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Derivation of the generalized orthogonality in the full
space limit

The energies of the coupled cluster model are equal to the eigenvalues of the matrix
(A+E D), =(®,le"He"|D,), Ey=(Pole”" He"|Dy), (S1)

where T has been determined from the amplitude equations (see, e.g., Purvis and Bartlett!),
and where p, v > 0. In the limit where p and v run over all excitations, the identity operator
can be written I =3 -, [®,)(®,[, where we assume that {|®,)}, is an orthonormal basis.

Inserting this resolution of I before and after H leads to the following expression for A+ EyI:

(A+ BT =Y (@,]e [0 | H| Do) (D, | | D))

T0>0

- Z Q;q} HTO' QO’V (82)
T0>0

= (QilH Q),Lw-

That Q1 is the inverse of Q is straightforwardly verified:

(Q7'Q)uw =D (Bule" D) (@r | [@,) = (B¢ D)) = by (S3)

7>0

It follows from equation (S2) that the left and right eigenvectors of A + Ey 1, and therefore

of A, satisfy (up to normalization)

L(Q'Q) ' =0u, r,Q'Qr =0y, (S4)

because the eigenvectors of the symmetric matrix H are orthogonal.
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System size scaling properties

For a non-interacting only system AB with a conical intersection on the A system, the
cluster operator has the form 7 = T4 + T, where T4 and T only contains excitations
within the subsystems A and B, respectively. As a consequence, the similarity transformed
Hamiltonian separates in the usual size-extensive manner, H = H4 + Hp. The energy is
E = (Ra|H4|Ra) + (Rp|Hp|Rp) = E4 + Ep and the ground state equations reduce to
the amplitude equations for each subsystem. The size-intensive compound block structure
of the Jacobian A then follows from the amplitude equations (see p. 683 in Helgaker et al.?),
providing excitation energies and excited state vectors belonging to the correct blocks of A,
t.e. Ay and Ap p.

However, the metric Q7' Q contains a non-zero AB coupling term. An implication is that,
while the energy, the wavefunction, and the excited states contain no coupling terms, the
energies for an isolated A system are not identical to those obtained for the AB system.
Note that the energies of the B system remain unchanged. Asymptotically, the AB coupling
term becomes independent of the number of B fragments, giving a constant error for the
A system in the limit of an infinite number of B fragments. There are many alternative
approximations of Q7 Q without AB terms. For instance, Q7 Q could be approximated by
Q'P Q, where P is a projection matrix onto the space of the reference and the two excited
states of interest, {|R), |r1),|r2)}. In practice, the effect of the AB term appears to be small,
however. By positioning a Helium-atom at a distance of 100 A from HOF, we obtained

energy changes that are negligible compared to CISD (see Table S1).

Implementation

The model was implemented in a local version of the Dalton quantum chemistry suite,?® and

a local coupled cluster program currently in the initial phases of development.
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Table S1: Differences in SCCSD and CISD energies of HOF compared to energies
obtained when a He atom is positioned 100 A from HOF. We list the absolute
errors, in Hartrees, of the ground state and first two A’ excited state energies,
AFy(HOF), AE;(HOF), and AFE,(HOF). A convergence threshold of 107'° has been
used. The HOF geometry is Rog = 1.14 A, Rop =1.32 A, and Ygor = 91.0°.

AEy(HOF) AE;(HOF) AE,(HOF)

CISD 0.00566816  0.03384339  0.03383982
SCCSD  2.9-107° 5-10710 610710

The projection vector and the coupled cluster Jacobian

In similarity constrained CCSD (SCCSD), an additional triple excitation and amplitude is
added to the cluster operator, 7. With this cluster operator, both the projection vector,
Q.= (®,]eTHe" | ), and the Jacobian matrix, A, = (®,|e 7 [H,7,]e” |®p), are mod-
ified relative to CCSD. We refer to the literature for detailed expressions of {2 and A in
CCSD. 14

First we introduce a spin-adapted biorthonormal excitation manifold in which to express

our matrices. We use the elementary basis (see p. 691-692 in Helgaker et al.?)

‘ a> = Fui20), ) ab> = Eui By; | ®o) (S5)
i ij

as the right basis, where E,; = aimam + alﬂaig, and

a 1 ab 1 1 1
(=gl ml (= (5l BLm + 5 2 E) (S6)
1 ¥ at,

as the left basis.
We may now list explicit expressions for the projection vector and the transformation

by the coupled cluster Jacobian, as well as its transpose: €2, p = Ac, and ¢ = AT b. Let
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T =T, + 15 + T3, where T3 is general for now:

Ty =Y t1E, Th= Z t% Eoi By;, Ts = Z t3% Eoi By E (S7)
ai azbj azbjck
For p = A ¢ we have p,; = pSSP and
CCS ab abc abc bac bac bac
Paibj — p(ubj P m‘@ (Z( ijk zkj)XkC - 2(2 tjkl - tlkj - tjlk:)YECk’i
ar,0) c c
k Kl (S8)
+ 2t~ tht — ) Zucka).
cdk
where
Xig = Z Lyecta Cer Yietj = Z keld Cdjs  Lacld = — Z Gkeld Cak- (S9)
ck d k

In the above, we have introduced 2%

i, whose effect is to add all permutations of the index

pairs (ai) and (bj), and gpqrs, the two-electron T; transformed integrals associated with the

T, transformed Hamiltonian H. The projection vector has the singles contribution

Qui — QEBP = Z(tfjb;f —t88) Livke,  Lijbke = 2 Gjvke — Gickd- (S10)
bjck

The doubles contribution is identical to that of p, except that the X, Y, and Z intermediates

assume the altered definitions

Xke = Fre, Yieki = Gickis Zackd = Gackd- (S11)

We have denoted by F}, the elements of the T} transformed Fock operator, which is defined

as the ordinary Fock operator but with 7} transformed integrals. For o = AT b we have
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CCSD

Oaibj = Ogip;~ and, finally,

d d
Ok — OG0 = Yt =tk ) batem Leny

dlemfn
d f d f
+ Z Wfln l;m -2 Zflmn) bdlcn 9mekf (812)
dlemfn
d d d
+ Z tlrffn ni{l —2 tz;f;) barek 9meny -
dlemfn

The expressions listed above are those of coupled cluster singles doubles triples (CCSDT)

and are also found in the literature.® In the simiarity constrained formalism, one particular

triple excitation (775¢) is selected to be non-zero. We can therefore write

?Jbﬁ C‘@IJK Oaibjck, ATBJCK » (S13)
where ¢ is the magnitude of the chosen triple amplitude, and substitute this ¢{ in the above

expressions. Here we have introduced Z#5¢ which permutes the index pairs (A] ), (BJ),

and (CK). Doing the substitution results in

Qui — Q5P = ¢ PAEE (Ouia1 Lipke — Saior Lipra) (514)

for the singles part of €. The doubles part €2 is equal to that of p (with redefined X, Y,
and Z). For p, we find p,; = 0 and

BE X e

CCSD ¢ ab g3 ABC ( cAIBJ
Paibj = Paibj T —‘@ij Pk <5 b XKC — 5azbj

L+ Sui i
o (2 5;:}£BYKCJZ' (5ba] }/IC.]’L 5bj(ILBYJCKi) (815)

ALT ATK ATK
+ 204" Zaprc — O ZaBIC — Opj; ZaBJC)-

S6



CCSD

Finally, for o we find o4 = 0,5, and

CCSD ABC
Ock = O = CPryk (barpyLkexc — barp Liesc

+ bajexgrBrc + barcsgrBre — 2barck 9rBRC (S16)

+ barBkgrcic + baxBrgicic — 2barergicrc)-

The equations we have implemented are (S14), for Q4, (S15), for 5 and p, and (S16), for

o. For completeness, we note that expressions for energy £ and the i vector are unchanged:

E=(®g|eTHe" |®y) = EOBP (S17)

= (Bo|e”T[H, 7] €T |®g) = nSSP. (S18)

Algorithm 1 The SCCSD algorithm

1: Select two states k and [ and a triple excitation 77/ .

2: Set t148¢ = (.

3: For the given t#5¢ solve Q,, =0 and Q,, = 0 for ¢, and ,,.

4: Solve the multiplier equation TA= —n?T for the multipliers t.

5: Solve the eigenvalue equation A r; = w; r; for the excited states r;.
6: Evaluate the generalized overlap f(T).

7. if f(T) =0 then

8: Stop.

9: else

10: Estimate 0f(7)/0t{5¢ by numerical differentiation.

11:  Perform a Newton-Raphson step: t48¢ = ¢4BC — £(T)/(0f(T)/otLEE).
12: Go to 3.

13: end if
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The generalized overlap

For notational purposes, we denote full space quantities (i.e., with p, v > 0) by caligraphic

font, X, reserving X for the excited-excited block (u, v > 0). Then we can write

0 T
N (S19)
0 A
and
10 T T
Q = Q y  qu = <(I)u’e ‘q)0>7 Q/u/ = <(I)u’e |(I)u> (SZ())
q

Note that since we use a biorthonormal basis for @ and A, the elementary overlap matrix

S (the overlap of the |®,)) enters the expression for the generalized overlap f:

A+E1=0Q'S'H Q, (S21)

where H is H expressed in the elementary basis (the kets |®,)). With this notation, the

generalized overlap f between the state vectors R and R, reads

f(T) =R, Q'S QR (S22)

an overlap over the positive definite matrix 0's 9. In block-form, we moreover have

10
S= . (S23)
0S

To derive a useful expression for f, we separate the reference and excited contributions.
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Note that the left and right excited states satisfy

AR, =w, R, [,ZA = Wy, ££,

where the the left ground state vector is determined from the multiplier equation*

cr=at), vA=-q"
From this it is straight-forward to show that
—t'r
cr =011, Rr,= "1, Arp=w,r,, 1TA=w,1, n>0
ry

Substituting the block forms of @ and R,, into the expression for f gives

AT =rTNEE +Q"'SQ-Q"Sqt’ —tq'SQ)r, =0,

(S24)

(S25)

(526)

(S27)

where N’ = 1+ q’'S q. This is the implemented expression for the generalized overlap. The

vector q can be evaluated as

Qoi =15 Qaibj = (L + t?t?)

1+ 5ai,bj g

The transformation y = Q x is

b a
Yai = Taiy  Yaibj = Taibj + (t] Tai + 1] 1)

1+ daipj

The transformation y = Q7 x can be written

C
Yai = Ta; + E Uk Taicks  Yaibj = Laibj-
ck

S9
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Finally, y = Sx can be written

Yai = 2%qi,  Yaiy = 2 (1 4 0aip;) (2 Taivy — Tajvi)- (S31)

Implementation tests

The following tests were performed.

e For a given value of (, the excitation energies w, derived from the left and right

eigenvalue problems are identical. Thus, A and AT are internally consistent.

e For a given value of ¢, the identity*

_ aQN
T

A ($32)

evaluated by numerical differentiation and by transformation of elementary basis vec-
tors, is satisfied for the LiH molecule. Thus, €2 and A are internally consistent. More-

over, by the previous test, 2, A, and AT are internally consistent.

e We confirmed that

T
e qQ'SQ

T 1+q’'Sq’ (533)

is satisfied for H,, indicating that the implementation of q and Q are correct. This

identity can be shown to be valid from the completeness of T' = T} + T5.

e For two states of the same symmetry in H,, we confirmed that
RIQTSQR, =0 (S34)

is correct to the accuracy that the amplitudes and eigenvectors are converged.
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e Noting that
Quv = Qu(T) = (Rule” D), Qpuy = (Pl [@)) = Quu(=T), (S35)
we confirmed that Q(7) Q(—7) and Q”(T) Q" (—T) equal the identity matrix I for

the implemented Q and Q7 transformations.

e We confirmed that q7’S Qx and x” QTS q are equal, indicating that Q and Q” are

internally consistent.

The algorithm

We adopt a self-consistent approach. For a fixed triple amplitude, t,,, the ground state
amplitude equations, €2 = 0, are first solved for t,, and ?,,. Given the converged singles
and doubles amplitudes, the excited states r; are found and the overlap f(7) evaluated. A
Newton-Raphson algorithm, designed to locate a zero of the overlap function f(7), then
provides the next triple amplitude ¢,,. These steps are repeated until both the ground state

equations are satisfied and f(7) = 0. See Algorithm 1.

The cluster operator

In the similarity constrained theory, a particular triple excitation is used. In Table S2, we

list the energies obtained for hypofluorous acid using twelve different triple excitations.

Left generalized orthogonality

We have chosen to enforce orthogonality of the right eigenvectors in the present study, but,

for completeness, we list the equations necessary to enforce orthogonality among the left
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eigenvectors here. The left overlap f; can be written

fo(M =Ll (Q"'s Q) 'L, (S36)

By block inversion of @ and &, we have

o '= , S8t= : (S37)
-Q'qa Q! 0S8~

and therefore

1 0 1 0 1 —q’'Q 7T

(QTS Q)fl —
—Q'q Q') \0s?] {0 Q7
(S38)
B 1 _qTQfT
-Q7'q Q7(S7 +aqq")Q"
Now, because the reference term of Ly, is zero (it is orthogonal to Ry), we can write
(M =4 Q' (S +ad")Q™"L. (S39)

Hypoflorous acid: intersection point, normal modes,

seam, and branching plane vectors

Intersection point

The studied intersection geometry hypofluorous acid is

Roy = 1.1400000 A, Rop = 1.3184215 A,  dpor = 91.0585000°, (S40)
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where the triple amplitude is ( = 1.6178960762. For this geometry and amplitude, the

overlap is below 107% and the energies degenerate to 107:

wy = 0.3163264850 Hartrees, wy = 0.3163274291 Hartrees. (S41)

Normal modes

We specify the nuclear cartesian coordinates as

R: (OmOy;Oz;nyHyszvaaFquz> <S42)

in the following. From a vibrational Hartree-Fock calculation using the Cfour program,® we

obtained a set of normal modes,

Q; = (0.7370, —0.0071, 0.0000, —0.0070, 0.0211, 0.0000, —0.6750, 0.0017,0.0000), ~ (S43)
Q. = (0.0749, —0.2371,0.0000, —0.7773, 0.5604, 0.0000, 0.1103, 0.0885, 0.0000),  (S44)

Qs = (0.0773,0.1431,0.0000, —0.5890, —0.7874, 0.0000, 0.0647, 0.0500, 0.0000).  (S45)

The cartesian coordinate vector at the intersection point is

R, = ( — 1.308090861096777, 0.135129007453069, 0.000000000000000,
— 1.470679327231972, —2.013015024947860, 0.000000000000000, (S46)

1.179309062794356, —0.006980060310293, —0.000000000000000).
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The seam and branching plane vectors

By performing small displacements in the normal modes Q;, we found the basis {g,h} of

the branching plane and the seam s. In the basis of the normal modes,

g = (0.972636, —0.160489, 0.167996), (S47)
s = (0.220983,0.407941, —0.885862), (S48)
h = (0.073639, 0.898745, 0.432243). (S49)

Note that these vectors are expected to have some numerical imprecision, arising from the
finite number of fixed-point calculations on which they are based (s and g are nearly but

not perfectly orthogonal, 89.96°) and that the Q; is given to four decimal places.
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Table S2: Energies obtained by various triple excitations 775¢ for the geometry

Rou =114 A, Ror = 1.32 A, and 9yor = 91.0°. We list CC2, SCCSD, CCSD, and
CC3 energies given in Hartrees and the aug-cc-pVDZ basis. Dashes (—) denote
that we were unable to converge the SCCSD equations. The first excitation
listed in the table was used in the paper.

ABZC
]’ J K> EO El E2 W1 W2 C
10 2 2
(7 5 8) —175.1605 —174.8452 —174.8440 0.3153 0.3165 1.6688
10 2 8
(7 5 8) —175.1619 —174.8445 —174.8435 0.3174 0.3184 —0.6551
10 2 10
<7 5 8) —175.1611 —174.8467 —174.8431 0.3144 0.3180 2.2880
82 2
(7 5 8) —175.1605 —174.8448 —174.8434 0.3157 0.3170 1.6531
828 B B B B B B
758
8 2 10
(7 5 8) —175.1613 —174.8448 —174.8436 0.3165 0.3176 0.4853
311
(8 3 5) —175.1623 —174.8455 —174.8430 0.3168 0.3193 2.7638
1011
(7 5 8) —175.1639 —174.8445 —174.8416 0.3195 0.3223 —1.3795
101 2
(7 5 8) —175.1616 —174.8451 —174.8441 0.3165 0.3175 —0.4178
10 1 3
(7 5 8) —175.1639 —174.8438 —174.8428 0.3201 0.3211 —-1.0914
811
(7 5 8> —175.1597 —174.8469 —174.8453 0.3127 0.3144 1.7677
81 2 B B B B B B
758
CC2 —175.1590 —174.8600 —174.8440 0.2990 0.3150 -
CCSD —175.1619 —174.8451 —174.8437 0.3168 0.3181 —
CC3 —175.1745 —174.8585 —174.8558 0.3160 0.3187 —
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