Supporting Information

Dual-functional ice/water interface allows high-yield formation of

Al₁₃ with low energy

Liang Kuang^{1,3}, Ning Li^{2,3}, William A.Jefferson¹, Yaohui Bai^{1,3}, Qinghua Ji^{1,3}, Huijuan Liu^{2,3}, and Jiuhui Qu^{*1,3}

¹ Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

² State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

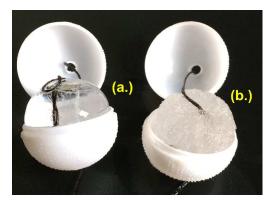
³ University of Chinese Academy of Sciences, Beijing, 100049, China

*Corresponding author:

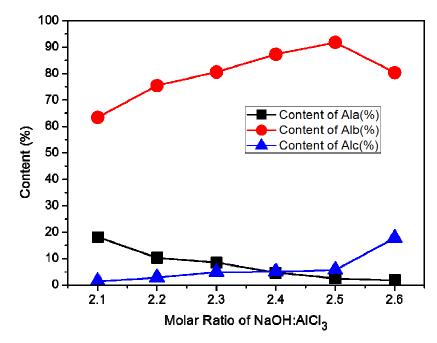
Telephone/Fax: +86-10-62849160 E-mail: jhqu@rcees.ac.cn

Contents: 6 pages 5 figures 2 tables

S.1 Materials


All chemicals were reagent grade or higher. Millipore water($18.2M\Omega$) was used in the preparations of all solutions. Commercial PACI (Tianjin, China) was a commercial PACI product containing 28% of Al₂O₃, the content of Al_b in which was 33% by Ferron method.

S.2 Experimental Methods


2.1 Characterization

The Ferron method was used for the characterization of aluminium in synthetic product.¹The Ferron colorimetric method is based on the determination of the absorbance at 370nm. There are three fractions which could be operationally considered as Al_a , Al_b , and Al_c , corresponding to monomeric , medium polymer and larger polymer species or $Al(OH)_3$, respectively. According to literature¹, the absorbance detected at 1min represented for Al_a , and which was detected at 120min represented for $Al_a + Al_b$, thus Al_c was obtained by Al_T minus Al_a and Al_b . Many investigations regarded the Al_b species as the Al_{13} species

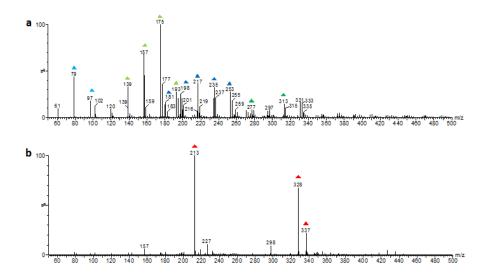

S.3 Figures and tables

Figure S1. Comparison of images of the ice ball(water) towards the ice ball (NaOH solution) (a). The ice ball is frozen from Millipore water. (b) The ice ball is frozen from NaOH solution.

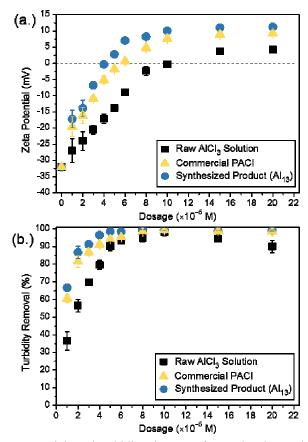


Figure S2. The characterization of synthetic product by Ferron method at different molar ratios of NaOH: AlCl₃

Figure S3. ESI-TOF-MS spectra of AlCl3 and the synthetic product (0.05mol/L). (a), the AlCl₃ solution as a raw material. (b), the synthetic product. The ESI-TOF-MS conditions refer to the literature², the parameters were: capillary voltage 3500.0 V, sample cone voltage 70 V, extraction cone voltage 5 V, source temperature 120 °C, desolation temperature 150 °C, cone gas (N₂) flow rate 300 L h⁻¹, and mass range 50~1000.

 $(\blacktriangle Al_1, \bigstar Al_2, \blacktriangle Al_3, \bigstar Al_4, \blacktriangle Al_{13})$

Figure S4. The Zeta potentials and turbidity changes of coagulated material as a function of coagulant dose. (The initial turbidity was 70NTU, the initial pH was 7 and the ionic strength was 10^{-3} mol/L)

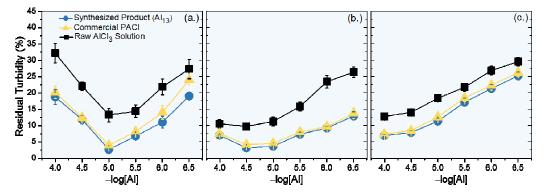


Figure S5. The removal of turbidity under different initial pH (a)pH=5 (b) pH=7(c)pH=9.

m/z	Aluminium species	Experimental m/z	Theoretical m/z	
	formula			
79	$Al(OH)_2(H_2O)^+$	79.01	79.01	
97	$Al(OH)_2(H_2O)_2^+$	97.03	97.03	
139	Al ₂ O ₂ (OH) (H ₂ O) ₂ ⁺	139.00	139.00	
157	Al ₂ O ₂ (OH) (H ₂ O) ₃ ⁺	157.01	157.01(157.0151)	
175	Al ₂ O ₂ (OH) (H ₂ O) ₄ ⁺	175.03	175.03	
193	Al ₂ O ₂ (OH) (H ₂ O) ₅ ⁺	193.05	193.05	
181	$Al_{3}O_{4}(H_{2}O)_{2}^{+}$	180.97	180.97	
199	Al ₃ O ₄ (H ₂ O) ₃ ⁺	198.99	198.99	
217	Al ₃ O ₄ (H ₂ O) ₄ ⁺	217.00	217.00	
235	Al ₃ O ₄ (H ₂ O) ₅ ⁺	235.02	235.02	
253	$Al_{3}O_{4}(H_{2}O)_{6}^{+}$	253.03	253.03	
277	Al ₄ O ₅ (OH) (H ₂ O) ₄ ⁺	276.99	276.99	
313	Al ₄ O ₅ (OH) (H ₂ O) ₆ ⁺	313.02	313.02	
213	$AlO_4Al_{12}O_{14}^{3+}$	212.92	212.92	
328	$\mathrm{AlO}_4\mathrm{Al}_{12}\mathrm{O}_{14}\mathrm{(OH)}^{2+}$	327.88	327.88	
337	AlO ₄ Al ₁₂ O ₁₃ (OH) ₃ ²⁺	336.89	336.89	

Table S1. Comparison of experimental m/z with theoretical m/z of different aluminium species

Table S2. Comparison of various synthetic methods used to prepare Al_{13}

Preparation	Energy	Required	Waste	Content	Time	Shelf-life ^a	Ref.
Method	needs for	External	streams	(%)	Consuming		
		input					
Micro-injection	vigorous		none	44 ($Al_T^{b}=0.2M$)	hrs	Several	3
	stirring					Months	
Furrier Method	pump	Electricity	Spent marble	$93(Al_T=5.29*10^{-3})$	1 hr	Several	4
			granulate,		or more	Months	
			Al(OH) ₃				
			by-product				
Electrolysis	electrode	Electricity	Anode mud	89 (Al _T =0.2M)	hrs	Several	3
						Months	
Membrane Reator	Membrane	Electricity	Clogging and	79(Al _T =0.27M)		Several	5
	pump		back-wash			Months	
			waste				
Ice-melting	Freezing (or	none	none	90(Al _T =0.2M)	mins	Over	
	cold climate)					6months	
						(up to now)	

a In the other methods, in exact, the shelf-life is not given in the literature, but it can be assumed to be at least several months.

b. The Al_T here refers to the total aluminum in the synthetic product.

S.4 Results and discussion

Set the integrated area of Na aluminate in Fig.2 to 1, then the area at 0ppm was 11.32(Fig.2a), the area at 0ppm and 63ppm was 0.49 and 0.8, respectively. (Fig.2b) If we multiplied the signal of 63ppm by 13, the result is about 90% of the 0ppm signal of Fig.2a. This calculation is consistent with the result from the Al₁₃ concentration divided by the Al_T determined from ICP-OES.

References

1.Parker, DR.;Bertsch, PM.Identification and quantification of the Al₁₃ tridecameric polycation using Ferron. *Environ. Sci. Technol.***1992**,26(5),908-914,DOI: 10.1021/es00029a006

2. Zhao, H.;Liu, HJ.;Qu, JH. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species. *J.Colloid Interface Sci.* **2009**,330(1), 105-112,DOI: 10.1016/j.jcis.2008.10.020

3.Qu, JH.;Liu, HJ. Optimum conditions for Al13 polymer formation in PACl preparation by electrolysis process. *Chemosphere*.**2004**, 55(1), 51-56,DOI: 10.1016/j.chemosphere.2003.10.058

4. Furrer, G.;Trusch, B.; Muller, C.The formation of polynuclear Al13 under simulated natural conditions.Geochim. Cosmochim. Acta.**1992**,56(10) 3831-3838, DOI: 10.1016/0016-7037(92)90174-H 5.Jia, Z.; He, F; Liu, Z. Synthesis of polyaluminum chloride with a membrane reactor: operati ng parameter effects and reaction pathways. *Ind. Eng.Chem. Res.***2004**, 43(1), 12-17,DOI: 10.101 6/S1001-0742(10)60614-6