19 Jan 2017 14:57:20

MS Data Review All Plots - 1/19/2017 2:56 PM

File: c:Ivarianwsldatalyianguol1,4 dineljg6-119-1-pd-hcl125001.sms
File: c:Ivarianwsldatalianguol1,4 dinelig6-113-36-02-pd+hc.sms

kCounts
$3.0-40: 350$

Print Date: 05 Feb 2017 12:35:01
MS Data Review All Plots - 2/5/2017 12:34 PM
File: c:lvarianwsldataljianguol1,4 dineljg6-119-5-pd-hcl020002.sms File: c:Ivarianwsldataljianguol1,4 dineljg6-119-7-pd-hcl020004.sms

16a'

References

1. Harrowven, D. C.; Lucas, M. C.; Howes, P. D. Tetrahedron 2001, 57, 791.
2. Williams, D. B. G.; Simelane, S. B.; Lawton, M.; Kinfe, H. H. Tetrahedron 2010, 66, 4573.
3. Liu, T.; Shao, X.; Wu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2012, 51, 540.
4. Collins, K. D.; Ruehling, A.; Lied, F. Glorius, F. Chem. Eur. J. 2014, 20, 3800.
5. B. Wang, H.-X. Sun, Z.-H. Sun and G.-Q. Lin, Adv. Synth. Catal. 2009, 351, 415.
6. Sridhar, M.; Raveendra, J.; China Ramanaiah, B.; Narsaiah, C. Tetrahedron Lett. 2011, 52, 5980.
7. Gao, F.; Webb, J. D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 1474.
8. Toop, H. D.; Don, A. S.; Morris, J. C. Org. Biomol. Chem. 2015, 13, 11593.
9. Herzon, S. B.; Lu, L.; Woo, C. M.; Gholap, S. L. J. Am. Chem. Soc. 2011, 133, 7260.
10. Miyazawa, M.; Dejima, Y.; Takahashi, T.; Matsuda, N.; Ishikawa, R. J. Essent. Oil Res. 2011, 23, 58.
11. Winkler, C. K.; Clay, D.; Entner, M.; Plank, M.; Faber, K. Chem. Eur. J. 2014, 20, 1403.
12. Ohnemüller, U. K.; Nising, C. F.; Nieger, M.; Bräse, S. Eur. J. Org. Chem. 2006, 6,1533.
13. (a) Zhu, L.; Lauchli, R.; Loo, M.; Shea, K. J. Org. Lett. 2007, 9, 2269; (b) Brozek, L. A. J.; Sieber, D.; Morken, J. P. Org. Lett. 2011, 13, 995; (c) Matveenko, M.; Liang, G.; Lauterwasser, E. M. W.; Zubia, E.; Trauner, D. J. Am. Chem. Soc. 2012, 134, 9291.

[^0]: | 80 | 170 | 160 | 150 | 140 | 130 |
 | :---: | :---: | :---: | :---: | :---: | :---: |

 110
 ${ }^{90}{ }_{\mathrm{f} 1(\mathrm{ppm})} 80$ 40

