Supporting Information

Cascade Radical Reaction of N-Sulfonyl-2-allylanilines with [60]Fullerene: Synthesis and Functionalization of

(2-Indolinyl)methylated Hydrofullerenes

Sheng-Peng Jiang, ${ }^{\dagger}$ Mengmeng Zhang, ${ }^{\ddagger}$ Cheng-Yu Wang, ${ }^{\dagger}$ Shangfeng Yang, ${ }^{*}{ }^{\star}$ and Guan-Wu Wang** ${ }^{*}$, \&
${ }^{\dagger}$ CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Chemistry for Energy Materials ($i \mathrm{ChEM}$), and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
E-mail: gwang @ustc.edu.cn; Fax: +86 551 3607864; Tel: +86 5513607864
${ }^{\dagger}$ Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China E-mail: sfyang @ustc.edu.cn
${ }^{\text {§ }}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Table of Contents

Optimization of the Reaction Conditions S2-3
Experimental Procedures and Spectral Data of 2, 3a, 3r, 4a, and 4r S4-16
Single-Crystal X-Ray Crystallography of 4a S17-18
Mechanism Studies S19-21
Half-Wave Reduction Potentials of C_{60}, PCBM, 2, 3a, 3r, 4a, and 4r S22
Photovoltaic Conversion Experiment S23-25
NMR Spectra of Compounds 2, 3a, 3r, 4a, and $\mathbf{4 r}$ S26-66
HSQC and HMBC Spectra of Compound $\mathbf{2 o}$ S67-71
NMR Spectra of Compounds Obtained in Mechanism Studies S72-74
CVs of Compounds $\mathbf{2}, \mathbf{3 a}, \mathbf{3 r}, \mathbf{4 a}$, and $\mathbf{4 r}$ with C_{60} and PCBM S75-86
References S87

Optimization for the Synthesis of 2a

The combination of $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ has proven to be effective for coupling reactions of N -sulfonyl-2-allylanilines $\mathbf{1} .{ }^{1}$ Therefore, we initially studied the reaction of C_{60} (0.05 mmol) with N-tosyl-2-allylaniline $\mathbf{1 a}$ (2.0 equiv) by using $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) in anhydrous chlorobenzene (CB) at $120{ }^{\circ} \mathrm{C}$ under an open-air atmosphere. To our delight, the desired product 2a was obtained in 9% yield after 1.5 h (Table S1, entry1). Encouraged by this result, different copper salts were next evaluated to improve the product yield. To our satisfaction, when $\mathrm{Cu}(\mathrm{OTf})_{2}$ was used, the yield of $\mathbf{2 a}$ was significantly increased to 23%, while other Cu (II) salts such as $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CuBr}_{2}, \mathrm{CuF}_{2}$, and $\mathrm{Cu}(\mathrm{acac})_{2}$ could not induce the reaction (Table S1, entries 2-6). Other carbonates including $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ did not give a better result, delivering $\mathbf{2 a}$ in 19% and 17% yields, respectively (Table S1, entries 7 and 8). However, no desired product was observed when $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was used as the base (Table S1, entry 9). Acetate such as KOAc and NaOAc were not beneficial to the improvement of the yield either, giving $\mathbf{2 a}$ in 11% and 17% yields, respectively (Table S1, entries 10 and 11). Unexpectedly, an obviously increased yield of 30% was observed when $\mathrm{K}_{2} \mathrm{CO}_{3}$ was replaced by 4 -dimethylaminopyridine (DMAP) (Table S1, entry 12). Decreasing the loadings of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and DMAP to 1.0 equiv could provide a slightly better yield of 33% (Table S1, entry 13). Reducing the reaction temperature from $120^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ could still afford 2 a in a comparable yield of 32% (Table S1, entries 14 and 15 vs. entry 13). Further reducing the temperature to $90^{\circ} \mathrm{C}$ resulted in only 23% yield (Table S1, entry 16). Therefore, the optimal reaction temperature was chosen to be $100^{\circ} \mathrm{C}$. Under the best reaction temperature, reducing the amounts of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and DMAP to 0.5 equiv delivered 2a in 26% yield (Table S1, entry 17). However, increasing the amounts of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and DMAP to 1.5 equiv delivered a slightly decreased yield of 30% (Table S1, entry 18 vs. entry 15). The decrease of the amount of substrate 1a to 1.5 equiv gave a lower yield of 27% (Table S1, entry 19), and only a comparable yield of 34% was obtained when the amount of substrate 1a was increased to 2.5 equiv (Table S1, entry 20 vs. entry 15). The reaction time was also varied, and it was found that 1.5 h was still the best choice (Table S1, entry 15 vs. entries 21 and 22). Furthermore, control experiments confirmed that the reaction was totally shut down in the absence of $\mathrm{Cu}(\mathrm{OTf})_{2}$, and the product yield was only 7% without DMAP (Table S1, entries 23 and 24). These observations suggested that the copper species was indispensable and DMAP played an important role in this reaction. Thus, the optimal reaction conditions were a molar ratio of $1 / 2 / 1 / 1$ for the reagents $\mathrm{C}_{60}, \mathbf{1 a}, \mathrm{Cu}(\mathrm{OTf})_{2}$, and DMAP, and carrying out the reaction at $100^{\circ} \mathrm{C}$ for 1.5 h in anhydrous CB under an open-air atmosphere (Table S1, entry 15).

Table S1. Optimization of the Reaction Conditions ${ }^{a}$

2a

entry	copper/base	molar ratio ${ }^{\text {b }}$	temp. $\left({ }^{\circ} \mathrm{C}\right)$	yield (\%) ${ }^{\text {c }}$
1	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	9 (53)
2	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	0 (0)
3	$\mathrm{CuBr} 2 / \mathrm{K}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	0 (0)
4	$\mathrm{CuF}_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	0 (0)
5	$\mathrm{Cu}(\mathrm{acac})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	0 (0)
6	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	23 (47)
7	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{Na}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	19 (86)
8	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{Li}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	17 (77)
9	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$	1:2:2:2	120	0 (0)
10	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{KOAc}$	1:2:2:2	120	11 (79)
11	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{NaOAc}$	1:2:2:2	120	17 (55)
12	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:2:2	120	30 (38)
13	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:1	120	33 (46)
14	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:1	110	32 (55)
15	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:1	100	32 (71)
16	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:1	90	23 (64)
17	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:0.5:0.5	100	26 (76)
18	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1.5:1.5	100	30 (54)
19	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:1.5:1:1	100	27 (71)
20	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2.5:1:1	100	34 (60)
21^{d}	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:1	100	31 (61)
22^{e}	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:1	100	28 (70)
23	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:0:1	100	0 (0)
24	$\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{DMAP}$	1:2:1:0	100	7 (54)

${ }^{a}$ Unless otherwise noted, the reactions were performed in anhydrous CB under an open-air atmosphere for 1.5 h . ${ }^{b}$ Molar ratio refers to $\mathrm{C}_{60} / \mathbf{1 a} /$ copper/base. ${ }^{c}$ Isolated yields. Values in parentheses were based on consumed $\mathrm{C}_{60} .{ }^{d}$ The reaction time was 2 h. ${ }^{e}$ The reaction time was 1 h .

Experimental Procedures

General Procedure for the Synthesis of 2a-r from the $\mathbf{C u}(\mathbf{O T f})_{2}$-Promoted Reaction of C_{60} with 1a-r. A mixture of $\mathrm{C}_{60}(0.05 \mathrm{mmol}), N$-sulfonyl-2-allylanilines $1(0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol})$, and DMAP (0.05 mmol) was dissolved in CB (6 mL). Then the solution was vigorously stirred at the desired temperature and stopped at the designated time. The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered C_{60} and then the desired product 2.

Preparation of 2a: By following the general procedure, the reaction of $\mathrm{C}_{60}(36.1 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $1 \mathrm{la}(28.9 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.3 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(19.9 \mathrm{mg}, 55 \%)$ and 2a ($16.2 \mathrm{mg}, 32 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) $\delta 154.77$, 153.67, 147.46 (1C), 147.23 (1C), 146.90, 146.34 (4C), 146.17, 146.13, 145.99, 145.75, 145.52, $145.38,145.36,145.33,144.89$ (1C, aryl C), 144.69, 144.49, 143.18, 142.53, 142.51, $142.19,142.03,141.96,141.75,141.62$ (4C), 140.24, 140.02, 137.69 (1C, aryl C), 136.24 (4C), 136.20 (1 C , aryl C), 136.05 (1 C , aryl C), 129.87 (aryl C), 129.73 (1C, aryl C), $126.54(\operatorname{aryl} C), 125.11(1 \mathrm{C}$, aryl $C), 124.33(1 \mathrm{C}$, aryl $C), 121.00$ (1C, aryl C), 115.81 (1C, aryl C), $114.00\left(1 \mathrm{C}\right.$, aryl C), 64.96 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 58.67 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 44.08 (1C), 21.70 (1C). FT-IR v / cm^{-1} (KBr) 2920, 2854, 1596, 1509, 1445, 1367, $1306,1216,1174,1088,1046,808,744,704,668,578,528$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm}$ $(\log \varepsilon) 257$ (5.17), 308 (4.66), 327 (4.62), 433 (3.63), 707 (2.54). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$1006.0896, found 1006.0881.

2b
Preparation of $\mathbf{2 b}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(36.0 \mathrm{mg}$, 0.05 mmol) with $\mathbf{1 b}(30.5 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$ for 1.0 h afforded recovered $\mathrm{C}_{60}(10.4 \mathrm{mg}, 29 \%)$ and $\mathbf{2 b}(16.5 \mathrm{mg}, 32 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 155.00,153.67,147.41$ (1C), 147.18 (1C), $146.95,146.28$ (4C), 146.12, 146.09, 145.94, 145.71, 145.43, 145.30 (6C), 144.64, 144.47 (1C, aryl C), 144.36, 143.12, 142.48 (4C), 142.15, 141.97, 141.93, 141.75, 141.56 (4C), 140.90 (1C, aryl C), 140.63 (1C, aryl C), $140.18,139.98,136.16,136.03$, 133.56 (1C, aryl C), 133.44 (1C, aryl C), 130.39 (1C, aryl C), 129.20 (1C, aryl C), 128.98 (aryl C), $126.72(\operatorname{aryl} C), 125.79(1 \mathrm{C}$, aryl C), 120.11 (1C, aryl C), 118.59 (1C, aryl C), $65.11\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 58.38\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 46.10(1 \mathrm{C}), 22.05(1 \mathrm{C})$, 21.67 (1C). FT-IR $1 / \mathrm{cm}^{-1}$ (KBr) 2962, 2922, 2859, 1638, 1595, 1508, 1427, 1362, $1169,1138,1086,806,745,675,621,578,524$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 258$ (5.11), 312 (4.63), 328 (4.56), 434 (3.58), 707 (2.54). MALDI-TOF MS m / z calcd for $\mathrm{C}_{77} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 1020.1053$, found 1020.1025.

2c
Preparation of 2c: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.8 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 c}(30.2 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(17.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(15.9 \mathrm{mg}, 44 \%)$ and $2 \mathbf{c}(17.2 \mathrm{mg}, 34 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 2.52$ (s, 3H), $2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) δ $154.74,153.62,147.35$ (1C), 147.13 (1C), 146.83, 146.24 (4C), 146.07, 146.03, $145.92,145.66,145.42,145.29,145.25,145.23,144.60,144.58$ (1C, aryl C), 144.41, 143.09, 142.44, 142.42, 142.10, 141.94, 141.88, 141.67, 141.53 (4C), 140.15, 139.92, 138.10 (1C, aryl C), 136.21 (1 C , aryl C), $136.18,136.08,135.38$ (1C, aryl C), 134.88 (1C, aryl C), 129.72 (aryl C), 127.39 (1C, aryl C), 126.44 (aryl C), 125.76 (1C, aryl C), 120.57 (1 C , aryl C), 115.98 (1 C , aryl C), 113.96 (1 C , aryl C), 64.96 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 58.58 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 44.06 (1C), 22.22 (1C), 21.68 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2915, 2857, 1639, 1596, 1508, 1425, 1365, 1172, 1135, 1090, 1042, 812, 704, 663, 594, 578, 525. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 256$ (5.11), 309 (4.63), 328 (4.56), 434 (3.58), 707 (2.65). MALDI-TOF MS m / z calcd for $\mathrm{C}_{77} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 1020.1053, found 1020.1038.

Preparation of 2d: By following the general procedure, the reaction of $\mathrm{C}_{60}(36.2 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 d}(29.9 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(18.7 \mathrm{mg}, 52 \%)$
and 2d (19.1 mg, 37\%) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\right) \delta 8.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.29$ (s, 1H), $7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=8.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}$, $2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$, all 2 C unless indicated) $\delta 153.86,152.69,146.35$ (1C), 146.13 (1C), 145.83, 145.21 (4C), 145.05, 145.00 (4C), 144.64, 144.33 ($2 \mathrm{C}+1 \mathrm{C}$, aryl C), 144.23, 144.21, 144.18, 143.56, 143.36, 142.03, 141.38, 141.36, 141.07, 140.87, 140.82, 140.63, 140.46, 140.45, $139.01,138.80,135.17$ (1 C , aryl C), 135.11, $135.02,134.70$ (1 C , aryl C), 134.51 (1 C , aryl C), $132.75(1 \mathrm{C}, \operatorname{aryl} C), 129.08(\operatorname{aryl} C), 128.90(1 \mathrm{C}$, aryl $C), 125.40(1 \mathrm{C}$, aryl C), 125.31 (aryl C), 120.01 (1 C , aryl C), 114.13 (1 C , aryl C), 112.73 (1 C , aryl C), 63.88 (1C, $\mathrm{sp}^{3}-C$ of C_{60}), 57.61 (1C, $\mathrm{sp}^{3}-C$ of C_{60}), 42.81 (1C), 20.63 (1C), 20.26 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2924,2857,1631,1509,1434,1364,1219,1171,1090,1048,804$, 766, 703, 665, 598, 558, 526. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 259$ (5.12), 308 (4.65), 328 (4.57), 434 (3.58), 707 (2.65). ESI FT-ICR MS m / z calcd for $\mathrm{C}_{77} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$1020.1053, found 1020.1032.

$2 e$
Preparation of $\mathbf{2 e}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.8 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 e}(31.5 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$ for 1.0 h afforded recovered $\mathrm{C}_{60}(16.1 \mathrm{mg}, 45 \%)$ and 2 e ($16.6 \mathrm{mg}, 32 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $5.24(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 156.98$ (1C, aryl C), 154.76, 153.68, 147.44 (1C), 147.20 (1C), $146.90,146.32$ (4C), 146.15, 146.11, 145.96, 145.73, 145.50, 145.36, 145.34, 145.31, 144.74 (1C, aryl C), $144.68,144.48,143.16,142.50$ (4C), 142.18, 142.01, 141.94, $141.74,141.59$ (4C), $140.22,140.00,136.87,136.22$ (1C, aryl C), 136.18, 135.86 (1C, aryl C), 132.25 (1 C , aryl C), 130.78 (1 C , aryl C), 129.77 (aryl C), 126.50 (aryl C), 116.79 (1C, aryl C), 114.36 (1 C , aryl C), 114.04 (1C, aryl C), 103.26 (1C, aryl C), 65.02 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 58.57 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 55.23 (1C), 44.11 (1C), 21.69 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2977,2922,2824,1602,1510,1464,1431,1365,1208,1163$, 1091, 1047, 769, 666, 631, 598, 551, 525. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm}(\log \varepsilon) 259$ (5.13), 312 (4.66), 434 (3.58), 708 (2.65). MALDI-TOF MS m/z calcd for $\mathrm{C}_{77} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 1036.1002$, found 1036.0989.

Preparation of $\mathbf{2 f}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.6 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 f}(31.7 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.3 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 2.5 h afforded recovered $\mathrm{C}_{60}(15.1 \mathrm{mg}, 42 \%)$ and $2 \mathbf{2 f}(16.4 \mathrm{mg}, 32 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\right) \delta 8.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31$ (dd, $J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 ($\mathrm{s}, 1 \mathrm{H}$), 7.27 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ ($\mathrm{s}, 1 \mathrm{H}$), $5.23(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$, all 2 C unless indicated) $\delta 153.47,152.47,146.36$ (1C), 146.13 (1C), 145.76, 145.22 (4C), 145.06, 145.01, 144.88, 144.78 (1C, aryl C), 144.62, 144.36, 144.24, 144.21, 144.19, 143.55, 143.34, $142.03,141.40,141.37,141.05,140.88,140.81,140.59,140.47,140.45,139.04$, 138.78, 136.74 (1C, aryl C), 135.06, 135.02, 134.83 (1C, aryl C), 134.07 (1C, aryl C), 129.86 (1C, aryl C), $129.25(\operatorname{aryl} C), 128.65(1 \mathrm{C}$, aryl $C), 125.27$ (aryl C), 124.12 (1C, aryl C), 119.66 (1 C , aryl C), 115.56 (1 C , aryl C), 112.14 (1 C , aryl C), 63.73 (1C, $\mathrm{sp}^{3}-C$ of C_{60}), 57.69 ($1 \mathrm{C}, \mathrm{sp}^{3}-\mathrm{C}$ of C_{60}), 42.82 (1C), 20.69 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2923, 2858, 1633, 1595, 1509, 1436, 1367, 1219, 1171, 1144, 1091, 1046, 803, 719, $663,588,549,524$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 258$ (5.09), 307 (4.59), 328 (4.53), 434 (3.53), 707 (2.65). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}^{35} \mathrm{Cl}$ $[\mathrm{M}+\mathrm{H}]^{+} 1040.0507$, found 1040.0520 .

Preparation of $\mathbf{2 g}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.9 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 g}(32.9 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$ for 1.0 h afforded recovered $\mathrm{C}_{60}(16.7 \mathrm{mg}, 47 \%)$ and $\mathbf{2 g}$ ($16.3 \mathrm{mg}, 31 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=9.3,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $5.31(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) δ 153.93, 153.12, 147.46 (1C), 147.21 (1C), 146.64, 146.35, 146.33, 146.17, 146.13, $145.80,145.65,145.62$ (1C, aryl C), 145.55, 145.40, 145.36, 145.31, 144.70 (1C, aryl C), $144.66,144.40,143.19,142.56,142.53,142.08,142.00,141.89,141.62,141.60$, 141.58, 140.29, 140.12 (1C, aryl C), 139.99, 139.56 (1C, aryl C), 136.19, 136.07, 135.67 (1C, aryl C), $130.22(\operatorname{aryl} C), 129.41$ (1C, aryl C), 126.59 (aryl C), 119.90 (1C, aryl C), 116.92 (1 C , aryl C), 115.63 (1 C , aryl C), 113.28 (1 C , aryl C), 64.47 (1 C , $\mathrm{sp}^{3}-C$ of C_{60}), 58.80 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 43.93 (1C), 21.73 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2923, 2857, 1600, 1514, 1444, 1373, 1339, 1276, 1226, 1174, 1086, 1044, 893, 808,

745, 707, 663, 587, 525. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 257$ (5.13), 311 (4.65), 328 (4.58), 433 (3.68), 707 (2.54). ESI FT-ICR MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 1051.0747, found 1051.0731 .

Preparation of $\mathbf{2 h}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.7 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 h}(31.5 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(14.6 \mathrm{mg}, 41 \%)$ and $2 \mathbf{h}(21.0 \mathrm{mg}, 41 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.23$ (s, 2H), 2.45 (s, 3H), 2.44 (s, 3H), 2.32 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$, all 2 C unless indicated) δ 154.04, 152.83, 146.40 (1C), 146.19 (1C), 145.91, 145.27 (4C), 145.13, 145.11, 145.06, 144.73, 144.39, 144.35 (1C, aryl C), 144.29, 144.27, 144.24, 143.61, 143.42, 142.08, 141.44, $141.43,141.14,140.94,140.89,140.70,140.51$ (4C), 139.07, 138.83, 136.76 (1C, aryl C), $135.15,135.02,134.76$ (1C, aryl C), 134.21 (1C, aryl C), 133.83 (1C, aryl C), $129.15(\operatorname{aryl} C), 129.06(1 \mathrm{C}$, aryl C), 126.05 (1C, aryl C), 125.41 (aryl C), 125.17 (1C, aryl C), 112.13 (1 C , aryl C), 111.34 (1 C , aryl C), 64.10 (1 C , sp ${ }^{3}-C$ of C_{60}), 57.75 (1 C , $\mathrm{sp}^{3}-C$ of C_{60}), 43.03 (1C), 21.14 (1C), 20.70 (1C), 17.63 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2921, 2859, 1600, 1510, 1435, 1366, 1299, 1171, 1102, 1033, 810, 760, 706, 664, 583, 528. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 255$ (5.08), 310 (4.59), 329 (4.53), 433 (3.53). MALDI-TOF MS m/z calcd for $\mathrm{C}_{78} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$1034.1209, found 1034.1189.

Preparation of 2i: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.9 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $1 \mathbf{i}(33.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $120^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(16.6 \mathrm{mg}, 46 \%)$ and $2 \mathbf{i}(16.4 \mathrm{mg}, 31 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ $\delta 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, 6.85 (s, 1H), 5.09 (s, 2H), 2.81 (s, 3H), $2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) $\delta 154.73,153.50,147.44$ (1C), 147.19 (1C), 146.89, 146.31 (4C), 146.14, 146.11, 145.81, 145.68, 145.45, 145.33 (4C), 145.30, 144.72 (1C, aryl C), $144.66,144.45,143.14,142.51,142.50,142.27$ (1C, aryl C), 142.14, 141.99, 141.92, 141.88 (1C, aryl C), 141.73, 141.58, 141.56, 140.23, 140.00, 136.08, 136.04, 133.86 (1C, aryl C), 132.81 (1C, aryl C), 132.31 (1C, aryl C), 129.79 (1C, aryl C), 129.05 (aryl C), 127.33 (1C, aryl C), 126.84 (aryl C), 119.92 (1C, aryl C), 118.83 (1C,
aryl C), $65.00\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 58.35\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 46.07$ (1C), 21.71 (1C), 19.95 (1C). FT-IR v / cm^{-1} (KBr) 2961, 2921, 1593, 1509, 1452, 1430, 1395, 1367, 1171, 1088, 1004, 806, 711, 671, 588, 526. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 256$ (5.05), 310 (4.56), 328 (4.49), 433 (3.53), 707 (2.65). MALDI-TOF MS m / z calcd for $\mathrm{C}_{77} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}^{35} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$1054.0663, found 1054.0648.

2j
Preparation of $\mathbf{2 j}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(36.1 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 j}(34.5 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(36.5 \mathrm{mg}, 0.10 \mathrm{mmol})$, and DMAP ($12.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) at $120{ }^{\circ} \mathrm{C}$ for 1.0 h afforded recovered $\mathrm{C}_{60}(18.5 \mathrm{mg}$, 51%) and $2 \mathbf{j}(9.9 \mathrm{mg}, 19 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) $\delta 154.99,153.81,148.35$ (1C, aryl C), 147.79 (1C, aryl C), 147.49 (1C), 147.26 (1C), 146.97, 146.37 (4C), $146.21,146.16,146.10,145.79,145.52,145.39$ (4C), 145.36, 144.93 (1C, aryl C), $144.72,144.53,143.21,142.56,142.55,142.24,142.05,142.00,141.81,141.64$ (4C), $140.25,140.04,136.29,136.18,135.86$ (1 C , aryl C), 134.75 (1 C , aryl C), 132.20 (1 C , aryl C), 129.87 (aryl C), 126.40 (aryl C), 122.85 (1 C , aryl C), 114.55 (1C, aryl C), 102.41 (1C, aryl C), $99.95\left(1 \mathrm{C}\right.$, aryl C), 65.28 (1 C , sp ${ }^{3}-C$ of C_{60}), 58.64 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 56.21 (1C), 55.93 (1C), 44.27 (1C), 21.71 (1C). FT-IR v / cm^{-1} (KBr) 2923, 1621, $1548,1510,1483,1461,1429,1363,1323,1259,1158,1118,1090,1047,804,703$, $665,593,524 . \mathrm{UV}$-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 257$ (5.09), 312 (4.62), 328 (4.58), 433 (3.60), 707 (2.74). MALDI-TOF MS m/z calcd for $\mathrm{C}_{78} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 1088.0927, found 1088.0908 .

Preparation of $\mathbf{2 k}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.9 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 k}$ ($33.4 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OTf})_{2}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 2.0 h afforded recovered $\mathrm{C}_{60}(20.4 \mathrm{mg}, 57 \%)$ and $\mathbf{2 k}$ ($16.4 \mathrm{mg}, 31 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62$ (ddd, $J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.03$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 154.98,153.65,147.41$ (1C), 147.18 (1C), $146.95,146.28$ (4C), 146.13, 146.08, 145.98, 145.71, 145.45, 145.30 (4C), 145.28,
144.64, 144.55 (1C, aryl C), 144.47, 143.11, 142.47 (4C), 142.16, 141.97, 141.94, $141.78,141.56$ (4C), 140.60 (1C, aryl C), 140.17, 140.01, 136.89 (1C, aryl C), 136.16, 136.11, 132.98 (1 C , aryl C), 132.60 (1C, aryl C), 130.42 (1C, aryl C), 128.90 (aryl C), 128.27 (1C, aryl C), 127.56 (1C, aryl C), 126.63 (aryl C), 126.36 (1C, aryl C), 126.13 (1C, aryl C), 125.87 (1C, aryl C), 125.46 (1 C , aryl C), 120.21 (1C, aryl C), 119.07 (1C, aryl C), $65.37\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of C_{60}), 58.38 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 46.31 (1C), 21.65 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2918,1624,1592,1508,1425,1366,1262,1168,1086,805$, $741,698,652,589,524$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 258$ (5.10), 311 (4.58), 328 (4.54), 433 (3.51), 707 (2.54). MALDI-TOF MS m / z calcd for $\mathrm{C}_{80} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 1056.1053, found 1056.1031.

Preparation of 21: By following the general procedure, the reaction of $\mathrm{C}_{60}(36.2 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $11(27.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 3.0 h afforded recovered $\mathrm{C}_{60}(17.3 \mathrm{mg}, 48 \%)$ and $\mathbf{2 l}(17.0 \mathrm{mg}, 34 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ $\delta 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 154.63,153.56,147.41$ (1C), 147.18 (1C), $146.85,146.30$ (4C), 146.13, 146.08, 145.91, 145.70, 145.49, 145.35, 145.31, 145.28, $144.65,144.45,143.14,142.49,142.47,142.14,141.99,141.92,141.70,141.57$ (4C), $140.21,139.98,138.84$ (1 C , aryl C), 137.62 (1C, aryl C), $136.20,136.18,136.16$ (1C, aryl C), 133.66 (1 C , aryl C), 129.68 (1 C , aryl C), 129.17 (aryl C), 126.37 (aryl C), 125.19 (1C, aryl C), 124.44 (1 C , aryl C), 121.02 (1 C , aryl C), 115.76 (1C, aryl C), 114.19 (1 C , aryl C), 64.90 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 58.65 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 44.08 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2922,1509,1445,1363,1209,1174,1087,1045,807,745,726$, $681,649,588,570,525$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 259$ (5.04), 308 (4.54), 330 (4.48), 434 (3.49), 707 (2.48). MALDI-TOF MS m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 992.0740, found 992.0721.

Preparation of $\mathbf{2 m}$: By following the general procedure, the reaction of C_{60} (35.9 $\mathrm{mg}, 0.05 \mathrm{mmol})$ with $\mathbf{1 m}(28.5 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $120{ }^{\circ} \mathrm{C}$ for 40 min afforded recovered $\mathrm{C}_{60}(17.9 \mathrm{mg}$, 50%) and $\mathbf{2 m}(15.8 \mathrm{mg}, 32 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.04-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J$ $=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, $2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 154.61$, $153.56,147.44$ (1C), 147.22 (1C), 146.85, 146.33 (4C), 146.16, 146.12, 145.98, $145.72,145.52,145.35$ (4C), $145.32,144.67,144.48,143.17,142.50$ (4C), 142.14, $142.02,141.95,141.67,141.60(4 \mathrm{C}), 140.23,139.96,139.30$ (1C, aryl C), 137.82 (1C, aryl C), $137.61(1 \mathrm{C}$, aryl $C), 137.02(1 \mathrm{C}$, aryl $C), 136.25,136.18,133.41(1 \mathrm{C}$, aryl $C)$, 133.01 (1C, aryl C), 128.69 (1C, aryl C), 127.48 (1C, aryl C), 126.45 (1C, aryl C), 124.97 (1C, aryl C), $124.02(1 \mathrm{C}$, aryl $C), 121.11$ (1C, aryl C), $115.32(1 \mathrm{C}$, aryl $C)$, 112.05 (1 C , aryl C), 64.74 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 58.93 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 43.98 (1C), 20.22 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2922,2857,1634,1507,1451,1354,1214,1165$, $1066,1043,806,746,704,587,526 . \mathrm{UV}-\mathrm{vis}\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 258(5.08), 309$ (4.58), 327 (4.53), 434 (3.55), 709 (2.60). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$1006.0896, found 1006.0875.

Preparation of $\mathbf{2 n}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.9 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $1 \mathrm{n}(28.3 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.3 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(15.6 \mathrm{mg}, 43 \%)$ and $2 \mathrm{n}(17.7 \mathrm{mg}, 35 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right.$, all 2 C unless indicated) $\delta 154.77$, $153.65,147.47$ (1C), 147.24 (1C), 146.90, 146.36 (4C), 146.18, 146.15, 145.99, $145.76,145.54,145.37$ (4C), 145.35, 144.70, 144.50, 143.19, 142.53 (4C), 142.20, $142.04,141.98,141.76,141.63$ (4C), 140.25, 140.03, 139.62 (1C, aryl C), 138.93 (1C, aryl C), $137.69(1 \mathrm{C}$, aryl $C), 136.25(4 \mathrm{C}), 136.22(1 \mathrm{C}$, aryl $C), 134.62(1 \mathrm{C}$, aryl $C)$, $129.70(1 \mathrm{C}$, aryl $C), 129.17(1 \mathrm{C}$, aryl $C), 126.74(1 \mathrm{C}$, aryl $C), 125.13(1 \mathrm{C}$, aryl $C)$, $124.36(1 \mathrm{C}$, aryl $C), 123.63(1 \mathrm{C}$, aryl $C), 121.03(1 \mathrm{C}$, aryl $C), 115.76(1 \mathrm{C}$, aryl $C)$, 113.95 (1C, aryl C), 64.96 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 58.70 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 44.08 (1C), 21.49 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2920, 2855, 1634, 1512, 1447, 1366, 1308, 1216, $1170,1147,1087,1042,744,704,593,524$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 257$ (5.07), 309 (4.56), 329 (4.50), 434 (3.52), 707 (2.40). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$1006.0896, found 1006.0881.

Preparation of 20: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.8 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $10(30.8 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(16.4 \mathrm{mg}, 46 \%)$ and 20 ($16.0 \mathrm{mg}, 32 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=$ $7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (ddd, $J=8.4,7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.26$ (td, $J=7.4$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) $\delta 163.68$ (1C, aryl C), 154.79, 153.67, 147.44 (1C), 147.21 (1C), 146.89, 146.32 (4C), 146.13 (4C), 145.97, 145.73, $145.50,145.33$ (6C), 144.68, 144.48, 143.16, 142.51 (4C), 142.18, 142.01, 141.95, 141.74, 141.60 (4C), 140.22, 140.01, 137.69 (1C, aryl C), 136.19 (4C + 1C, aryl C), 130.56 (1C, aryl C), 129.74 (1C, aryl C), 128.67 (aryl C), 125.05 (1 C , aryl C), 124.26 (1C, aryl C), $120.97(1 \mathrm{C}$, aryl C), 115.81 (1C, aryl C), 114.37 (aryl C), 113.90 (1C, aryl C), $64.96\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 58.63$ ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 55.36 (1C), 44.07 (1C). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2924,2838,1633,1591,1497,1449,1362,1309,1262,1217$, 1165, 1119, 1091, 1024, 910, 828, 804, 743, 704, 673, 629, 578, 554, 525. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 257$ (5.10), 308 (4.56), 327 (4.52), 434 (3.50), 707 (2.40). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 1022.0845$, found 1022.0830 .

2p
Preparation of $\mathbf{2 p}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(36.0 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 p}(30.3 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 2.0 h afforded recovered $\mathrm{C}_{60}(20.2 \mathrm{mg}, 56 \%)$ and $\mathbf{2 p}(17.9 \mathrm{mg}, 35 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31$ (td, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ $(\mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2C unless indicated) δ $154.50,153.46,147.46$ (1C), 147.23 (1C), 146.84, 146.34 (4C), 146.17, 146.13, 145.91, 145.72, 145.53, 145.35 (6C), 144.68, 144.47, 143.18, 142.53 (4C), 142.16, $142.02,141.96,141.71,141.62$ (4C), 140.86 (1C, aryl C), $140.26,140.01,137.62$ (1C, aryl C), $137.03(1 \mathrm{C}$, aryl $C), 136.21(4 \mathrm{C}+1 \mathrm{C}$, aryl $C), 129.81(1 \mathrm{C}$, aryl $C), 129.52$ (aryl C), 127.80 (aryl C), 125.39 (1C, aryl C), 124.70 (1C, aryl C), 121.20 (1C, aryl C), $115.76(1 \mathrm{C}$, aryl $C), 114.77(1 \mathrm{C}$, aryl $C), 64.92\left(1 \mathrm{C}, \mathrm{sp}^{3}-C\right.$ of $\left.\mathrm{C}_{60}\right), 58.74$ (1C, $\mathrm{sp}^{3}-C$ of C_{60}), 44.22 (1C). FT-IR v / cm^{-1} (KBr) 2922, 1640, 1578, 1510, 1474, 1451, 1426, 1371, 1211, 1177, 1147, 1089, 1048, 1015, 820, 754, 704, 619, 574, 525.

UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} / \mathrm{nm}(\log \varepsilon) 259$ (5.04), 309 (4.54), 330 (4.48), 434 (3.49), 707 (2.48). MALDI-TOF MS m/z calcd for $\mathrm{C}_{75} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}^{35} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$1026.0350, found 1026.0331.

2q
Preparation of 2q: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.7 \mathrm{mg}$, 0.05 mmol) with $\mathbf{1 q}(31.7 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $110^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(16.9 \mathrm{mg}, 47 \%)$ and $2 \mathbf{2 q}(18.9 \mathrm{mg}, 37 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{td}, J=7.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 154.21,153.24,150.53$ (1C, aryl C), 147.46 (1C), 147.23 (1C), 146.77, 146.35 (4C), 146.19, 146.14, 145.84, 145.68, 145.55, 145.41, 145.36, 145.33, 144.67, $144.45,143.37$ (1C, aryl C), 143.19, 142.56, 142.54, 142.13, 142.02, 141.95, 141.67, $141.64,141.60,140.29,139.99,137.47$ (1 C , aryl C), 136.25 (1 C , aryl C), 136.17, 136.14, 129.85 (1 C , aryl C), 127.65 (aryl C), 125.75 (1C, aryl C), 125.17 (1C, aryl C), 124.35 (aryl C), 121.46 (1 C , aryl C), 115.70 (1 C , aryl C), 115.64 (1 C , aryl C), 64.86 (1C, $\mathrm{sp}^{3}-C$ of C_{60}), 58.84 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 44.38 (1C). FT-IR $1 / \mathrm{cm}^{-1}$ (KBr) 2921, 2860, 1604, 1529, 1449, 1429, 1374, 1347, 1312, 1178, 1147, 1088, 1048, 852, 809, $743,681,610,573,525$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 257$ (5.09), 307 (4.58), 326 (4.53), 433 (3.54), 706 (2.65). MALDI-TOF MS m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 1037.0591, found 1037.0572.

$2 r$
Preparation of $\mathbf{2 r}$: By following the general procedure, the reaction of $\mathrm{C}_{60}(35.7 \mathrm{mg}$, $0.05 \mathrm{mmol})$ with $\mathbf{1 r}(17.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 1.5 h afforded recovered $\mathrm{C}_{60}(21.9 \mathrm{mg}, 61 \%)$ and $2 \mathbf{r}$ ($14.1 \mathrm{mg}, 31 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H})$, $6.76(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 154.51,153.50,147.47$ (1C), 147.23 (1C), 146.87, 146.36 (4C), 146.19, 146.14, 146.09, 145.75, 145.53, 145.41, 145.37, 145.34, 144.71, 144.48, $143.20,142.58,142.54,142.17,142.06,141.96,141.69,141.66,141.61,140.28$, 139.91, 137.21 (1C, aryl C), 136.28 (4C), 136.20 (1C, aryl C), 129.51 (1C, aryl C), 125.34 (1C, aryl C), 124.44 (1C, aryl C), 121.30 (1C, aryl C), 114.89 (1C, aryl C),
113.64 (1C, aryl C), 64.95 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 59.23 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 44.04 (1C), 40.34 (1C). FT-IR v / cm^{-1} (KBr) 2923, 2858, 1614, 1537, 1506, 1451, 1365, 1323, $1216,1170,1053,959,904,809,733,627,523$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 257$ (5.06), 307 (4.56), 327 (4.51), 434 (3.54), 707 (2.70). MALDI-TOF MS m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 930.0583$, found 930.0568 .

Preparation of 3a: the reaction mixture of $\mathbf{2 a}(10.4 \mathrm{mg}, 0.01 \mathrm{mmol})$ with KMnO_{4} $(15.6 \mathrm{mg}, 0.10 \mathrm{mmol})$, and TFA ($14.8 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) in CB $(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 2.0 h afforded 3a ($7.9 \mathrm{mg}, 76 \%$) as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 2 C unless indicated) $\delta 155.79,150.54,147.36$ (1C), 147.19 (1C), 146.09, 146.06 (1C, aryl C), 145.97, 145.96, 145.71, 145.63, 145.33, 145.22 (4C), $145.18,145.10,145.06,144.41,144.27,143.07,142.60$, 142.50, 142.30, 142.11, $141.93,141.91,141.88,141.59,140.90,140.55,140.06$ (1C, aryl C), 139.42 (1C, aryl C), 136.03, 135.75, 135.09 (1C, aryl C), 130.07 (aryl C), 126.96 (aryl C), 126.08 (1C, aryl C), 125.56 (1 C , aryl C), 124.75 (1 C , aryl C), 124.04 (1 C , aryl C), 119.20 (1 C , aryl C), 114.74 (1 C , aryl C), 74.05 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 69.98 ($1 \mathrm{C}, \mathrm{sp}^{3}-C$ of C_{60}), 42.27 (1C), 21.77 (1C). FT-IR v / cm^{-1} (KBr) 2922, 2856, 1604, 1509, 1438, 1374, 1218, $1175,1121,1089,1018,746,665,571,531$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 256$ (5.10), 309 (4.56), 323 (4.53), 430 (3.51), 702 (2.60). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$1003.0662, found 1003.0652.

Preparation of $\mathbf{3 r}$: the reaction mixture of $\mathbf{2 r}(9.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ with KMnO_{4} $(15.6 \mathrm{mg}, 0.10 \mathrm{mmol})$, and TFA $(14.8 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ in CB $(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 2.0 h afforded $3 \mathrm{r}(6.3 \mathrm{mg}, 68 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}\right) \delta 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H})$. (It should be noted that the very low solubility of $3 \boldsymbol{r}$ prevented us from obtaining $a{ }^{13} C$ NMR spectrum with a good signal-to noise ratio). FT-IR $1 / \mathrm{cm}^{-1}(\mathrm{KBr}) 2923,2848,1618,1509,1442,1398$, $1368,1324,1286,1221,1171,1146,1120,1088,1019,961,931,905,869,784,744$, $632,602,570,533$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 256$ (5.06), 311 (4.50), 325 (4.48), 430 (3.48), 701 (2.65). MALDI-TOF MS m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$ 927.0349 , found 927.0330.

4a
Preparation of $\mathbf{4 a}$: the reaction mixture of $\mathbf{2 a}(10.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ with TfOH (8.8 $\mu \mathrm{L}, 0.10 \mathrm{mmol})$ in $\mathrm{CB}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 5 min afforded $4 \mathrm{a}(4.1 \mathrm{mg}, 41 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) $\delta 8.15-8.10(\mathrm{~m}, 1 \mathrm{H})$, $8.00-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.36(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$, all 1 C unless indicated) $\delta 149.24,149.20$, 149.13, 148.84, 148.47, 148.30, 148.21, 148.12, 147.57, 146.99, 146.93, 146.63, 146.56, $146.54,146.40,146.28,145.91,145.77,145.17,145.08,145.03,144.97$ (2C), 144.94, 144.78 (3C), 144.63, 144.55, 144.53, 144.36, 144.09 (2C), 144.08, 144.04, 143.79, $143.64,143.09,143.04,142.95,142.78$, 142.63 (2C), 142.61, 142.52, 142.35, 142.29, $142.02,141.65,141.37,141.23,140.59,139.67$, 138.26, 136.19, 136.12, 135.99, $134.79,134.39,133.46,130.43$ (aryl C), 129.98 (2C, aryl C), 126.83 (2C, aryl C), 124.87 (aryl C), 124.66 (aryl C), 124.26 (aryl C), 118.50 (aryl C), 114.92 (aryl C), 66.71 ($\mathrm{sp}^{3}-C$ of C_{60}), 62.45 ($\mathrm{sp}^{3}-C$ of C_{60}), 61.46 ($\mathrm{sp}^{3}-C$ of C_{60}), 54.91 ($\mathrm{sp}^{3}-C$ of C_{60}), 51.71, 21.71. FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr}) 2917,2852,1510,1442,1368,1216,1172,1120$, $1089,809,743,702,666,573,525$. UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 255(5.08), 333$ (4.45), 433 (3.75). MALDI-TOF MS m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$1005.0818, found 1005.0802.

4r
Preparation of $\mathbf{4 r}$: the reaction mixture of $\mathbf{3 r}(9.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ with $\mathrm{TfOH}(8.8$ $\mu \mathrm{L}, 0.10 \mathrm{mmol})$ in $\mathrm{CB}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 5 min afforded $\mathbf{4 r}(7.3 \mathrm{mg}, 78 \%)$ as an amorphous brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{DMSO}-d_{6}$) $\delta 8.10-8.06(\mathrm{~m}, 1 \mathrm{H})$, 8.05-8.01 (m, 1H), 7.47-7.43 (m, 2H), 6.43 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (d, $J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67$ (d, $J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (s, 3H). (It should be noted that the very low solubility of $4 \boldsymbol{r}$ prevented us from obtaining a ${ }^{13} \mathrm{C} N M R$ spectrum with a good signal-to-noise ratio). FT-IR $v / \mathrm{cm}^{-1}(\mathrm{KBr})$ 2923, 2846, 1617, $1508,1442,1364,1323,1262,1221,1169,1119,1017,958,830,775,745,564,537$. $\mathrm{UV}-\mathrm{vis}\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } / \mathrm{nm}(\log \varepsilon) 256$ (5.00), 333 (4.38), 436 (3.68). MALDI-TOF MS m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 929.0505$, found 929.0486 .

Scale-Up Reaction

A mixture of $\mathrm{C}_{60}(359.9 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathbf{1 h}(316.8 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(180.6$ $\mathrm{mg}, 0.5 \mathrm{mmol}$), and DMAP ($61.4 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in CB (60 mL). Then the solution was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h . The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(107.4 \mathrm{mg}, 30 \%)$ and then the desired product $\mathbf{2 h}(205.6$ $\mathrm{mg}, 40 \%$).

Single-Crystal X-Ray Crystallography of 4a

Black block crystals of $\mathbf{4 a}$ was obtained by slow evaporation of a saturated solution in carbon disulfide at $15^{\circ} \mathrm{C}$. Single-crystal X-ray diffraction data were collected on a diffractometer (Gemini S Ultra, Agilent Technologies) equipped with a CCD area detector using graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$ in the scan range $6.46^{\circ}<2 \theta<132.06^{\circ}$. The structure was solved with direct methods using SHELXS-97 and refined with full-matrix least-squares refinement using the SHELXL-97 program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 1557961.

Figure S1. ORTEP Diagrams of $\mathbf{4 a}$ with 20% Thermal Ellipsoids. The Carbon Disulfide Molecule is Omitted for Clarity.

Table S2. Crystal Data and Structure Refinement for 4a

Identification code	1557961
Empirical formula	$\mathrm{C}_{77} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}_{3}$
Formula weight	1082.08
Temperature/K	292(2)
Crystal system	monoclinic
Space group	P21/n
a/Å	9.9333(2)
b/Å	32.2929(6)
c/Å	28.6843(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	96.813(2)
γ^{\prime}	90
Volume/A ${ }^{3}$	9136.2(3)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.573
μ / mm^{-1}	1.981
$\mathrm{F}(000)$	4384.0
Crystal size/mm ${ }^{3}$	$0.320 \times 0.300 \times 0.210$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	8.278 to 143.052
Index ranges	$-11 \leq \mathrm{h} \leq 10,-39 \leq \mathrm{k} \leq 27,-34 \leq 1 \leq 24$
Reflections collected	37361
Independent reflections	$17231\left[\mathrm{R}_{\text {int }}=0.0311, \mathrm{R}_{\text {sigma }}=0.0356\right]$
Data/restraints/parameters	17231/0/1497
Goodness-of-fit on F^{2}	1.065
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0714, \mathrm{wR}_{2}=0.1767$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0880, \mathrm{wR}_{2}=0.1869$
Largest diff. peak/hole / e \AA^{-3}	0.50/-0.74

Mechanism Studies

Control Experiments

A mixture of $\mathrm{C}_{60}(36.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 1 \mathbf{1 a}(28.7 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.0 \mathrm{mg}$, $0.05 \mathrm{mmol})$, and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in CB (6 mL). Then the solution was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 1.5 h under the oxygen atmosphere (an oxygen balloon was used to supply the oxygen atmosphere). The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(27.7 \mathrm{mg}, 77 \%)$ and then the desired product $\mathbf{2 a}$ ($7.1 \mathrm{mg}, 14 \%$).

A mixture of $\mathrm{C}_{60}(35.9 \mathrm{mg}, 0.05 \mathrm{mmol}), 1 \mathrm{a}(28.9 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.3 \mathrm{mg}$, $0.05 \mathrm{mmol})$, and DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in CB $(6 \mathrm{~mL})$. Then the solution was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 1.5 h under the nitrogen atmosphere (a nitrogen balloon was used to supply the nitrogen atmosphere). The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(16.6 \mathrm{mg}, 46 \%)$ and then the desired product $\mathbf{2 a}$ ($17.1 \mathrm{mg}, 34 \%$).

A mixture of $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol}), 1 \mathrm{a}(28.3 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.0 \mathrm{mg}$, 0.05 mmol), DMAP ($6.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), and TEMPO ($16.1 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in CB (6 mL). Then the solution was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 1.5 h . The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(30.0 \mathrm{mg}, 83 \%)$ and then the desired product 2a ($4.2 \mathrm{mg}, 8 \%$). Finally, the TEMPO-1a ($10.1 \mathrm{mg}, 23 \%$) was isolated using $\mathrm{PE} / \mathrm{EtOAc}=15: 1$ as the eluent.

TEMPO-1a
TEMPO-1a. ${ }^{\text {b } ~}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.3,0.7 \mathrm{~Hz}$, 1 H), 4.38-4.30 (m, 1H), 4.01 (dd, $J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (dd, $J=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, $J=16.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, $J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H})$, $1.38-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H})$.

A mixture of $\mathrm{C}_{60}(35.9 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{1 a}(28.6 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.0 \mathrm{mg}$, 0.05 mmol), DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$), and BHT ($22.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in CB (6 mL). Then the solution was vigorously stirred at $100^{\circ} \mathrm{C}$ for 1.5 h . The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(29.5 \mathrm{mg}, 82 \%)$ and then the desired product 2a ($4.5 \mathrm{mg}, 9 \%$). Finally, the BHT-1a ($8.0 \mathrm{mg}, 16 \%$) was isolated using $\mathrm{PE} / \mathrm{EtOAc}=15: 1$ as the eluent.

BHT-1a
BHT-1a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=$ $15.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.65,143.47,142.82,137.29,136.97,136.57,135.72$, $130.03,129.65,128.36,128.29,128.09,126.87,126.42,125.49,116.15,56.52,35.06$, 34.21, 30.21, 21.72.

\boldsymbol{D}_{2} O-Labeled Experiments: A mixture of $\mathrm{C}_{60}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathbf{1 a}(28.6 \mathrm{mg}$, $0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(17.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, DMAP ($6.6 \mathrm{mg}, 0.05 \mathrm{mmol}$), and $\mathrm{D}_{2} \mathrm{O}$ $(9.0 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ was dissolved in $\mathrm{CB}(6 \mathrm{~mL})$. Then the solution was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 1.5 h . The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered C_{60} ($20.0 \mathrm{mg}, 56 \%$) and then the desired product $\mathbf{2 a}$ with less than 2% deuterium incorporation ($9.6 \mathrm{mg}, 19 \%$).

[D]-1a-Labeled Experiments: A mixture of $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, [D]-1a (28.8 $\mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.4 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.4 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in CB (6 mL). Then the solution was vigorously stirred at $100{ }^{\circ} \mathrm{C}$ for 1.5 h . The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(20.3 \mathrm{mg}, 56 \%)$ and then the desired product $2 \mathbf{a}$ with less than 2% deuterium incorporation (14.4 mg , 29\%).

[D]-1a'-Labeled Experiments: A mixture of $\mathrm{C}_{60}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, [D]-1a' (28.7 $\mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(18.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and DMAP ($6.3 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in CB (6 mL). Then the solution was vigorously stirred at $100^{\circ} \mathrm{C}$ for 1.5 h . The resulting solution was evaporated in vacuo and then separated on a silica gel column with $\mathrm{CS}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give recovered $\mathrm{C}_{60}(19.3 \mathrm{mg}, 54 \%)$ and then the desired product [D]-2a and [D]-2a' with a molar ratio of $1.2: 1(14.4 \mathrm{mg}$, 29%).

Table S3. Half-Wave Reduction Potentials ${ }^{a}$

compound	E_{1}	E_{2}
\mathbf{C}_{60}	-1.080	-1.473
$\mathbf{P C B M}$	-1.160	-1.538
$\mathbf{2 a}$	-1.177	-1.550
$\mathbf{2 b}$	-1.185	-1.556
$\mathbf{2 c}$	-1.177	-1.545
$\mathbf{2 d}$	-1.180	-1.550
$\mathbf{2 e}$	-1.175	-1.550
$\mathbf{2 f}$	-1.162	-1.535
$\mathbf{2 g}$	-1.155	-1.547
$\mathbf{2 h}$	-1.180	-1.560
$\mathbf{2 i}$	-1.172	-1.540
$\mathbf{2 j}$	-1.177	-1.542
$\mathbf{2 k}$	-1.185	-1.563
$\mathbf{2 l}$	-1.175	-1.545
$\mathbf{2 m}$	-1.178	-1.552
$\mathbf{2 n}$	-1.181	-1.559
$\mathbf{2 0}$	-1.181	-1.566
$\mathbf{2 p}$	-1.174	-1.536
$\mathbf{2 q}$	-1.174	-1.371
$\mathbf{2 r}$	-1.174	-1.552
$\mathbf{3 a}$	-1.144	-1.527
$\mathbf{3 r}$	-1.220	-1.600
$\mathbf{4 a}$	$-x p 3$	
$\mathbf{4 r}$	-1.223	

${ }^{a}$ Versus ferrocene/ferrocenium couple. Experimental conditions: 1 mM of $\mathbf{2 a}$ (or $\mathbf{2 b}-\mathbf{r}$, $\left.\mathbf{3 a}, \mathbf{4 a}, \mathrm{C}_{60}, \mathrm{PCBM}\right)$ and 0.1 M of $n-\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ in anhydrous ODCB; reference electrode: SCE; working electrode: Pt; auxiliary electrode: Pt wire; scanning rate: 20 $\mathrm{mV} \mathrm{s}^{-1}$. ${ }^{b}$ Saturated solution.

Device Fabrication. The ITO-coated glass substrate with a sheet resistance of 10 $\Omega \cdot \square^{-1}$ (purchased from Shenzhen Nan Bo Group, China) was ultrasonicated in a detergent (2% RBS aqueous solution, v / v), deionized water, acetone and isopropanol for 15 min every time, and subsequently dried in an oven at $60^{\circ} \mathrm{C}$ overnight. 0.1 M zinc acetate dihydrate was dissolved in a mixture of 2-methoxyethanol (10 mL) and ethanolamine under stirring for 10 h at $60^{\circ} \mathrm{C}$ for the hydrolysis reaction. The ZnO precursor solution was spin-coated onto the cleaned ITO-coated substrate at 2000 rpm for 30 s , and then heated at $200{ }^{\circ} \mathrm{C}$ for 10 min in N_{2} and $200{ }^{\circ} \mathrm{C}$ for 60 min in air to form a ZnO film ($\sim 40 \mathrm{~nm}$). For active layer deposition, P3HT:PCBM (1:0.8, w/w; 36 $\mathrm{mg} / \mathrm{mL}$ in total) dissolved in o-dichlorobenzene ($o-\mathrm{DCB}$) was spin-coated onto the ZnO layer at 800 rpm for 60 s in a glovebox, followed by evaporation of the $o-\mathrm{DCB}$ solvent in a vacuum for 2 h to form a thin active layer ($\sim 170 \mathrm{~nm}$), and then the P3HT:PCBM film was annealed at $135{ }^{\circ} \mathrm{C}$ for 10 min . Finally, the device was transferred into a vacuum chamber ($\sim 10^{-5} \mathrm{Torr}$), and $\mathrm{MoO}_{3}(\sim 10 \mathrm{~nm})$ and the Ag electrode ($\sim 100 \mathrm{~nm}$) were sequentially deposited thermally atop the active layer. The active areas of P3HT:PCBM devices were all defined as $2 \times 5 \mathrm{~mm}^{2}$. For active layer deposition, P3HT:2a and P3HT:2r were fabricated by the above procedure.

Figure S2. Schematic Structures of the ITO/ZnO/Active Layer/MoO $3 / \mathrm{Ag}$ BHJ-iPSC Devices.

Measurement and Characterization. The current density-voltage ($J-V$) characterization of BHJ-iPSC devices was carried out by using a Keithley 2400 source measurement unit under simulated AM 1.5 irradiation ($100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) with a standard xenon-lamp-based solar simulator (Oriel Sol 3A, USA). The solar simulator illumination intensity was calibrated by using a monocrystalline silicon reference cell (Oriel P/N 91150 V, with KG-5 visible colour filter) calibrated by the National Renewable Energy Laboratory (NREL). All the measurements were carried out in a glovebox and a mask with a well-defined area size of $10 \mathrm{~mm}^{2}$ was attached onto the cell to define the effective area so as to ensure accurate measurements.

Figure S3. $J-V$ Curves of Different Active Layer Systems Including P3HT:PCBM, P3HT:2a and P3HT:2r. The Measurements were Carried Out under Illumination of an AM 1.5 Solar Simulator ($100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) in a Glovebox.

Table S4. Photovoltaic Parameters of OPVs Based on a Blend of P3HT with Different Acceptors Measured under AM 1.5G Illumination of $100 \mathrm{~mW} / \mathrm{cm}^{2}$. ${ }^{a}$

P3HT:acceptor	$V_{\text {oc }}(\mathrm{V})$	$J_{\mathrm{sc}}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	FF $(\%)$	PCE (\%)
P3HT:PCBM				
P3HT:2a	0.62 ± 0.00	9.24 ± 0.14	63.28 ± 0.84	3.62 ± 0.05
P3HT:2r	0.57 ± 0.02	5.93 ± 0.24	47.93 ± 3.14	1.63 ± 0.20

${ }^{a}$ In all cases, the values were averaged around ten independent devices. ${ }^{b}$ P3HT:PCBM (1:0.8, w/w; $36 \mathrm{mg} / \mathrm{mL}$ in total) as a reference device.

Figure S4. AFM Topographic Images ($5 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$) of Photoactive Films Based on P3HT Blended with Different Acceptors.

Theoretically, the $V_{\text {oc }}$ value is linearly correlated with the difference between and the LUMO level of the acceptor and the HOMO level of donor in bulk heterojunction polymer solar cells. However, for the practical device, the actual $V_{\text {oc }}$ value is sensitively affected by the shunt resistance of the device, interface dipole, active layer morphology, and imperfect contacts with the electrodes. ${ }^{2}$

In order to unveil the reason responsible for the lower $V_{\text {oc }}$ of devices based on 2a and $\mathbf{2 r}$ acceptors, we carried out an additional study on the morphologies of the photoactive films based on different acceptors measured by atomic force microscopy (AFM). According to the comparison of the AFM images based on three different acceptors (Figure S4), obviously the P3HT:2a film is much rougher than P3HT:PCBM as reflected from its much larger root-mean-square (RMS) roughness, suggesting that phase separation within the P3HT:2a photoactive layer is too large for efficient exciton separations (ideally 20 nm). ${ }^{2}$ This would result in insufficient exciton separation and consequently the decrease of $V_{\text {oc }}$ value. On the other hand, for P3HT:2r film, its RMS roughness (1.14 nm) is even much smaller than that of P3HT:PCBM (4.98 nm). This suggests too small phase separation within the P3HT:2r photoactive layer, which would lead to enhanced probability of charge carrier recombination, and consequently the decrease of $V_{\text {oc }}$ value as well. In this regard, the phase separation within the P3HT:PCBM photoactive layer seems to be optimum for efficient exciton separations.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2a

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2a

Expanded ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2b

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2b

Expanded ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2c

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2c

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2c

$68 / \mathrm{Tg}$ -

$\stackrel{\circ}{\dot{Z}}$

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2c

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2d

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2d

Expanded ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathbf{D}_{2}\right)$ Spectrum of Compound 2d

U
$\stackrel{0}{0}$
$\stackrel{0}{0}$

$\stackrel{\text { O}}{\substack{8 \\ j \\ 1}}$

2d

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathbf{D}_{2}$) Spectrum of Compound 2d

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2e

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 e

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2e

$\stackrel{\rightharpoonup}{0}$
$\stackrel{\leftrightarrow}{0}$
$\stackrel{\mid}{\mid}$
$\stackrel{\text { 等 }}{\stackrel{\text { F }}{+}}$

— 147.203 | 5 |
| :--- |
| 8 |
| 8 |
| 6 |

2
$2 e$

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2e

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2 f

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2 f

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2 f
$\underset{\substack{\text { N } \\ \sim}}{\substack{\text { N } \\ \sim \\ \sim}}$

(
$2 f$

Expanded ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0 ~ M H z , ~} \mathbf{C}_{2} \mathbf{C l}_{4} \mathbf{D}_{2}$) Spectrum of Compound $2 f$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 g

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 g

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2g

2t99.9bl- $\stackrel{8 \varepsilon}{\varepsilon \varepsilon 9.9 t 1}=$

[^0]
2g

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 g

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2 h

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}$) Spectrum of Compound 2 h

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Expanded ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}\right)$ Spectrum of Compound 2 h

$\stackrel{\text { O}}{\stackrel{3}{4}}$ $\stackrel{\stackrel{8}{9}}{\stackrel{8}{4}}$

Expanded ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathbf{D}_{2}$) Spectrum of Compound 2h

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound 2 i

${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 i

Expanded ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $\mathbf{2 i}$

器
品
|

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 i

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $\mathbf{2 j}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 j

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $\mathbf{2 j}$

Expanded ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound $\mathbf{2 j}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 k

${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 k

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 k

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 k

$\stackrel{\stackrel{8}{6} \cdot \frac{8}{6}}{\stackrel{\circ}{6}}$

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 21

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 21

Expanded ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound 21

落
$\stackrel{0}{\circ}$
i
-

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 21

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $\mathbf{2 m}$

$\left.{ }^{13} \mathbf{C ~ N M R ~ (1 0 0 ~ M H z , ~} \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound 2 m

Expanded ${ }^{13}{ }^{\mathbf{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2m

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $\mathbf{2 m}$

${ }^{1} \mathrm{H}^{2}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2n

${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 n

Expanded ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2n

Expanded ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2n

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 20

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 20

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Expanded ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 20

$\angle \angle 9$ ¢9।-

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 20

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2p

${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound 2p

Expanded ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2p

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 p

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $2 q$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $2 q$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $2 q$

Expanded ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound $2 q$

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 r

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 r

Expanded ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2 r

Expanded ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2r

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 3a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 3a

Expanded ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 3a

Expanded ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C S}_{2} / \mathbf{C D C l}_{3}$) Spectrum of Compound 3a

\|		-	$\stackrel{8}{4}$		$\stackrel{\text { \% }}{\substack{\text { ¢ }}}$		咢		※	$\stackrel{\%}{0}$	$\underbrace{\substack{\text { ¢ }}}_{\text {¢ }}$

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} /$ DMSO- d_{6}) Spectrum of Compound 3 r

${ }^{1} \mathbf{H}$ NMR (400 MHz, CS $\mathbf{N}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 4a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 4 a

Expaned ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound 4a

Expaned ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 4a

O्/
爚
i

$\stackrel{8}{8}$
$\stackrel{\text { m }}{[}$
i

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 4 r

20

Table S5. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Chemical Shifts of Compound 2 o

Entry	$\delta_{\mathrm{H}}[\mathrm{ppm}]$	$\delta_{\mathrm{C}}[\mathrm{ppm}]$	Entry	$\delta_{\mathrm{H}}[\mathrm{ppm}]$	$\delta_{\mathrm{C}}[\mathrm{ppm}]$
1	6.77	58.63	10	8.27	115.81
2	$/$	64.96	11	$/$	137.69
3	5.27	44.07	12	$/$	130.56
4	$/$	136.19	13	7.83	128.67
5	7.30	113.90	14	6.89	114.37
6	$/$	129.74	15	$/$	163.68
7	7.53	120.97	16	6.89	114.37
8	7.26	124.26	17	7.83	128.67
9	7.33	125.05	18	3.81	55.36

Figure S5. HSQC Spectrum of Compound 20

Figure S6. Expanded HSQC Spectrum of Compound 20

Figure S7. Expanded HSQC Spectrum of Compound 20

Figure S8. HMBC Spectrum of Compound 20

Figure S9. Expanded HMBC Spectrum of Compound 2o

Figure S10. Expanded HMBC Spectrum of Compound 20

Figure S11. Expanded HMBC Spectrum of Compound 20

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of Compound BHT-1a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of Compound BHT-1a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2a Obtained from the $\mathrm{D}_{2} \mathrm{O}$-Labeled Experiment

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}$) Spectrum of Compound 2a Obtained from the [D]-1a-Labeled Experiment

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CS}_{2} / \mathrm{CDCl}_{3}\right)$ Spectrum of Compound 2a Obtained from the [D]-1a'-Labeled Experiment

Cyclic Voltammogram of Compound 2a (scanning rate: $50 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2b (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2c (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2d (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2e (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound $\mathbf{2 f}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2g (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2h (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2i (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound $\mathbf{2 j}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound $\mathbf{2 k}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound $\mathbf{2 l}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound $\mathbf{2 m}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2n (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound $2 \mathbf{2}$ (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2p (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2q (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 2r (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 3a (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 3r (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 4a (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound 4r (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound C_{60} (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

Cyclic Voltammogram of Compound PCBM (scanning rate: $20 \mathrm{mV} \mathrm{s}^{-1}$)

References

(1) (a) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948. (b) Fuller, P. H.; Kim, J.-W.; Chemler, S. R. J. Am. Chem. Soc. 2008, 130, 17638. (c) Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739. (d) Paderes, M. C.; Belding, L.; Fanovic, B.; Dudding, T.; Keister, J. B.; Chemler, S. R. Chem. Eur. J. 2012, 18, 1711. (e) Liwosz, T. W.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 2020. (f) Turnpenny, B. W.; Hy-man, K. L.; Chemler, S. R. Organometallics 2012, 31, 7819. (g) Dang, L.; Liang, L.; Qian, C.; Fu, M.; Ma, T.; Xu, D.; Jiang, H.; Zeng, W. J. Org. Chem. 2014, 79, 769.
(2) Nelson, J. Mater. Today 2011, 14, 462.

[^0]: $821 \cdot 9 t$ ——
 1L19ti-

