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I NMR relaxometry studies 

Theory 

1H relaxation is caused by magnetic dipole-dipole interactions that can be of intra-molecular 

(intra-ionic) or inter-molecular(inter-ionic) origin. In consequence, the overall spin-lattice 

relaxation rate,  1R  (  denotes the 1H resonance frequency in angular frequency units),  is 

given as a sum of intra-ionic and inter-ionic contributions (  intra,1R  and  inter,1R , 

respectively) [1,2]: 



      inter,1intra,11 RRR 
         (1) 

The structure of the compound implies two 1H  relaxation channels provided by 1H-1H and 1H-

31P  dipole-dipole interactions. However, taking into account that gyromagnetic factor of 31P is 

much smaller than of 1H and the compound contains 19 1H nuclei and only one 31P nucleus, the 

1H-31P contribution can be neglected [3]. As far as 1H-1H inter-ionic interactions are concerned, 

one should consider cation-cation, cation –anion and anion-anion couplings modulated by the 

corresponding relative translational diffusion processes (cation-cation, cation –anion and anion-

anion, respectively). However, anticipating the results, the 1H spin-lattice relaxation data 

indicate that the diffusion coefficients for both kinds of ions are similar. Therefore one can 

describe the inter-ionic relaxation in terms of a single translational diffusion coefficients. 

According to spin relaxation theory the  inter,1R  term can be expressed as [1-8]: 
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where HN  is the number of protons per unit volume (not distinguishing between the cation and 

anion protons), d denotes the distance of closest approach of ions (again, we do not distinguish 

between cations and anions), H  is the proton gyromagnetic factor, 0  and  denotes vacuum 

permeability and Planck constant, respectively, while the translational correlation time, trans , 

is defined as: transtrans Dd 2/2 , where transD  denotes a relative translation diffusion coefficient 

[7,8]. It has been shown that transD  can be determined from a low frequency slope of the 

relaxation rate plotted versus square root of the frequency. At low frequencies, when 1trans

, the relaxation rate  1R  can be approximated by a linear function:      BRR  011 , 

where: 

2/3

2

20

30

241

4















 








 transHH DNB 




         (3) 

The HN  value can be obtained knowing molecular mas (326 g/mol) and density (1.2 g/cm3) of 

the compound; one obtains: 21056.4 HN Å-3.  One should note that the slope is independent 

of the distance of closest approach, d . 

The intra-ionic dipolar couplings are modulated by rotational dynamics of the corresponding 

ions. Taking into account that the number of 1H nuclei in the anion is much smaller than in the 

cation and, moreover, rotational dynamics of the anion is very likely faster than of the cation 



(the anion is smaller) one can neglect the intra-anionic relaxation contribution. This implies that 

[1-6]: 
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where 
C

DDC  is a dipolar relaxation constant for the cation, while C

rot  denotes its rotational 

correlation time (rank 2). 

 

Data analysis 

The 1H spin-lattice relaxation data were collected by a STELAR Fast Field Cycling (FFC) 

relaxometer in the frequency range of 10kHz – 25MHz, at 283K, 288k, 294K and 303K. The 

data are shown in Fig.1. 
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Fig.1.1H spin-lattice relaxation rates versus frequency. Solid lines – theoretical fits decomposed 

into  intra-ionic (dotted lines) and intra-cationic (dashed lines) contributions. 

 

The results have been analyzed (fitted) in terms of four parameters:  transD , d , 
C

DDC  and C

rot . 

The dipolar relaxation constant has been kept temperature independent – it has been obtained 

2910*17.8 HzCC

DD  . The other obtained parameters are collected in Table I. 

 

 

 

 

 



 

 

Table I: Parameters obtained from the analysis of 1H spin-lattice relaxation data for 

C10H19N2O6PS 

 

T [K] 
C

rot  [s] d  [Å] transD  [m2/s] 

full analysis 

transD  [m2/s] 

slope 
rel.err [%] 

283 2.76 * 10-9 2.95 3.32 x 10-13 3.19 * 10-13 8.4 

288 2.30 * 10-9 2.89 5.03 x 10-13 4.97 * 10-13 7.8 

294 1.97 * 10-9 2.86 5.16 x 10-13 5.07 * 10-13 9.8 

303 1.49 * 10-9 2.82 1.33 x 10-12 1.15 * 10-12 9.5 

 

Independently of this analysis, the diffusion coefficient has also been obtained from the low 

frequency slope (Fig.2) using Eq.4. The values are included into Table I; they are in very good 

agreement with those obtained from the full analysis. 
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Fig.2.1H spin-lattice relaxation rates versus square root of frequency. Solid lines – linear fits in 

the low frequency range 

 

 

 

 

 

 



DFT results 

Table II. In table, pKa values have been gathered for all the studied compounds. For SBMIm 

dimers two conformations have been studied.  

molecule pKa Confmoration snapshot 

HPO3 9.02 ; 25.18**  

SEM -2.16  

SBMIm -1.42  

Poly-HPO3* 13.94  

Poly-SEM* -4.76  

Poly-SBMIm* (C1) 2.23 

 

Poly-SBMIm* (C2) -4.56 

 

* In order to simulate proton dissociation in the polymeric compounds, pKa for dimer has been 

evaluated. Polar side groups have been positioned on the one side of chain which corresponds 

to the isotactic formation. In case of syndiotactic positioning, pKa should be close to the acidity 

of monomer.  

** For HPO3 molecule first two pKa have been calculated (pKa1;pKa2) 

 



Dielectric data of monomer SBMIm SEM 
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Fig. 3 The dielectric relaxation data of polymer SBMIm poly-HPO3 and monomer SBMIm 

vinyl-HPO3 
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