Supporting Information:

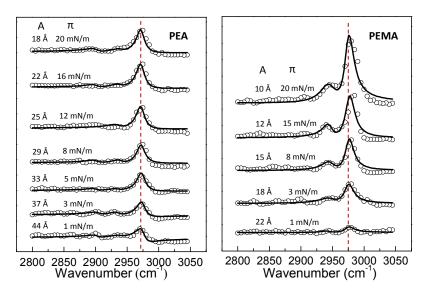
Impact of the Alpha-Methyl Group (α-CH₃) on the

Aggregation States and Interfacial Isotherms of

Poly(acrylates) Monolayers at the Water Surface

Yongming Hong, Hao Zhou, Wenhao Qian, Biao Zuo,* and Xinping Wang*

Department of Chemistry, Key Laboratory of Advanced Textile Materials and


Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University,

Hangzhou 310018, China

E-mail: chemizuo@zstu.edu.cn (B. Z.)

wxinping@zstu.edu.cn (X. W.)

S1

Figure S1. SFG spectra of PEA and PEMA monolayers at various surface areas. (*ppp* polarization combination)

Table S1. Fitting results of SFG spectra shown in Figure 3 for PMA and PMMA at selected surface pressures.

			1 mN/m		4 mN/m		13 mN/m		18 mN/m	
ω_{i} (cm ⁻¹)	Γ	assignment	$A_{ m ssp}$							
			PMA	PMMA	PMA	PMMA	PMA	PMMA	PMA	PMMA
2910	8	-CH ₂ ss	12	0	9	4	-	7	8	-
2955	9	$-OCH_3$ ss	32	27	45	56	-	106	78	-
2991	8	-OCH ₃ as, α-CH ₃ as	6	5	8	8	-	16	9	-
3020	8	-OCH ₃ as	6	4	6	8	-	15	6	-

Table S2. The values of $\chi_{eff,ssp,ss}^{(2)}/\chi_{eff,ssp,as}^{(2)}$ for the ester CH₃ groups of PMA and PMMA at various surface areas

]	PMA	PMMA				
surfaces areas (Ų/units)	$\chi_{\rm eff,ssp,ss}^{(2)}/\chi_{\rm eff,ssp,as}^{(2)}$	surfaces areas (Ų/units)	$\chi_{eff,ssp,ss}^{(2)}/\chi_{eff,ssp,as}^{(2)}$			
47	2.4	16	3.0			
32	3.3	15	3.3			
21	3.8	14	3.3			
19	4.7	13	3.2			
16	5.4	12	3.1			
12	5.8	10	3.1			

Table S3. Fitting results of SFG spectra shown in Figure 3 and Figure S1 for PEA at selected surface pressures.

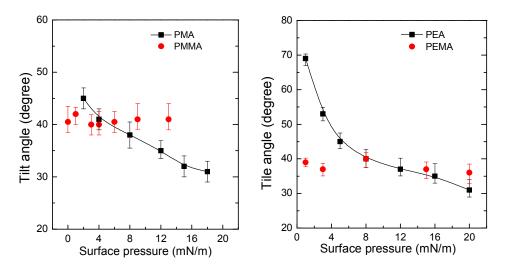

1			1 mN/m		5 mN/m		12 mN/m		20 mN/m	
ω_{i} (cm ⁻¹)	Γ	assignment	$A_{\rm ss}$	A_{ppp}	A_{ssp}	A_{ppp}	A_{ssp}	A_{ppp}	A_{ssp}	A_{ppp}
2872	9	s-CH ₃ Fermi	9	-	14	-	21	-	27	-
2902	9	-CH ₂ as	5	3	9	6	16	0	17	5
2937	10	s-CH ₃ ss	19	4	48	4	72	7	90	6
2973	9	s-CH ₃ as	7	19	27	30	26	34	31	32

Table S4. Fitting results for SFG spectra shown in Figure 3 and Figure S1 for PEMA at selected surface pressures.

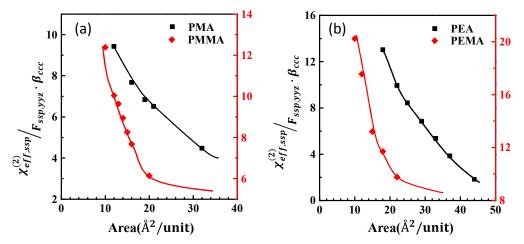

1			1 mN/m		3 mN/m		15 mN/m		20 mN/m	
$\omega_{i} (cm^{-1})$	Γ	assignment	$A_{\rm ss}$	$A_{ m ppp}$	A_{ssp}	$A_{ m ppp}$	A_{ssp}	$A_{ m ppp}$	A_{ssp}	A_{ppp}
2847	9	-CH ₂ ss	8	-	16	-	13	-	17	-
2874	9	s-CH ₃ Fermi	8	-	12	-	18	-	35	-
2940	12	s-CH ₃ ss	26	5	44	9	56	13	74	17
2974	10	s-CH ₃ as	-4	12	-5	22	-6	27	-5	43

Table S5. The values of $\chi_{eff,ssp,ss}^{(2)}/\chi_{eff,ppp,as}^{(2)}$ for the ester side chains CH₃ groups of PEA and PEMA at various surface areas

	PEA	PEMA				
surfaces areas (Ų/units)	$\chi_{\rm eff,ssp,ss}^{(2)}/\chi_{\rm eff,ppp,as}^{(2)}$	surfaces areas (Ų/units)	$\chi_{eff,ssp,ss}^{(2)}/\chi_{eff,ppp,as}^{(2)}$			
44	1.2	-	-			
37	1.6	24	2.4			
33	1.9	22	2.5			
29	2.1	18	2.3			
25	2.5	15	2.3			
22	2.7	12	2.5			
18	3.3	10	2.7			

Figure S2. Tile angle (θ) of side-chain methyl groups as functions of the surface pressure.

Figure S3. Simulated SFG intensity of PMA, PMMA (a) and PEA, PEMA (b) as a function of the surface areas.

Based on the orientation angle shown in Figure 5 and molecular density which is inverse of the surface areas, we can theoretically calculate the SFG intensity of s-CH₃. We have the following relation for *ss* mode of s-CH₃ in the *ssp* spectra:

$$I_{\mathrm{SFG,\,ssp}}^{1/2} \propto \left| \chi_{\mathrm{eff,\,ssp}}^{(2)} \right| \propto F_{\mathrm{ssp,\,yyz}} \chi_{\mathrm{yyz,\,ss}} \propto \frac{1}{2} F_{\mathrm{ssp,\,yyz}} N \beta_{ccc} \left[\cos \theta (1+r) - \cos^3 \theta (1-r) \right]$$

where $F_{\rm ssp,yyz}$ is the Fresnel factor; N is the surface density; θ is the tilt angle of -CH₃ with respect to the surface normal and $r = \beta_{\rm aac}/\beta_{\rm ccc}$. Since $\beta_{\rm ccc}$ and $F_{\rm ssp,yyz}$ are constant,

irrelative with the surface pressure or surface area, here we use $\chi_{eff,ssp}/F_{ssp,yyz}$: β_{ccc} , instead of $I_{SFG,ssp}$, to investigate the changes of the relatively simulated SFG intensity with decreasing the surface areas.

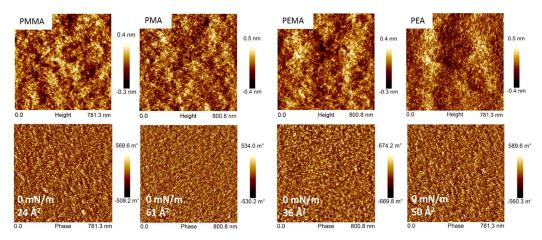
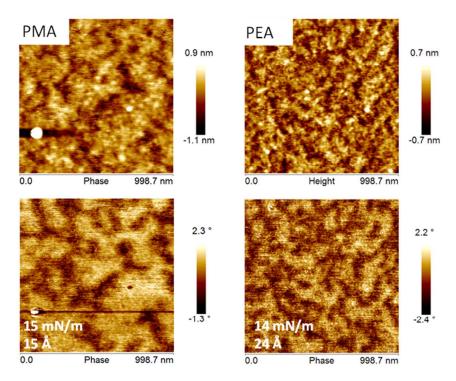



Figure S4. AFM images of the LB films transferred from the water surface at 0 mN/m.

Figure S5. AFM images of the LB films of PMA and PEA transferred from the water surface at surface pressures of 15 and 14 mN/m, respectively.