Supporting Information

Accessing 1,3-Dienes via Palladium-Catalyzed Allylic Alkylation of Pronucleophiles with Skipped Enynes

Shang Gao,⁺ Hao Liu,⁺ Chi Yang, Zhiyuan Fu, Hequan Yao* and Aijun Lin*

State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China Fax: (+86)-25-8327-1042; e-mail: ajlin@cpu.edu.cn; hyao@cpu.edu.cn; cpuhyao@126.com

(*These authors contributed equally to this work)

Contents

1. General Information	2
2. Preparation of the Substrates	2
2.1 Preparation of Pronucleophiles	2
2.2 Preparation of Skipped Enynes	3
3. General Procedure for the Allylic Alkylation of Pronucleophiles with Skipped Enynes	4
4. Derivation of the Allylic Alkylated Product 3aa	5
5. Deuterated-Labeling Experiment	6
6. Characterization of the Title Compounds	7
7. X-Ray Crystallography Data 2	20
7.1 X-Ray Crystallography Data of 3aa 2	20
7.2 X-Ray Crystallography Data of 6a 2	27
8. ¹ H, ¹³ C and ¹⁹ F NMR Spectra of the Title Compounds	38

1. General Information

Reagents and Solvents: $Pd(PPh_3)_4$ and $PhCO_2H$ were commercially available. PE refers to petroleum ether b. p. 60-90 °C and EA refers to ethyl acetate. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated.

Chromatography: Flash column chromatography was carried out using commercially available 200-300 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA, they are listed as volume/volume ratios.

Data collection: ¹H and ¹³C NMR spectra were collected on BRUKER AV-300 (300 MHz) or BRUKER AV-500 (500 MHz) spectrometer using CDCl₃ as solvent. Chemical shifts of ¹H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta = 0.00$ ppm) with the solvent resonance as an internal standard (CDCl₃: $\delta = 7.26$ ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of ¹³C NMR were reported in ppm with the solvent as the internal standard (CDCl₃: $\delta = 77.16$ ppm). High Resolution Mass measurement was performed on Agilent Q-TOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. Infrared (IR) spectra were recorded using a thin film supported on KBr disks. Melting point (m. p.) was measured on a microscopic melting point apparatus.

2. Preparation of the Substrates

2.1 Preparation of Pronucleophiles

Substituted oxindoles were prepared according to the reported literature¹ as the following procedures:

$$R \stackrel{(I)}{=} \bigvee_{H} O = \frac{1. \text{ NaH, DMF, 0 °C}}{2. \text{ Mel}} R \stackrel{(I)}{=} \bigvee_{Me} O = \frac{PhMgBr}{THF, 0 °C, \text{ Ar}} R \stackrel{HO}{=} \bigvee_{Me} O = \frac{SnCl_2, \text{ AcOH}}{80 °C} R \stackrel{Ph}{=} \bigvee_{Me} O = \frac{SnCl_2, \text{ AcOH}}{80 °C} R \stackrel{Ph}{=} O = R^1 = \text{Me or Ph}$$

Substituted isatins (20.0 mmol) were dissolved in anhydrous DMF (30 mL), and the resultant solution was cooled to 0 °C, whereupon sodium hydride (60% dispersion in oil, 0.95 g, 24.0 mmol) was added in one portion and stirred for 5 min. Iodomethane (1.87 mL, 30.0 mmol) was added and the reaction was stirred at 0 °C for 30 min. The reaction mixture was then poured into saturated aqueous NH₄Cl and extracted with EA (4 x 30 mL). The combined organic layers were washed with water and brine, then dried

^{1.} Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011, 133, 20611.

over Na₂SO₄, filtered, and concentrated to give the crude substituted *N*-methyl isatins, which was used without further purification, $R_f = 0.50$ (PE : EA = 1 : 1).

The crude substituted *N*-methyl isatins (20.0 mmol) were dissolved in anhydrous THF (30 mL) and cooled to 0 °C followed by dropwise addition of a 2.0 M solution of PhMgBr in THF (12.0 mL, 24.0 mmol). Then, the ice-bath was removed, and the reaction was stirred under argon atmosphere for 30 min at which point TLC analysis indicated consumption of the starting material. The reaction mixture was poured into saturated aqueous NH₄Cl (20 mL), and extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to give the crude alcohol, $R_f = 0.45$ (PE : EA = 1 : 1).

The crude alcohol (5.0 mmol) was dissolved in 30 mL of glacial acetic acid and SnCl₂•2 H₂O (10.0 mmol) was added. The reaction mixture was stirred at 80 °C for 2 h at which point TLC analysis indicated consumption of the starting material. Next, the solution was cooled to room temperature, concentrated *in vacuo*, and then diluted with EA (100 mL). The solution was washed with water (3 x 20 mL) and brine (30 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography with EA/PE to afford the oxindoles as solid.

2.2 Preparation of Skipped Enynes

Skipped enynes 2 were prepared according to the reported literature:²

$$R = H + R = R = 2$$

$$K_2CO_3, DBU$$

$$Na_2SO_3$$

$$Cul, DMF$$

$$R = 2$$

A mixture of allyl bromide (2.6 mL, 30 mmol, 1.5 equiv), substituted terminal alkynes (20 mmol, 1.0 equiv), Na_2SO_3 (1.26 g, 10 mmol, 0.5 equiv), CuI (76 mg, 0.4 mmol, 0.02 equiv) and K_2CO_3 (2.78 g, 1.0 equiv) in DMF (10 mL) and DBU (8 drops) were stirred at room temperature for 5-24 h until the terminal alkynes were consumed completely. The reaction was quenched with aqueous solution of 1 M HCl and the mixture was extracted with Et₂O three times. The combined organic layer was washed with 1 M HCl, brine and dried over Na_2SO_4 . After filtration, the solvent was evaporated under reduced pressure at room temperature. The crude mixture was purified by flash column chromatography on silica gel with PE as eluent to afford **2**. (Note: DMF was used here as solvent to prepared **2** instead of DMSO).

^{2.} Bieber, L. W.; da Silva, M. F. Tetrahedron Lett. 2007, 48, 7088.

3. General Procedure of Allylic Alkylation of Pronucleophiles with Skipped Enynes

A 10 mL sealed tube was charged with pronucleophiles **1** (0.25 mmol, 1.0 equiv), Pd(PPh₃)₄ (0.025 mmol, 5.0 mol %), benzoic acid (0.025 mmol, 5.0 mol %), skipped enynes **2** (0.50 mmol, 2.0 equiv), toluene (1.0 mL) and a stir bar. The sealed tube was then filled with argon and sealed upon completion of this manipulation. The reaction mixture was vigorously stirred at 100 °C for 12 h under argon. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (20 mL) and filtered through a plug of Celite. The reaction solution was then concentrated *in vacuo* and purified with flash column chromatography (PE/EA = 20:1) to afford a mixture of stereoisomers was separated by a second flash column (eluted with PE/EA = 20:1) to afford the major stereoisomer.

Procedures for gram-scale synthesis of **3aa**:

A 100 mL sealed tube was charged with **1a** (5.0 mmol, 1.0 equiv), Pd(PPh₃)₄ (0.150 mmol, 5.0 mol %), benzoic acid (0.150 mmol, 3.0 mol %), skipped enynes **2** (10.0 mmol, 2.0 equiv), toluene (20 mL) and a stir bar. The sealed tube was then filled with argon and sealed upon completion of this manipulation. The reaction mixture was vigorously stirred at 100 °C for 12 h under argon. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (40 mL) and filtered through a plug of Celite. The residue was washed with ethyl acetate. The combined organic solution was then concentrated *in vacuo* and purified with flash column chromatography (PE/EA = 20:1) to afford a mixture of **3aa** and **3aa'** (1.576 g) and the *E/Z* ratio was determined by ¹H NMR. The mixture of stereoisomers was separated by a second flash column (eluted with PE/EA = 20:1) to afford **3aa**.

4. Derivation of the Allylic Alkylated Product 3aa

Reduction of 3aa: To the solution of **3aa** (73.0 mg, 0.2 mmol) in 2.0 mL methanol was added 10% Pd(OH)₂/C, and the solution was stirred at room temperature under a balloon of H₂ overnight. The reaction mixture was filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford **4** as a colorless oil.

Cascade Diels-Alder/oxidation of 3aa: To the solution of **3aa** (73.0 mg, 0.2 mmol, 1.0 equiv) in 2.0 mL PhCl was added dimethyl acetylenedicarboxylate (0.6 mmol, 3.0 equiv) and the reaction mixture was stirred in 150 °C under argon atmosphere for 48 h. DDQ was then added and the resulting solution was stirred for 8 h at 120 °C. The reaction solution was then concentrated *in vacuo* and purified with flash column chromatography (PE/EA = $6:1\sim2:1$) to afford compound **5** as white solid.

Diels-Alder reaction of 3aa with *N***-benzylmaleimide**: To the solution of **3aa** (73.0 mg, 0.2 mmol, 1.0 equiv) in 2.0 mL toluene was added *N*-benzylmaleimide (0.22 mmol, 1.1 equiv) and the reaction mixture was stirred in 120 °C under argon atmosphere for 36 h. The reaction solution was then concentrated *in vacuo* and purified with flash column chromatography (PE/EA = $6:1\sim2:1$) to afford compound **6a** and **6b** as white solid.

5. Deuterated-Labeling Experiment^[a]

[a] The extent of deuterium incorporation was determined using ¹H NMR spectroscopy.

pent-4-en-1-yn-1-ylferrocene (2l)

Isolated yield: 83%, 4.15 g, 16.6 mmol. Brown solid, m. p. 40–41 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.93 – 5.84 (m, 1H), 5.40 (d, *J* = 16.9 Hz, 1H), 5.16 (d, *J* = 9.7 Hz, 1H), 4.39 (s, 2H), 4.20 – 4.15 (m, 7H), 3.09 (d, *J* = 3.3 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 133.0, 116.1, 82.7, 80.9, 71.3, 69.9, 68.4, 66.2, 24.0 ppm. IR (KBr) v 3093, 2914, 1105, 1001, 819 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₅H₁₄⁵⁶Fe]⁺ 250.0439, found 250.0439.

1-methyl-3-phenyl-3-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)indolin-2-one (3aa) Total isolated yield: 93%, 85.0 mg, 0.23 mmol, 2E/2Z = 8.2:1. Purified **3aa**, yellow solid, m. p. 104–106 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (dd, J = 8.2, 1.3 Hz, 2H), 7.35 – 7.23 (m, 8H), 7.19 – 7.16 (m, 1H), 7.14 – 7.09 (m, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.53 (dd, J = 15.6, 10.3 Hz, 1H), 6.37 (d, J = 15.7 Hz, 1H), 6.18 (dd, J = 15.0, 10.3 Hz, 1H), 5.39 (ddd, J = 15.0, 8.4, 6.5 Hz, 1H), 3.18 – 3.13 (m, 4H), 3.04 (dd, J = 13.8, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 143.9, 139.4, 137.3, 134.7, 131.7, 131.6, 128.7, 128.6, 128.4, 128.3, 127.5, 127.5, 127.2, 126.3, 125.3, 122.6, 108.4, 56.7, 41.2, 26.5 ppm. IR (KBr) υ 3055, 3024, 2930, 1714, 1699, 1614, 1470, 1373, 989, 752, 696 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₆H₂₃NO+H]⁺ 366.1852, found 366.1858.

1-methyl-3-phenyl-3-((2Z,4E)-5-phenylpenta-2,4-dien-1-yl)indolin-2-one (3aa') Purified **3aa'**, yellow solid, 55–57 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.34 (m, 4H), 7.33 – 7.18 (m, 9H), 7.07 (t, *J* = 7.5 Hz, 1H), 6.97 (dd, *J* = 15.4, 11.2 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.44 (d, *J* = 15.6 Hz, 1H), 6.08 (t, *J* = 11.0 Hz, 1H), 5.14 (dt, *J* = 10.1, 7.8 Hz, 1H), 3.33 (dd, *J* = 15.1, 9.6 Hz, 1H), 3.30 – 3.15 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 178.2, 144.0, 139.7, 137.6, 133.5, 132.0, 128.73, 128.70, 128.5, 128.5, 127.7, 127.5, 127.3, 126.7, 125.8, 125.4, 124.3, 122.7, 108.4, 56.4, 36.3, 26.6 ppm. IR (KBr) v 3055, 3024, 2930, 1714, 1611, 1491, 1472, 1373, 696 cm⁻¹.

1-methyl-3-phenyl-3-((2E,4E)-5-(p-tolyl)penta-2,4-dien-1-yl)indolin-2-one (3ab) Total isolated yield: 89%, 84.4 mg, 0.22 mmol, 2E/2Z = 7.6:1. Purified **3ab**, yellow solid, 84–86 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.39 (m, 2H), 7.35 – 7.27 (m, 4H), 7.25 – 7.23 (m, 1H), 7.19 (d, J = 8.1 Hz, 2H), 7.13- 7.05 (m, 3H), 6.88 (d, J = 7.7 Hz, 1H), 6.49 (dd, J = 15.6, 10.2 Hz, 1H), 6.34 (d, J = 15.7 Hz, 1H), 6.17 (dd, J = 15.0, 10.2 Hz, 1H), 5.35 (ddd, J = 14.9, 8.4, 6.5 Hz, 1H), 3.18 – 3.13 (m, 4H), 3.03 (dd, J = 13.7, 8.6 Hz, 1H), 2.30 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 143.9, 139.4, 137.3, 134.9, 134.5, 131.7, 131.5, 129.4, 128.7, 128.4, 127.7, 127.6, 127.5, 127.2, 126.2, 125.3, 122.6, 108.4, 56.8, 41.2, 26.5, 21.3 ppm. IR (KBr) v 3053, 3022, 2920, 1714, 1612, 1495, 1472, 1373, 1348, 752, 696 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₇H₂₅NO+H]⁺ 380.2009, found 380.2014.

3-((2E,4E)-5-(4-methoxyphenyl)penta-2,4-dien-1-yl)-1-methyl-3-phenylindolin-2one (3ac)

Total isolated yield: 88%, 87.0 mg, 0.22 mmol, 2E/2Z = 7.4:1. Purified **3ac**, yellow solid, m. p. 100–102 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.39 (m, 2H), 7.35 - 7.22 (m, 7H), 7.11 (t, J = 7.2 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.79 (d, J = 8.7 Hz, 2H), 6.41 (dd, J = 15.5, 9.6 Hz, 1H), 6.32 (d, J = 15.5 Hz, 1H), 6.15 (dd, J = 15.0, 9.6 Hz, 1H), 5.38 – 5.28 (m, 1H), 3.76 (s, 3H), 3.18 – 3.12 (m, 4H), 3.03 (dd, J = 13.7, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 159.2, 143.9, 139.5, 134.9, 131.7, 131.1, 130.1, 128.6, 128.3, 127.5, 127.5, 127.2, 127.0, 126.7, 125.3, 122.6, 114.1, 108.4, 56.8, 55.4, 41.2, 26.5 ppm. IR (KBr) υ 3055, 3026, 2953, 1715, 1611, 1614, 1491, 1470, 831, 752, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₇H₂₅NO₂+H]⁺ 396.1958, found 396.1961.

3-((2E,4E)-5-(4-fluorophenyl)penta-2,4-dien-1-yl)-1-methyl-3-phenylindolin-2-one (3ad)

Total isolated yield: 96%, 92.0 mg, 0.24 mmol, 2E/2Z = 8.0:1. Purified **3ad**, yellow

solid, m. p. 94–96 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.23 (m, 9H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.44 (dd, *J* = 15.6, 10.0 Hz, 1H), 6.32 (d, *J* = 15.6 Hz, 1H), 6.16 (dd, *J* = 15.0, 10.0 Hz, 1H), 5.43 – 5.33 (m, 1H), 3.25 – 3.10 (m, 4H), 3.04 (dd, *J* = 13.7, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 162.2 (d, *J* = 245 Hz), 143.8, 139.4, 134.5, 133.5 (d, *J* = 3.4 Hz), 131.6, 130.3, 128.7, 128.39, 128.36, 127.8, 127.6 (d, *J* = 7.8 Hz), 127.2, 125.3, 122.6, 115.6 (d, *J* = 21 Hz), 108.4, 56.7, 41.2, 26.5 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -113.4 ppm. IR (KBr) v 3055, 3024, 2930, 1714, 1612, 1470, 1373, 1227, 837, 754, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₆H₂₂FNO+H]⁺ 384.1758, found 384.1763.

3-((2E,4E)-5-(4-chlorophenyl)penta-2,4-dien-1-yl)-1-methyl-3-phenylindolin-2-one (3ae)

Total isolated yield: 96%, 96.0 mg, 0.24 mmol, 2E/2Z = 7.1:1. Purified **3ae**, yellow solid, 98–100 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, J = 7.0 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.27 – 7.20 (m, 6H), 7.11 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.49 (dd, J = 15.6, 10.3 Hz, 1H), 6.30 (d, J = 15.6 Hz, 1H), 6.16 (dd, J = 15.0, 10.4 Hz, 1H), 5.45 – 5.35 (m, 1H), 3.18 – 3.12 (m, 4H), 3.05 (dd, J = 13.8, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.9, 143.8, 139.4, 135.8, 134.4, 132.9, 131.6, 130.2, 129.2, 129.0, 128.8, 128.7, 128.4, 127.5, 127.4, 127.2, 125.3, 122.6, 108.4, 56.6, 41.2, 26.5 ppm. IR (KBr) υ 3055, 3026, 2927, 1714, 1611, 1489, 1470, 1348, 1090, 827, 752, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₆H₂₂ClNO+H]⁺ 400.1463, found 400.1468.

3-((2E,4E)-5-(3,5-bis(trifluoromethyl)phenyl)penta-2,4-dien-1-yl)-1-methyl-3-phenylindolin-2-one (3af)

Total isolated yield: 90%, 112.8 mg, 0.22 mmol, 2E/2Z = 6.6:1. Purified **3af**, yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.73–7.65 (m, 3H), 7.44–7.38 (m, 2H), 7.35–7.24 (m, 5H), 7.14 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 6.66 (dd, J = 15.6, 10.4 Hz, 1H), 6.40 (d, J = 15.7 Hz, 1H), 6.22 (dd, J = 15.0, 10.5 Hz, 1H), 5.60–5.50 (m, 1H), 3.22–3.16 (m, 4H), 3.10 (dd, J = 13.8, 8.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.9, 143.9, 139.5, 139.3, 133.7, 132.3, 131.9 (q, J = 32.9 Hz), 131.88, 131.3, 128.8, 128.6, 128.3, 127.6, 127.2, 125.94, 125.91, 125.3 (t, J = 28.5 Hz), 122.7, 121.6, 120.5 (penta, J = 3.7 Hz), 108.5, 56.6, 41.2, 26.6 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.0 ppm. IR (neat) υ 3055, 3027, 1714, 1614, 1381, 1278, 1177, 1130, 989, 895, 754, 698 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₈H₂₁F₆NO+H]⁺ 502.1600, found 502.1608.

1-methyl-3-phenyl-3-((2E,4E)-5-(o-tolyl)penta-2,4-dien-1-yl)indolin-2-one (3ag) Total isolated yield: 57%, 54.1 mg, 0.14 mmol, 2E/2Z = 9.0:1. Purified **3ag**, yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.36 (m, 3H), 7.34 – 7.24 (m, 5H), 7.15 - 7.09 (m, 4H), 6.89 (d, J = 7.8 Hz, 1H), 6.60 (d, J = 15.5 Hz, 1H), 6.45 (dd, J = 15.4, 10.2 Hz, 1H), 6.23 (dd, J = 15.0, 10.2 Hz, 1H), 5.37 (ddd, J = 14.9, 8.5, 6.4 Hz, 1H), 3.19 – 3.13 (m, 4H), 3.06 (dd, J = 13.7, 8.7 Hz, 1H), 2.30 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.1, 143.9, 139.4, 136.1, 135.6, 135.1, 131.7, 130.5, 129.7, 129.1, 128.7, 128.4, 128.1, 127.5, 127.4, 127.2, 126.1, 125.3, 124.9, 122.6, 108.4, 56.8, 41.2, 26.5, 19.9 ppm. IR (neat) υ 3055, 3022, 2930, 1714, 1610, 1491, 1373, 1346, 989, 750, 696 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₇H₂₅NO+H]⁺ 380.2009, found 380.2016.

1-methyl-3-phenyl-3-((2E,4E)-5-(m-tolyl)penta-2,4-dien-1-yl)indolin-2-one (3ah) Total isolated yield: 89%, 84.4 mg, 0.22 mmol, 2E/2Z = 8.8:1. Purified **3ah**, faint yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, J = 7.0 Hz, 2H), 7.36 – 7.20 (m, 5H), 7.18 – 7.05 (m, 4H), 6.99 (d, J = 7.1 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.52 (dd, J = 15.6, 10.3 Hz, 1H), 6.34 (d, J = 15.7 Hz, 1H), 6.17 (dd, J = 15.0, 10.4 Hz, 1H), 5.37 (ddd, J = 14.9, 8.4, 6.5 Hz, 1H), 3.24 – 3.11 (m, 4H), 3.04 (dd, J = 13.7, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 143.8, 139.4, 138.1, 137.2, 134.8, 131.7, 128.7, 128.5, 128.4, 128.4, 128.3, 128.1, 127.5, 127.2, 126.9, 125.3, 123.5, 122.6, 108.4, 56.7, 41.2, 26.5, 21.5 ppm. IR (neat) υ 3055, 3022, 2918, 1714, 1610, 1491, 1472, 1373, 989, 752, 694 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₇H₂₅NO+H]⁺ 380.2009, found 380.2012.

3-((2E,4E)-5-([1,1'-biphenyl]-4-yl)penta-2,4-dien-1-yl)-1-methyl-3-phenylindolin-2-one (3ai)

Total isolated yield: 95%, 104.9 mg, 0.24 mmol, 2E/2Z = 7.7:1. Purified **3ai**, yellow solid, m. p. 106–108 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, J = 7.4 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.42 – 7.37 (m, 5H), 7.34 – 7.20 (m, 7H), 7.11 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 7.7 Hz, 1H), 6.57 (dd, J = 15.5, 10.3 Hz, 1H), 6.40 (d, J = 15.6 Hz, 1H), 6.20 (dd, J = 14.9, 10.4 Hz, 1H), 5.40 (dt, J = 14.9, 7.5 Hz, 1H), 3.17 – 3.13 (m, 4H),

3.05 (dd, J = 13.6, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 143.9, 140.7, 140.1, 139.4, 136.4, 134.8, 131.7, 131.1, 128.9, 128.7, 128.7, 128.4, 128.4, 127.5, 127.4, 127.3, 127.2, 126.9, 126.7, 125.3, 122.6, 108.4, 56.7, 41.2, 26.5 ppm. IR (KBr) υ 3055, 3026, 2928, 1714, 1699, 1478, 1472, 1373, 989, 758, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₃₂H₂₇NO+H]⁺ 442.2165, found 442.2170.

1-methyl-3-((2E,4E)-5-(naphthalen-1-yl)penta-2,4-dien-1-yl)-3-phenylindolin-2-one (3aj)

Total isolated yield: 62%, 64.4 mg, 0.15 mmol, 2E/2Z = 7.2:1. Purified **3aj**, yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 7.4 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.46 -7.26 (m, J = 7.7 Hz, 3H), 7.38 - 7.24 (m, 5H), 7.19 - 7.11 (m, 2H), 6.89 (d, J = 7.8 Hz, 1H), 6.61 (dd, J = 15.3, 10.5 Hz, 1H), 6.35 (dd, J = 15.0, 10.6 Hz, 1H), 5.49 – 5.39 (m, 1H), 3.28 – 3.17 (m, 4H), 3.10 (dd, J = 13.7, 8.6 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.1, 143.9, 139.4, 135.0, 134.6, 133.8, 131.7, 131.4, 131.1, 128.7, 128.7, 128.7, 128.4, 128.2, 127.9, 127.5, 127.2, 126.1, 125.8, 125.6, 125.4, 123.6, 123.1, 122.7, 108.4, 56.8, 41.3, 26.6 ppm. IR (neat) υ 3055, 2928, 1714, 1611, 1495, 1470, 1373, 989, 752, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₃₀H₂₅NO+H]⁺ 416.2009, found 416.2016.

1-methyl-3-phenyl-3-((2E,4E)-5-(thiophen-3-yl)penta-2,4-dien-1-yl)indolin-2-one (3ak)

Total isolated yield: 94%, 87.3 mg, 0.23 mmol, 2E/2Z = 5.9:1. Purified **3ak**, faint yellow solid, m. p. 105–107 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 7.0 Hz, 2H), 7.35 – 7.21 (m, 5H), 7.21 – 7.19 (m, 1H), 7.13 – 7.078 (m, 2H), 7.06 - 7.05 (m, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.42 – 6.30 (m, 2H), 6.12 (dd, J = 14.5, 7.2 Hz, 1H), 5.35 (ddd, J = 15.0, 8.5, 6.4 Hz, 1H), 3.17 – 3.12 (m, 4H), 3.02 (dd, J = 13.7, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 143.8, 140.1, 139.4, 134.6, 131.6, 128.7, 128.6, 128.4, 127.8, 127.5, 127.2, 126.1, 125.7, 125.3, 124.8, 122.6, 121.9, 108.4, 56.7, 41.2, 26.5 ppm. IR (KBr) v 3055, 3026, 1707, 1609, 1491, 1470, 1371, 746, 696 cm⁻¹. HRMS (ESI) m/z calcd for [C₂₄H₂₁NOS+H]⁺ 372.1417, found 372.1420.

3-((2*E*,4*E*)-5-(ferrocenyl)penta-2,4-dien-1-yl)-1-methyl-3-phenylindolin-2-one (3al) Total isolated yield: 96%, 113.6 mg, 0.24 mmol, 2*E*/2*Z* = 7.6:1. Purified **3al**, brown solid, m. p. 141–143 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 7.36 – 7.23 (m, 6H), 7.14 – 7.09 (m, 1H), 6.88 (d, *J* = 7.7 Hz, 1H), 6.14 – 6.02 (m, 3H), 5.23 (ddd, *J* = 14.7, 8.4, 6.3 Hz, 1H), 4.26 (t, *J* = 1.4 Hz, 2H), 4.18 (t, *J* = 1.7 Hz, 2H), 4.05 (s, 5H), 3.19 (s, 3H), 3.11 (dd, *J* = 13.7, 6.0 Hz, 1H), 2.98 (dd, *J* = 13.6, 8.5 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 143.9, 139.5, 135.1, 131.8, 129.8, 128.6, 128.3, 127.4, 127.2, 126.4, 125.3, 125.1, 122.5, 108.3, 83.1, 69.4, 69.3, 68.9, 66.9, 66.5, 56.8, 41.3, 26.5 ppm. IR (KBr) υ 3055, 3024, 2927, 1714, 1611, 1493, 1470, 985, 817, 752, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for $[C_{30}H_{27}NO^{56}Fe+H]^+$ 474.1515, found 474.1517.

1-methyl-3-((2E,4E)-nona-2,4-dien-1-yl)-3-phenylindolin-2-one (3am)

Total isolated yield: 77%, 66.4 mg, 0.19 mmol, 2E/2Z = 6.6:1. Purified **3am**, yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.21 (m, 8H), 7.11 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 5.98 (dd, J = 15.0, 10.3 Hz, 1H), 5.78 (dd, J = 15.0, 10.4 Hz, 1H), 5.56 – 5.46 (m, 1H), 5.11 (ddd, J = 14.9, 8.4, 6.3 Hz, 1H), 3.18(s, 3H), 3.09 (dd, J = 13.9, 6.0 Hz, 1H), 2.94 (dd, J = 13.7, 8.6 Hz, 1H), 1.98 (q, J = 6.7 Hz, 2H), 1.35 – 1.23 (m, 5H), 0.86 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.1, 143.9, 139.5, 134.8, 134.3, 131.8, 129.7, 128.6, 128.3, 127.4, 127.2, 125.4, 124.7, 122.5, 108.3, 56.8, 41.1, 32.3, 31.5, 26.5, 22.3, 14.0 ppm. IR (neat) υ 3055, 3020, 2955, 2926, 1717, 1611, 1493, 1470, 989, 752, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₄H₂₇NO+H]⁺ 346.2165, found 346.2172.

5-methoxy-1-methyl-3-phenyl-3-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)indolin-2one (3ba)

Total isolated yield: 74%, 73.1 mg, 0.18 mmol, 2E/2Z = 13.4:1. Purified **3ba**, white solid, m. p. 66–68 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.24 (m, 10H), 7.20 – 7.15 (m, 1H), 6.88 – 6.85 (m, 2H), 6.79 (d, J = 9.0 Hz, 1H), 6.55 (dd, J = 15.6, 10.2 Hz, 1H), 6.39 (d, J = 15.7 Hz, 1H), 6.20 (dd, J = 15.0, 10.3 Hz, 1H), 5.44 – 5.35 (m, 1H), 3.78

(s, 3H), 3.18 - 3.11 (m, 4H), 3.04 (dd, J = 13.8, 8.7 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.7, 156.0, 139.4, 137.5, 137.4, 134.8, 133.1, 131.6, 128.7, 128.7, 128.3, 127.5, 127.5, 127.2, 126.3, 115.1, 112.7, 108.7, 57.2, 55.9, 41.1, 26.6 ppm. IR (KBr) υ 3057, 3022, 2934, 2833, 1714, 1600, 1361, 1470, 1288, 804, 696 cm⁻¹. HRMS (ESI) m/z calcd for [C₂₇H₂₅NO₂+H]⁺ 396.1958, found 396.1963.

5-fluoro-1-methyl-3-phenyl-3-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)indolin-2-one (3ca)

Total isolated yield: 78%, 74.7 mg, 0.19 mmol, 2E/2Z = 7.2:1. Purified **3ca**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.16 (m, 11H), 7.07 – 7.01 (m, 2H), 6.81 (dd, J = 8.0, 4.0 Hz, 1H), 6.54 (dd, J = 15.6, 10.2 Hz, 1H), 6.40 (d, J = 15.7 Hz, 1H), 6.19 (dd, J = 15.0, 10.2 Hz, 1H), 5.37 (dt, J = 15.0, 7.5 Hz, 1H), 3.18 (s, 3H), 3.18 – 3.03 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.8, 159.3 (d, J = 239.2 Hz), 140.0, 139.9, 137.3, 135.1, 133.5 (d, J = 7.9 Hz), 132.0, 128.8, 128.7, 128.5, 127.7, 127.6 (d, J = 5.5 Hz), 127.1, 126.4, 114.7 (d, J = 23.4 Hz), 113. 3(d, J = 24.7 Hz), 108.8 (d, J = 8.0 Hz), 57.3, 41.1, 26.7 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -94.1 ppm. IR (neat) υ 3059, 3024, 2924, 1714, 1273, 991, 810, 698 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₆H₂₂FNO+H]⁺ 384.1758, found 384.1765.

1,7-dimethyl-3-phenyl-3-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)indolin-2-one (3da) Total isolated yield: 83%, 78.7 mg, 0.21 mmol, 2E/2Z = 8.3:1. Purified 3da, yellow solid, m. p. 45–47 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.32 – 7.24 (m, 7H), 7.18 (qt, J = 6.8, 1.2 Hz, 1H), 7.08 – 6.96 (m, 2H), 7.03 – 6.95 (m, 1H), 6.56 (dd, J = 15.6, 10.3 Hz, 1H), 6.38 (d, J = 15.7 Hz, 1H), 6.19 (dd, J = 15.0, 10.3 Hz, 1H), 5.43 – 5.33 (m, 1H), 3.47 (d, J = 3.5 Hz, 3H), 3.16 – 3.03 (m, 2H), 2.59 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.8, 141.8, 139.9, 137.4, 134.7, 132.4, 132.1, 131.5, 128.8, 128.7, 128.5, 127.5, 127.4, 127.2, 126.3, 123.3, 122.5, 119.9, 56.2, 41.3, 29.9, 19.4 ppm. IR (KBr) v 2920, 2851, 1705, 1611, 1506, 1456, 1361, 736, 696 cm⁻¹. HRMS (ESI) m/z calcd for [C₂₇H₂₅NO+H]⁺ 380.2009, found 380.2011.

4-butyl-1,2-diphenyl-4-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)pyrazolidine-3,5-dione (3ea)

Total isolated yield: 78%, 87.8 mg, 0.19 mmol, 2E/2Z = 4.6:1. Purified **3ea**, yellow solid, m. p. 86–88 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.18 (m, 13H), 7.16 – 7.09 (m, 2H), 6.61 (dd, J = 15.6, 10.3 Hz, 1H), 6.43 (d, J = 15.6 Hz, 1H), 6.33 (dd, J = 15.1, 10.3 Hz, 1H), 5.67 (dt, J = 15.3, 7.8 Hz, 1H), 2.71 (d, J = 7.8 Hz, 2H), 1.96 – 1.91 (m, 2H), 1.42 – 1.30 (m, 4H), 0.85 (t, J = 6.7 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 137.2, 135.8, 135.5, 132.7, 129.0, 128.7, 128.1, 127.7, 126.9, 126.4, 126.3, 122.9, 55.4, 39.5, 35.3, 27.1, 27.0, 22.8, 13.8 ppm. IR (KBr) v 3024, 2957, 2926, 1720, 1595, 1491, 991, 756, 691 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₃₀H₃₀N₂O₂+H]⁺ 451.2380, found 451.2382.

(4E,6E)-ethyl 2-cyano-2,7-diphenylhepta-4,6-dienoate (3fa)

Total isolated yield: 97%, 80.4 mg, 0.24 mmol, 2E/2Z = 7.6:1. Purified **3fa**, yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, J = 8.1, 1.4 Hz, 2H), 7.49 – 7.39 (m, 5H), 7.34 (t, J = 7.4 Hz, 1H), 7.28 – 7.23 (m, 1H), 6.76 (dd, J = 15.6, 10.4 Hz, 1H), 6.55 (d, J = 15.7 Hz, 1H), 6.42 (dd, J = 15.0, 10.4 Hz, 1H), 5.76 (dt, J = 15.0, 7.5 Hz, 1H), 4.36 – 4.20 (m, 2H), 3.26 (dd, J = 14.1, 7.9 Hz, 1H), 2.97 (dd, J = 14.1, 7.1 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 137.0, 136.5, 134.2, 133.1, 129.3, 129.0, 128.7, 128.1, 127.8, 126.5, 126.2, 125.8, 118.2, 63.4, 54.5, 41.7, 13.9 ppm. IR (neat) υ 3026, 2981, 1743, 1678, 1449, 1030, 991, 856, 694 cm⁻¹. HRMS (ESI) m/zcalcd for [C₂₂H₂₁NO₂+Na]⁺ 354.1465, found 354.1469.

(4E,6E)-ethyl 2-methyl-2-nitro-7-phenylhepta-4,6-dienoate (3ga)

Total isolated yield: 89%, 64.3 mg, 0.22 mmol, 2E/2Z = 4.4:1. Purified **3ga**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.23 (m, 4H), 7.22 – 7.20 (m, 1H), 6.72 (dd, J = 15.6, 10.4 Hz, 1H), 6.51 (d, J = 15.7 Hz, 1H), 6.31 (dd, J = 15.0, 10.4 Hz, 1H), 5.61 (dt, J = 15.1, 7.6 Hz, 1H), 4.28 (q, J = 6.9 Hz, 2H), 3.08 (dd, J = 14.4, 7.5 Hz, 1H), 2.95 (dd, J = 14.4, 7.8 Hz, 1H), 1.78 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 137.0, 136.7, 133.2, 128.7, 127.9, 127.9, 126.5, 124.6, 92.4, 63.0, 40.2, 21.3, 14.0 ppm. IR (neat) υ 2984, 2940, 1749, 1557, 1448, 1386, 1252, 752, 700 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₆H₁₉NO₄+H]⁺ 290.1387, found 290.1383.

(4E,6E)-ethyl 2-acetyl-2-ethyl-7-phenylhepta-4,6-dienoate (3ha)

Total isolated yield: 53%, 39.8 mg, 0.13 mmol, 2E/2Z = 3.3:1. Purified **3ha**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.26 (m, 6H), 6.70 (dd, J = 15.6, 10.4 Hz, 1H), 6.45 (d, J = 15.7 Hz, 1H), 6.24 (dd, J = 15.1, 10.3 Hz, 1H), 5.57 (dt, J = 15.1, 7.7 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.76 – 2.61 (m, 2H), 2.14 (s, 3H), 2.00 – 1.86 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 0.81 (t, J = 7.6 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 204.87, 172.14, 137.41, 134.32, 131.66, 128.74, 128.71, 128.48, 127.55, 126.40, 77.58, 77.16, 76.74, 64.23, 61.40, 34.62, 26.97, 24.71, 14.28, 8.30 ppm. IR (neat) υ 3055, 2928, 1697, 1647, 1495, 1589, 1489, 1471, 1435, 765, 704 cm⁻¹. HRMS (ESI) m/z calcd for [C₁₉H₂₄O₃+Na]⁺ 323.1618, found 323.1617.

dimethyl ((1E,3E)-8,8-*difluoro-7-oxo-1-phenyldodeca-1,3-dien-6-yl*)*phosphonate* (3*ia*)

Total isolated yield: 72%, 72.0 mg, 0.18 mmol, 2E/2Z = 3.7:1. Purified **3ia**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.27 (m, 4H), 7.23 – 7.18 (m, 1H), 6.67 (dd, J = 15.6, 10.3 Hz, 1H), 6.47 (d, J = 15.7 Hz, 1H), 6.24 (dd, J = 15.0, 10.3 Hz, 1H), 5.62 (dt, J = 14.9, 7.3 Hz, 1H), 3.92 (ddd, J = 22.7, 10.2, 4.4 Hz, 1H), 3.80 (dd, J = 11.1, 5.1 Hz, 6H), 2.93 – 2.70 (m, 2H), 2.04 – 1.89 (m, 2H), 1.45 – 1.32 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) 196.84 (td, J = 33.3, 6.1 Hz), 137.1, 133.9, 132.4, 129.2 (d, J = 14.9 Hz), 128.6, 128.0, 127.6, 126.4, 118.1 (t, J = 251.7 Hz), 53.7 (d, J = 6.6 Hz), 53.4 (d, J = 7.0 Hz), 45.7 (d, J = 127.5 Hz), 32.2 (t, J = 22.7 Hz), 31.1 (d, J = 4.8 Hz), 23.1 (t, J = 4.0 Hz), 22.4, 13.8 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ - 104.9 (t<u>A</u>B, J = 273.5, 17.7 Hz), 106.3 (tA<u>B</u>, J = 273.5, 17.7 Hz) ppm. IR (neat) v 3054, 3026, 1749, 1734, 1716, 1683, 1489, 754, 700 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₂₀H₂₇F₂O₄P+H]⁺ 401.1688, found 401.1692.

2-acetyl-2-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)cyclohexanone (3ja)

Total isolated yield: 67%, 47.3 mg, 0.17 mmol, 2E/2Z = 3.8:1. Purified **3ja**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.20 (t, J = 7.0 Hz, 1H), 6.70 (dd, J = 15.7, 10.4 Hz, 1H), 6.45 (d, J = 15.7 Hz, 1H), 6.20 (dd, J = 15.0, 10.4 Hz, 1H), 5.61 (dt, J = 15.1, 7.6 Hz, 1H), 2.67 (dd, J = 14.6, 7.7 Hz, 1H), 2.56 – 2.46 (m, 3H), 2.34 – 2.28 (m, 1H), 2.11 (s, 3H), 2.05 – 1.97 (m, 1H), 1.78 – 1.64 (m, 3H), 1.56 – 1.46 (m, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 209.8, 206.2, 137.3, 134.3, 131.7, 128.7, 128.7, 127.6, 126.4, 68.1, 42.0, 38.0, 34.3, 27.2, 26.5, 22.3 ppm. IR (neat) υ 3024, 2941, 2864, 1715, 1694, 1495, 1360, 1312, 991, 748, 692 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₉H₂₂O₂+Na]⁺ 305.1512, found 305.1528.

2-methyl-2-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)cyclopentane-1,3-dione (3ka)

Total isolated yield: 93%, 59.1 mg, 0.23 mmol, 2E/2Z = 4.5:1. Purified **3ka**, yellow solid, m. p. 66–68 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.25 (m, 4H), 7.23 – 7.18 (m, 1H), 6.66 (dd, J = 15.6, 10.3 Hz, 1H), 6.47 (d, J = 15.7 Hz, 1H), 6.21 (dd, J = 15.0, 10.3 Hz, 1H), 5.56 (dt, J = 15.3, 7.8 Hz, 1H), 2.81 – 2.61 (m, 4H), 2.44 (d, J = 7.8 Hz, 2H), 1.13 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 216.4, 137.1, 135.3, 132.6, 128.7, 128.1, 127.7, 126.8, 126.4, 57.2, 39.2, 35.5, 19.0 ppm. IR (KBr) υ 3022, 2928, 1719, 1499, 1417, 1317, 1070, 991, 748, 692 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₇H₁₈O₂+H]⁺ 255.1380, found 255.1384.

2-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)cyclohexanone (3la)

Total isolated yield: 60%, 36.0 mg, 0.15 mmol, 2E/2Z = 6.7:1. Purified **3la**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.19 (t, J = 7.1 Hz, 1H), 6.74 (dd, J = 15.6, 10.3 Hz, 1H), 6.44 (d, J = 15.7 Hz, 1H), 6.22 (dd, J = 15.0, 10.5 Hz, 1H), 5.79 (dt, J = 15.0, 7.4 Hz, 1H), 2.66 – 2.57 (m, 1H), 2.44 – 2.23 (m, 3H), 2.18 – 2.00 (m, 3H), 1.94 – 1.81 (m, 1H), 1.75 – 1.63 (m, 2H), 1.46 – 1.32 (m, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 212.6, 137.7, 133.1, 132.4, 130.6, 129.2, 128.7, 127.3, 126.3, 50.9, 42.3, 33.7, 33.0, 28.1, 25.2 ppm. IR (neat) v 2932, 2859, 1705, 1449, 1128, 968, 750, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₇H₂₀O+H]⁺ 241.1587, found 241.1592.

1-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)indoline (3ma)

Total isolated yield: 97%, 63.3 mg, 0.24 mmol, 2E/2Z = 6.9:1. Mixtures of **3ma** and **3ma**', brown liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.23 - 7.18 (m, 1H), 7.07 (t, J = 8.2 Hz, 2H), 6.78 (dd, J = 15.6, 10.5 Hz, 1H), 6.67 (t, J = 7.3 Hz, 1H), 6.56 - 6.51 (m, 2H), 6.42 (dd, J = 15.1, 10.5 Hz, 1H), 5.88 (dt, J = 15.0, 6.3 Hz, 1H), 3.79 (d, J = 6.2 Hz, 2H), 3.34 (t, J = 8.3 Hz, 2H), 2.95 (t, J = 8.2 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) (major) δ 152.2, 137.3, 133.0, 132.1, 130.2, 128.7, 128.4, 127.6, 127.4, 126.4, 124.6, 117.9, 107.6, 53.4, 51.4, 46.51, 28.7 ppm. IR (neat) υ 3055, 3024, 2922, 1604, 1487, 1470, 1024, 989, 746, 692 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₁₉H₂₉N+H]⁺ 262.1590, found 262.1589.

1-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)-1,2,3,4-tetrahydroquinoline (3na)

Total isolated yield: 96%, 66.0 mg, 0.24 mmol, 2E/2Z = 6.1:1. Mixtures of **3na** and **3na**', brown liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.25 (m, 5H), 7.21 – 7.13 (m, 1H), 7.15-7.10 (m, 1H), 6.95 (d, J = 7.0 Hz, 1H), 6.76 (dd, J = 15.6, 10.5 Hz, 1H), 6.62 – 6.56 (m, 2H), 6.46 (d, J = 15.7 Hz, 1H), 6.32 (dd, J = 15.2, 10.5 Hz, 1H), 5.82 (dt, J = 15.2, 5.4 Hz, 1H), 3.93 (d, J = 5.1 Hz, 2H), 3.26 (t, J = 5.6 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 2.00 – 1.92 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 137.4, 131.7, 131.6, 130.1, 129.1, 128.7, 128.5, 127.5, 127.2, 126.3, 122.6, 116.0, 111.5, 53.2, 49.3, 28.2, 22.4 ppm. IR (neat) υ 3024, 2926, 2841, 1601, 1504, 989, 746 cm⁻¹. HRMS (ESI) m/z calcd for [C₂₀H₂₁N+H]⁺ 276.1747, found 276.1746.

13-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)-7,8-dihydroindolo[2',3':3,4]pyrido[2,1b]quinazolin-5(13H)-one (30a)

Total isolated yield: 57%, 61.2 mg, 0.14 mmol, 2E/2Z = 5.3:1. Purified **30a**, yellow soild, m. p. 174–176 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, J = 7.8 Hz, 1H), 7.74 – 7.62 (m, 3H), 7.46 – 7.16 (m, 3H), 7.35 – 7.11 (m, 6H), 6.71 (dd, J = 15.5, 10.4 Hz, 1H), 6.45 (d, J = 15.6 Hz, 1H), 6.33 (dd, J = 15.0, 10.5 Hz, 1H), 6.09 (dt, J = 12.1, 5.7 Hz, 1H), 5.66 (d, J = 5.5 Hz, 2H), 4.55 (t, J = 6.6 Hz, 2H), 3.18 (t, J = 6.6 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 161.8, 147.5, 145.5, 140.2, 137.3, 134.2, 132.7, 132.3, 130.2, 128.7, 128.3, 127.7, 127.4, 127.2, 126.4, 126.4, 125.5, 124.6, 121.1, 120.6, 120.2, 119.7, 110.9, 46.9, 41.0, 20.0 ppm. IR (KBr) υ 3057, 3024, 2926, 1668, 1587, 1537, 989, 772, 692 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₉H₂₃N₃O+H]⁺ 430.1914, found 430.1912.

(2E,4E)-5-phenylpenta-2,4-dien-1-yl benzoate (3pa)³

Total isolated yield: 67%, 44.3 mg, 0.17 mmol, 2E/2Z = 6.4:1. Purified **3pa**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 7.1 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.46 – 7.38 (m, 4H), 7.31 (t, J = 6.8 Hz, 2H), 7.24 – 7.20 (m, 1H), 6.79 (dd, J = 15.5, 10.5 Hz, 1H), 6.67 – 6.53 (m, 2H), 5.99 (dt, J = 14.1, 6.3 Hz, 1H), 4.90 (d, J = 6.4 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 137.1, 134.7, 134.0, 133.1, 130.4, 129.8, 128.8, 128.5, 127.9, 127.1, 126.6, 65.3 ppm. IR (neat) υ 2924, 2850, 1716, 1450,

³ Known products, see: Zhang, Y.; Li, Z.; Liu, Z.-Q. Org. Lett. 2012, 14, 1838.

(2E,4E)-5-phenylpenta-2,4-dien-1-yl acetate (3qa)

Total isolated yield: 61%, 30.8 mg, 0.15 mmol, 2E/2Z = 7.6:1. Purified **3ra**, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.41 (m, 2H), 7.37 – 7.322 (m, 2H), 7.29 – 7.23 (m, 1H), 6.80 (dd, J = 15.6, 10.3 Hz, 1H), 6.62 (d, J = 15.6 Hz, 1H), 6.48 (dd, J = 15.2, 10.4 Hz, 1H), 5.91 (dd, J = 15.2, 6.5 Hz, 1H), 4.68 (d, J = 6.5 Hz, 1H), 2.11 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 137.1, 134.7, 133.9, 128.8, 128.0, 127.8, 127.0, 126.6, 64.9, 21.1 ppm. IR (neat) υ 2918, 1732, 1250, 1074, 966, 750, 692 cm⁻¹.

1-methyl-3-phenyl-3-(5-phenylpentyl)indolin-2-one (4)

Isolated yield: 93%, 68.7 mg, 0.18 mmol. Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.20 (m, 9H), 7.16 – 7.13 (m, 1H), 7.10 (t, *J* = 7.8 Hz, 3H), 6.88 (d, *J* = 7.7 Hz, 1H), 3.20 (s, 3H), 2.49 (t, *J* = 7.6 Hz, 2H), 2.36 (td, *J* = 12.7, 4.4 Hz, 1H), 2.17 (td, *J* = 12.8, 4.2 Hz, 1H), 1.56 – 1.445 (m, 2H), 1.35 – 1.05 (m, 4H), 0.98 – 0.83 (m, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.7, 144.0, 142.6, 140.4, 132.4, 128.6, 128.4, 128.3, 128.2, 127.3, 126.9, 125.7, 124.8, 122.6, 108.3, 56.8, 37.9, 35.9, 31.1, 29.4, 26.4, 24.4 ppm. IR (neat) υ 3057, 3024, 2930, 2857, 1614, 1371, 1253, 1126, 916, 750, 696 cm⁻¹. HRMS (ESI) *m*/*z* calcd for [C₂₆H₂₇NO+H]⁺ 370.2165, found 370.2174.

dimethyl 4-((1-methyl-2-oxo-3-phenylindolin-3-yl)methyl)-[1,1'-biphenyl]-2,3*dicarboxylate* (5)

Isolated yield: 71%, 71.8 mg, 0.14 mmol. White solid, m. p. 190–192 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, *J* = 7.1 Hz, 2H), 7.36 – 7.26 (m, 6H), 7.25 – 7.14 (m, 6H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 7.8 Hz, 1H), 4.02 (AB, *J* = 13.6 Hz, 2H), 3.72 (s, 3H), 3.52 (s, 3H), 3.07 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.8, 169.1, 167.8, 143.6, 139.7, 139.2, 134.6, 132.9, 132.6, 132.3, 131.1, 130.4, 128.7, 128.5, 128.4, 128.2, 127.8, 127.6, 127.4, 126.0, 122.4, 108.3, 57.9, 52.5, 52.3, 39.3, 26.4 ppm. IR (KBr) υ 3061, 3028, 2947, 1715, 1612, 1495, 1472, 1213, 1128, 764, 698 cm⁻¹. HRMS (ESI) *m/z* calcd for [C₃₂H₂₇NO₅+H]⁺ 506.1962, found 506.1972.

(±)-(3aS,4S,7R,7aR)-2-benzyl-4-(((S)-1-methyl-2-oxo-3-phenylindolin-3-yl)methyl)-7-phenyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione (6a)

Total isolated yield of **6a** and **6b**: 72%, 0.14 mmol (**6a**:**6b** = 1.5:1, 47.8 mg **6a** was isolated). Purified **6a**, white solid, 194–196 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 7.1 Hz, 2H), 7.41 – 7.30 (m, 13H), 7.17 (t, J = 7.4 Hz, 1H), 7.08 – 7.05 (m, 2H), 6.93 (d, J = 7.7 Hz, 1H), 6.11 – 6.00 (m, 2H), 4.52 (AB, J = 14.1 Hz, 2H), 3.29 – 3.10 (m, 5H), 3.14 (dd, J = 10.6, 5.3 Hz, 2H), 2.84 (dd, J = 8.2, 5.8 Hz, 1H), 2.06 – 2.05 (m, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.3, 176.9, 175.4, 143.9, 140.2, 138.8, 135.9, 134.4, 131.8, 130.1, 128.7, 128.7, 128.6, 128.6, 128.5, 128.2, 127.8, 127.5, 127.1, 127.0, 125.0, 122.9, 108.4, 56.6, 46.8, 45.4, 42.1, 41.5, 39.4, 33.5, 26.5 ppm. IR (KBr) v 3059, 3032, 2922, 2851, 1771, 1608, 1495, 1471, 1396, 989, 754, 698 cm⁻¹. HRMS (ESI) calcd for [C₃₇H₃₂N₂O₃+H]⁺ 553.2486, found 553.2482.

(±)-(3aS,4S,7R,7aR)-2-benzyl-4-(((R)-1-methyl-2-oxo-3-phenylindolin-3-yl)methyl)-7-phenyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione (6b)

Total isolated yield of **6a** and **6b**: 72% (**6a**:**6b** = 1.5:1, 31.8 mg **6b** was isolated). Purified **6b**, white solid, 216–218 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.44 (m, 2H), 7.34 – 7.22 (m, 13H), 7.13 – 7.08 (dd, J = 10.9, 4.1 Hz, 1H), 7.02 – 6.99 (m, 2H), 6.85 (d, J = 7.7 Hz, 1H), 5.80 (AB, J = 9.2, 1H), 5.31 (dt, J = 9.3, 3.2 Hz, 1H), 4.48 (q, J = 14.1 Hz, 2H), 3.35 (s, 1H), 3.30 (dd, J = 14.5, 2.4 Hz, 1H), 3.24 (s, 3H), 3.21 – 3.01 (m, 3H), 2.25 (brs, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 178.6, 177.2, 175.5, 143.7, 140.4, 138.8, 136.0, 133.9, 132.2, 129.5, 128.8, 128.7, 128.6, 128.5, 128.3, 127.8, 127.6, 127.1, 126.9, 125.4, 122.9, 108.7, 57.1, 46.8, 46.2, 42.2, 41.6, 39.5, 34.2, 26.6 ppm. IR (KBr) υ 2920, 2851, 1716, 1541,1396, 752, 696 cm⁻¹. HRMS (ESI) calcd for [C₃₇H₃₂N₂O₃+Na]⁺ 575.2305, found 575.2313.

7. X-Ray Crystallography Data

7.1 X-Ray Crystallography Data of 3aa

Computing details

Cell refinement: *SAINT* v7.68A (Bruker, 2009); data reduction: *SAINT* v7.68A (Bruker, 2009); program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

C ₂₆ H ₂₃ NO	F(000) = 776
$M_r = 365.45$	$D_{\rm x} = 1.233 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 9.934 (2) Å	Cell parameters from 1023 reflections
<i>b</i> = 22.154 (4) Å	$\theta = 2.3 - 19.3^{\circ}$
c = 8.9741 (18) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 94.349 \ (5)^{\circ}$	T = 205 K
V = 1969.3 (7) Å ³	Block, colourless
Z = 4	$0.26 \times 0.16 \times 0.13 \text{ mm}$

Crystal data of 3aa

Data collection

Bruker APEX-II CCD	2278 reflections with $I > 2\sigma(I)$
diffractometer	

graphite	$R_{\rm int} = 0.081$
ϕ and ω scans	$\theta_{max}=27.6^\circ,\theta_{min}=1.8^\circ$
Absorption correction: multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0886 before and 0.0569 after correction. The Ratio of minimum to maximum transmission is 0.8726. The $\lambda/2$ correction factor is 0.0015.	$h = -12 \rightarrow 12$
$T_{\min} = 0.651, T_{\max} = 0.746$	<i>k</i> = -28→26
15889 measured reflections	$l = -10 \rightarrow 11$
4474 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.182$	$w = 1/[\sigma^2(F_o^2) + (0.078P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{max} < 0.001$
4474 reflections	Δ _{max} = 0.35 e Å ⁻³
254 parameters	Δ _{min} = -0.23 e Å ⁻³
0 restraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.82451 (19)	0.47660 (7)	0.3353 (2)	0.0479 (5)
N1	0.9193 (2)	0.38254 (9)	0.3613 (2)	0.0379 (5)
C24	0.8933 (2)	0.32436 (10)	0.3016 (3)	0.0345 (6)
C6	0.7572 (2)	0.41782 (10)	0.0279 (3)	0.0364 (6)
C26	0.8288 (2)	0.42337 (11)	0.3015 (3)	0.0377 (6)
C19	0.7848 (3)	0.32661 (11)	0.1961 (3)	0.0380 (6)
C7	0.7341 (2)	0.39074 (10)	0.1811 (3)	0.0356 (6)
C13	0.3216 (2)	0.36655 (11)	0.8354 (3)	0.0404 (6)
C8	0.5859 (2)	0.39660 (12)	0.2196 (3)	0.0414 (6)
H8A	0.5617	0.4395	0.2186	0.050*
H8B	0.5282	0.3766	0.1411	0.050*
C11	0.4423 (3)	0.36806 (12)	0.6004 (3)	0.0435 (7)
H11	0.4823	0.3308	0.6271	0.052*
С9	0.5560 (3)	0.37063 (12)	0.3667 (3)	0.0435 (7)
Н9	0.5972	0.3336	0.3939	0.052*
C12	0.3585 (3)	0.39177 (12)	0.6937 (3)	0.0447 (7)
H12	0.3186	0.4289	0.6652	0.054*
C3	0.8097 (3)	0.46502 (12)	-0.2517 (3)	0.0490 (7)
Н3	0.8270	0.4813	-0.3451	0.059*
C10	0.4769 (3)	0.39481 (12)	0.4620 (3)	0.0440 (7)
H10	0.4397	0.4329	0.4375	0.053*
C25	1.0298 (3)	0.39685 (12)	0.4696 (3)	0.0468 (7)
H25A	1.0203	0.3740	0.5604	0.070*
H25B	1.0285	0.4397	0.4921	0.070*
H25C	1.1146	0.3865	0.4291	0.070*
C14	0.3424 (3)	0.30619 (12)	0.8730 (3)	0.0472 (7)
H14	0.3838	0.2804	0.8070	0.057*
C23	0.9587 (3)	0.27132 (12)	0.3422 (3)	0.0492 (7)
H23	1.0334	0.2707	0.4131	0.059*
C20	0.7374 (3)	0.27455 (12)	0.1290 (3)	0.0497 (7)
H20	0.6641	0.2755	0.0564	0.060*

C18	0.2660 (3)	0.40379 (13)	0.9397 (3)	0.0512 (7)
H18	0.2522	0.4449	0.9175	0.061*
C1	0.8871 (3)	0.42551 (13)	-0.0130 (3)	0.0530 (8)
H1	0.9600	0.4146	0.0545	0.064*
C15	0.3028 (3)	0.28369 (13)	1.0067 (3)	0.0533 (8)
H15	0.3142	0.2425	1.0291	0.064*
C5	0.6534 (3)	0.43412 (13)	-0.0754 (3)	0.0552 (8)
Н5	0.5635	0.4296	-0.0515	0.066*
C21	0.8004 (3)	0.21958 (12)	0.1706 (3)	0.0576 (8)
H21	0.7676	0.1832	0.1277	0.069*
C22	0.9089 (3)	0.21899 (13)	0.2735 (3)	0.0588 (9)
H22	0.9512	0.1820	0.2984	0.071*
C16	0.2469 (3)	0.32139 (15)	1.1067 (4)	0.0569 (8)
H16	0.2195	0.3059	1.1971	0.068*
C2	0.9129 (3)	0.44903 (13)	-0.1517 (3)	0.0569 (8)
H2	1.0026	0.4539	-0.1764	0.068*
C17	0.2312 (3)	0.38165 (14)	1.0745 (4)	0.0584 (8)
H17	0.1965	0.4078	1.1446	0.070*
C4	0.6804 (3)	0.45709 (14)	-0.2141 (3)	0.0592 (8)
H4	0.6082	0.4673	-0.2833	0.071*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0613 (12)	0.0336 (10)	0.0483 (12)	0.0022 (9)	-0.0003 (9)	-0.0031 (8)
N1	0.0384 (11)	0.0399 (12)	0.0347 (13)	0.0002 (10)	-0.0026 (10)	0.0010 (9)
C24	0.0373 (13)	0.0334 (13)	0.0339 (15)	0.0007 (11)	0.0095 (11)	0.0029 (11)
C6	0.0409 (14)	0.0324 (13)	0.0356 (15)	-0.0033 (11)	0.0014 (12)	0.0016 (11)
C26	0.0404 (14)	0.0362 (14)	0.0368 (16)	0.0008 (11)	0.0057 (12)	0.0031 (11)
C19	0.0420 (14)	0.0371 (14)	0.0356 (15)	-0.0010 (11)	0.0081 (12)	0.0010 (11)
C7	0.0340 (13)	0.0383 (13)	0.0343 (15)	0.0009 (11)	0.0026 (11)	0.0009 (11)
C13	0.0345 (13)	0.0452 (15)	0.0416 (16)	0.0025 (12)	0.0032 (12)	0.0020 (12)
C8	0.0391 (14)	0.0485 (15)	0.0363 (16)	0.0035 (12)	0.0017 (12)	0.0051 (12)

C11	0.0430 (14)	0.0420 (15)	0.0455 (17)	0.0019 (12)	0.0035 (13)	0.0063 (12)
С9	0.0388 (14)	0.0475 (16)	0.0448 (17)	0.0038 (12)	0.0066 (13)	0.0084 (13)
C12	0.0445 (15)	0.0456 (15)	0.0443 (17)	0.0036 (13)	0.0043 (13)	0.0067 (13)
C3	0.0651 (19)	0.0452 (16)	0.0375 (16)	-0.0081 (14)	0.0095 (14)	0.0047 (13)
C10	0.0425 (15)	0.0452 (15)	0.0449 (17)	0.0052 (12)	0.0076 (13)	0.0074 (13)
C25	0.0414 (15)	0.0590 (17)	0.0388 (17)	-0.0062 (13)	-0.0040 (12)	0.0033 (13)
C14	0.0566 (17)	0.0428 (15)	0.0427 (17)	0.0023 (13)	0.0073 (14)	0.0001 (13)
C23	0.0530 (17)	0.0483 (17)	0.0471 (18)	0.0150 (14)	0.0088 (14)	0.0104 (13)
C20	0.0571 (17)	0.0469 (16)	0.0461 (18)	-0.0078 (14)	0.0098 (14)	-0.0081 (13)
C18	0.0478 (16)	0.0486 (16)	0.058 (2)	0.0084 (13)	0.0119 (15)	0.0024 (14)
C1	0.0419 (16)	0.072 (2)	0.0457 (19)	0.0046 (14)	0.0048 (14)	0.0091 (15)
C15	0.0624 (18)	0.0461 (16)	0.0514 (19)	-0.0057 (14)	0.0040 (16)	0.0100 (14)
C5	0.0418 (16)	0.071 (2)	0.052 (2)	-0.0087 (14)	-0.0021 (14)	0.0180 (15)
C21	0.084 (2)	0.0359 (16)	0.055 (2)	-0.0066 (15)	0.0205 (18)	-0.0081 (14)
C22	0.089 (2)	0.0395 (16)	0.051 (2)	0.0173 (16)	0.0258 (18)	0.0056 (14)
C16	0.0475 (17)	0.077 (2)	0.0478 (19)	-0.0005 (16)	0.0150 (14)	0.0133 (16)
C2	0.0482 (17)	0.068 (2)	0.057 (2)	-0.0015 (15)	0.0164 (15)	0.0065 (16)
C17	0.0489 (17)	0.069 (2)	0.059 (2)	0.0123 (15)	0.0147 (15)	-0.0015 (16)
C4	0.0607 (19)	0.069 (2)	0.0461 (19)	-0.0070 (16)	-0.0079 (15)	0.0154 (15)

Geometric parameters (Å, °)

O1—C26	1.219 (3)	C3—C4	1.364 (4)
N1—C24	1.412 (3)	C10—H10	0.9400
N1—C26	1.357 (3)	С25—Н25А	0.9700
N1—C25	1.445 (3)	С25—Н25В	0.9700
C24—C19	1.381 (3)	C25—H25C	0.9700
C24—C23	1.378 (3)	C14—H14	0.9400
С6—С7	1.534 (3)	C14—C15	1.383 (4)
C6—C1	1.378 (4)	С23—Н23	0.9400
C6—C5	1.381 (4)	C23—C22	1.387 (4)
С26—С7	1.556 (3)	С20—Н20	0.9400
С19—С7	1.510 (3)	C20—C21	1.406 (4)

C19—C20	1.368 (3)	C18—H18	0.9400
С7—С8	1.543 (3)	C18—C17	1.373 (4)
C13—C12	1.460 (4)	С1—Н1	0.9400
C13—C14	1.391 (4)	C1—C2	1.391 (4)
C13—C18	1.393 (4)	C15—H15	0.9400
С8—Н8А	0.9800	C15—C16	1.374 (4)
С8—Н8В	0.9800	С5—Н5	0.9400
C8—C9	1.490 (4)	C5—C4	1.390 (4)
С11—Н11	0.9400	C21—H21	0.9400
C11—C12	1.333 (4)	C21—C22	1.365 (4)
C11—C10	1.440 (4)	С22—Н22	0.9400
С9—Н9	0.9400	C16—H16	0.9400
C9—C10	1.319 (4)	C16—C17	1.373 (4)
С12—Н12	0.9400	С2—Н2	0.9400
С3—Н3	0.9400	C17—H17	0.9400
C3—C2	1.357 (4)	С4—Н4	0.9400
C24—N1—C25	124.3 (2)	N1—C25—H25A	109.5
C26—N1—C24	111.2 (2)	N1—C25—H25B	109.5
C26—N1—C25	124.5 (2)	N1—C25—H25C	100.5
			109.3
C19—C24—N1	109.8 (2)	H25A—C25—H25B	109.5
C19—C24—N1 C23—C24—N1	109.8 (2) 127.5 (2)	H25A—C25—H25B H25A—C25—H25C	109.5 109.5
C19—C24—N1 C23—C24—N1 C23—C24—C19	109.8 (2) 127.5 (2) 122.7 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C	109.5 109.5 109.5 109.5
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14	109.5 109.5 109.5 109.5 119.6
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13	109.5 109.5 109.5 109.5 119.6 120.7 (3)
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5 C5—C6—C7	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2) 123.3 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13 C15—C14—H14	109.5 109.5 109.5 109.5 119.6 119.6 119.6
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5 C5—C6—C7 O1—C26—N1	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2) 123.3 (2) 125.5 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13 C15—C14—H14 C24—C23—H23	109.5 109.5 109.5 109.5 119.6 120.7 (3) 119.6 121.6
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5 C5—C6—C7 O1—C26—N1 O1—C26—C7	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2) 123.3 (2) 125.5 (2) 126.2 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13 C15—C14—H14 C24—C23—H23 C24—C23—C22	109.5 109.5 109.5 119.6 120.7 (3) 119.6 121.6 116.8 (3)
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5 C5—C6—C7 O1—C26—N1 O1—C26—C7 N1—C26—C7	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2) 123.3 (2) 125.5 (2) 126.2 (2) 108.2 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13 C15—C14—H14 C24—C23—H23 C24—C23—C22 C22—C23—H23	109.5 109.5 109.5 109.5 119.6 120.7 (3) 119.6 121.6 121.6
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5 C5—C6—C7 O1—C26—N1 O1—C26—C7 N1—C26—C7 C24—C19—C7	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2) 123.3 (2) 125.5 (2) 126.2 (2) 108.2 (2) 109.4 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13 C15—C14—H14 C24—C23—H23 C24—C23—C22 C22—C23—H23 C19—C20—H20	109.5 109.5 109.5 109.5 119.6 120.7 (3) 119.6 121.6 121.6 120.6
C19—C24—N1 C23—C24—N1 C23—C24—C19 C1—C6—C7 C1—C6—C5 C5—C6—C7 O1—C26—N1 O1—C26—C7 N1—C26—C7 C24—C19—C7 C20—C19—C24	109.8 (2) 127.5 (2) 122.7 (2) 119.6 (2) 117.1 (2) 123.3 (2) 125.5 (2) 126.2 (2) 108.2 (2) 109.4 (2) 119.7 (2)	H25A—C25—H25B H25A—C25—H25C H25B—C25—H25C C13—C14—H14 C15—C14—C13 C15—C14—H14 C24—C23—H23 C24—C23—H23 C24—C23—H23 C19—C20—H20 C19—C20—C21	109.5 109.5 109.5 109.5 119.6 120.7 (3) 119.6 121.6 1121.6 120.6 118.8 (3)

C6—C7—C26	108.48 (19)	C13-C18-H18	119.3
C6—C7—C8	112.2 (2)	C17—C18—C13	121.3 (3)
С19—С7—С6	112.1 (2)	C17—C18—H18	119.3
C19—C7—C26	101.28 (19)	C6—C1—H1	119.2
С19—С7—С8	112.1 (2)	C6—C1—C2	121.6 (3)
C8—C7—C26	110.0 (2)	C2—C1—H1	119.2
C14—C13—C12	122.5 (2)	C14—C15—H15	119.9
C14—C13—C18	117.7 (3)	C16—C15—C14	120.2 (3)
C18—C13—C12	119.8 (2)	C16—C15—H15	119.9
С7—С8—Н8А	108.5	С6—С5—Н5	119.6
С7—С8—Н8В	108.5	C6—C5—C4	120.8 (3)
H8A—C8—H8B	107.5	С4—С5—Н5	119.6
C9—C8—C7	115.1 (2)	C20—C21—H21	120.0
С9—С8—Н8А	108.5	C22—C21—C20	120.0 (3)
С9—С8—Н8В	108.5	C22—C21—H21	120.0
C12—C11—H11	117.3	С23—С22—Н22	119.0
C12—C11—C10	125.5 (3)	C21—C22—C23	122.0 (3)
C10—C11—H11	117.3	C21—C22—H22	119.0
С8—С9—Н9	117.0	C15—C16—H16	120.0
С10—С9—С8	125.9 (3)	C17—C16—C15	119.9 (3)
С10—С9—Н9	117.0	C17—C16—H16	120.0
C13—C12—H12	116.3	C3—C2—C1	120.5 (3)
C11—C12—C13	127.3 (2)	С3—С2—Н2	119.7
C11—C12—H12	116.3	С1—С2—Н2	119.7
С2—С3—Н3	120.6	C18—C17—H17	120.0
C2—C3—C4	118.8 (3)	C16—C17—C18	120.0 (3)
С4—С3—Н3	120.6	С16—С17—Н17	120.0
C11—C10—H10	117.1	C3—C4—C5	121.2 (3)
C9—C10—C11	125.8 (2)	C3—C4—H4	119.4
C9—C10—H10	117.1	С5—С4—Н4	119.4

Figure S1. X-ray crystal structure of compound 3aa

7.2 X-Ray Crystallography Data of 6a

Computing details

Cell refinement: *SAINT* v8.34A (Bruker, 2013); data reduction: *SAINT* v8.34A (Bruker, 2013); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

(cu_2017209_0m_a)

Crystal data

$C_{37}H_{32}N_2O_3$ $Z = 2$	
------------------------------	--

$M_r = 552.64$	F(000) = 584
Triclinic, <i>P</i> [−] 1	$D_{\rm x} = 1.299 {\rm ~Mg~m^{-3}}$
<i>a</i> = 7.3961 (5) Å	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å
b = 14.159 (2) Å	Cell parameters from 826 reflections
c = 14.7965 (10) Å	$\theta = 38.5 - 68.3^{\circ}$
$\alpha = 113.245 (5)^{\circ}$	$\mu = 0.65 \text{ mm}^{-1}$
$\beta = 93.815 \ (2)^{\circ}$	T = 205 K
$\gamma = 94.009 \ (4)^{\circ}$	Block, colourless
$V = 1412.7 (3) Å^3$	$0.28 \times 0.12 \times 0.08 \text{ mm}$

Data collection

Bruker APEX-II CCD diffractometer	3916 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.027$
Absorption correction: multi-scan SADABS2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0732 before and 0.0386 after correction. The Ratio of minimum to maximum transmission is 0.8758. The $\lambda/2$ correction factor is 0.00150.	$\theta_{max}=61.2^\circ,\theta_{min}=5.6^\circ$
$T_{\min} = 0.660, T_{\max} = 0.754$	$h = -8 \rightarrow 8$
13633 measured reflections	$k = -16 \rightarrow 16$
4140 independent reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	7 restraints
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0616P)^2 + 0.3071P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{max} = 0.001$
4140 reflections	$\Delta \rangle_{\text{max}} = 0.20 \text{ e} \text{ Å}^{-3}$

380 parameters	$\Delta\rangle_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
----------------	--

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	Т	1	1	
	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
O3	0.00044 (13)	0.09252 (8)	0.87073 (7)	0.0342 (3)
01	0.85758 (13)	0.33551 (8)	0.70942 (8)	0.0369 (3)
02	0.52245 (13)	0.30788 (8)	0.98446 (8)	0.0390 (3)
N2	0.28086 (14)	0.18252 (9)	0.93201 (8)	0.0254 (3)
N1	0.64848 (16)	0.35802 (9)	0.60062 (9)	0.0311 (3)
C21	0.11680 (17)	0.22271 (10)	0.81314 (10)	0.0259 (3)
H21	-0.0002	0.2530	0.8150	0.031*
C23	0.37821 (17)	0.27013 (10)	0.93484 (10)	0.0267 (3)
C13	0.49859 (18)	0.41504 (10)	0.60568 (11)	0.0289 (3)
C24	0.11645 (17)	0.15764 (10)	0.87274 (10)	0.0255 (3)
C15	0.72834 (18)	0.37662 (10)	0.69261 (10)	0.0273 (3)
C17	0.39926 (18)	0.32780 (11)	0.79335 (10)	0.0281 (3)
H17	0.3206	0.3433	0.7452	0.034*
C8	0.48283 (18)	0.47803 (10)	0.70351 (10)	0.0270 (3)
C16	0.54554 (19)	0.41917 (11)	0.84254 (10)	0.0299 (3)
H16A	0.6432	0.3984	0.8766	0.036*
H16B	0.4922	0.4757	0.8926	0.036*
C7	0.62945 (18)	0.45970 (10)	0.76938 (10)	0.0270 (3)

C22	0.27431 (17)	0.30890 (10)	0.86607 (10)	0.0258 (3)
H22	0.2240	0.3739	0.9057	0.031*
C20	0.15006 (18)	0.15564 (11)	0.70272 (10)	0.0284 (3)
H20	0.1202	0.1975	0.6648	0.034*
C37	0.57157 (19)	0.02602 (12)	0.86711 (11)	0.0330 (3)
H37	0.6468	0.0889	0.8913	0.040*
C18	0.46934 (19)	0.22551 (11)	0.73767 (10)	0.0304 (3)
H18	0.5946	0.2207	0.7322	0.036*
C6	0.77331 (18)	0.55204 (11)	0.82324 (10)	0.0285 (3)
C19	0.35012 (19)	0.14286 (11)	0.69671 (10)	0.0301 (3)
H19	0.3892	0.0771	0.6643	0.036*
C31	0.34289 (19)	0.11674 (11)	0.98050 (10)	0.0297 (3)
H31A	0.2431	0.0976	1.0124	0.036*
H31B	0.4435	0.1545	1.0315	0.036*
C1	0.7776 (2)	0.64047 (11)	0.80431 (12)	0.0351 (3)
H1	0.6853	0.6466	0.7607	0.042*
C32	0.40564 (18)	0.02078 (11)	0.90493 (10)	0.0276 (3)
С9	0.3411 (2)	0.53879 (12)	0.72649 (12)	0.0359 (4)
Н9	0.3285	0.5817	0.7925	0.043*
C36	0.6267 (2)	-0.05992 (13)	0.79465 (12)	0.0396 (4)
H36	0.7394	-0.0556	0.7699	0.048*
C29	-0.0395 (2)	-0.12683 (12)	0.60919 (12)	0.0414 (4)
H29	-0.0053	-0.1887	0.6113	0.050*
C33	0.2968 (2)	-0.07263 (11)	0.86849 (11)	0.0339 (3)
Н33	0.1846	-0.0774	0.8935	0.041*
C5	0.9122 (2)	0.54543 (12)	0.88827 (11)	0.0362 (3)
Н5	0.9123	0.4859	0.9018	0.043*
C10	0.2165 (2)	0.53540 (13)	0.64980 (14)	0.0460 (4)
H10	0.1186	0.5761	0.6644	0.055*
C25	0.02541 (18)	0.05604 (11)	0.65518 (10)	0.0285 (3)
C30	0.0735 (2)	-0.03634 (12)	0.65705 (11)	0.0347 (3)
H30	0.1846	-0.0371	0.6914	0.042*

C3	1.0527 (2)	0.71249 (12)	0.91330 (12)	0.0406 (4)
Н3	1.1469	0.7665	0.9434	0.049*
C12	0.3780 (2)	0.41174 (12)	0.52896 (12)	0.0404 (4)
H12	0.3915	0.3696	0.4629	0.048*
C4	1.0494 (2)	0.62508 (13)	0.93298 (12)	0.0411 (4)
H4	1.1414	0.6197	0.9772	0.049*
C2	0.9167 (2)	0.72004 (12)	0.84915 (13)	0.0412 (4)
H2	0.9181	0.7796	0.8356	0.049*
C26	-0.1417 (2)	0.05514 (12)	0.60583 (11)	0.0350 (3)
H26	-0.1783	0.1171	0.6051	0.042*
C34	0.3521 (2)	-0.15884 (12)	0.79570 (12)	0.0401 (4)
H34	0.2778	-0.2220	0.7715	0.048*
C28	-0.2027 (2)	-0.12690 (13)	0.55814 (12)	0.0464 (4)
H28	-0.2781	-0.1890	0.5238	0.056*
C11	0.2354 (2)	0.47338 (14)	0.55356 (14)	0.0483 (4)
H11	0.1503	0.4725	0.5030	0.058*
C27	-0.2542 (2)	-0.03549 (14)	0.55794 (12)	0.0440 (4)
H27	-0.3668	-0.0349	0.5249	0.053*
C14	0.7086 (2)	0.28512 (14)	0.51078 (12)	0.0459 (4)
H14A	0.6190	0.2251	0.4816	0.069*
H14B	0.8246	0.2638	0.5260	0.069*
H14C	0.7227	0.3175	0.4645	0.069*
C35	0.5169 (2)	-0.15215 (13)	0.75846 (12)	0.0408 (4)
H35	0.5539	-0.2106	0.7084	0.049*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	0.0292 (5)	0.0374 (6)	0.0354 (6)	-0.0050 (4)	0.0039 (4)	0.0152 (5)
O1	0.0335 (5)	0.0378 (6)	0.0460 (7)	0.0141 (4)	0.0051 (4)	0.0220 (5)
O2	0.0333 (6)	0.0460 (6)	0.0380 (6)	-0.0097 (5)	-0.0086 (5)	0.0214 (5)
N2	0.0249 (6)	0.0282 (6)	0.0246 (6)	0.0028 (4)	0.0015 (4)	0.0122 (5)
N1	0.0352 (6)	0.0311 (6)	0.0285 (7)	0.0126 (5)	0.0073 (5)	0.0113 (6)

C21	0.0234 (6)	0.0277 (7)	0.0269 (7)	0.0063 (5)	0.0016 (5)	0.0107 (6)
C23	0.0267 (7)	0.0290 (7)	0.0226 (7)	0.0026 (5)	0.0035 (5)	0.0084 (6)
C13	0.0287 (7)	0.0265 (7)	0.0337 (8)	0.0038 (5)	0.0036 (6)	0.0142 (7)
C24	0.0241 (7)	0.0277 (7)	0.0229 (7)	0.0050 (5)	0.0046 (5)	0.0075 (6)
C15	0.0268 (7)	0.0267 (7)	0.0329 (8)	0.0049 (5)	0.0058 (5)	0.0159 (6)
C17	0.0312 (7)	0.0289 (7)	0.0265 (7)	0.0034 (6)	0.0029 (5)	0.0136 (6)
C8	0.0267 (7)	0.0247 (7)	0.0332 (8)	0.0025 (5)	0.0048 (6)	0.0151 (6)
C16	0.0334 (7)	0.0298 (7)	0.0282 (8)	0.0020 (6)	0.0044 (6)	0.0134 (7)
C7	0.0285 (7)	0.0263 (7)	0.0284 (7)	0.0044 (5)	0.0042 (6)	0.0130 (6)
C22	0.0278 (7)	0.0233 (7)	0.0266 (7)	0.0050 (5)	0.0039 (5)	0.0099 (6)
C20	0.0331 (7)	0.0296 (7)	0.0240 (7)	0.0047 (6)	0.0009 (5)	0.0124 (6)
C37	0.0324 (7)	0.0352 (8)	0.0323 (8)	0.0010 (6)	0.0027 (6)	0.0150 (7)
C18	0.0299 (7)	0.0333 (8)	0.0295 (8)	0.0044 (6)	0.0079 (6)	0.0134 (7)
C6	0.0289 (7)	0.0286 (7)	0.0276 (7)	0.0040 (6)	0.0088 (6)	0.0098 (6)
C19	0.0354 (8)	0.0296 (7)	0.0255 (7)	0.0068 (6)	0.0074 (6)	0.0100 (6)
C31	0.0323 (7)	0.0352 (8)	0.0267 (7)	0.0052 (6)	0.0028 (6)	0.0175 (7)
C1	0.0351 (8)	0.0313 (8)	0.0407 (9)	0.0043 (6)	0.0060 (6)	0.0158 (7)
C32	0.0304 (7)	0.0320 (7)	0.0255 (7)	0.0039 (6)	-0.0005 (5)	0.0174 (6)
C9	0.0330 (8)	0.0323 (8)	0.0450 (9)	0.0094 (6)	0.0097 (6)	0.0165 (7)
C36	0.0395 (8)	0.0483 (9)	0.0340 (9)	0.0104 (7)	0.0092 (6)	0.0178 (8)
C29	0.0506 (9)	0.0286 (8)	0.0439 (9)	0.0063 (7)	0.0216 (7)	0.0103 (7)
C33	0.0325 (7)	0.0345 (8)	0.0401 (9)	0.0028 (6)	0.0018 (6)	0.0212 (7)
C5	0.0336 (8)	0.0418 (8)	0.0385 (9)	-0.0001 (6)	0.0032 (6)	0.0224 (7)
C10	0.0319 (8)	0.0438 (9)	0.0678 (12)	0.0132 (7)	0.0033 (7)	0.0269 (9)
C25	0.0324 (7)	0.0312 (7)	0.0207 (7)	0.0045 (6)	0.0041 (5)	0.0088 (6)
C30	0.0351 (8)	0.0352 (8)	0.0352 (8)	0.0069 (6)	0.0072 (6)	0.0147 (7)
C3	0.0366 (8)	0.0373 (8)	0.0382 (9)	-0.0059 (6)	0.0105 (7)	0.0055 (7)
C12	0.0441 (9)	0.0400 (8)	0.0358 (9)	0.0049 (7)	-0.0043 (7)	0.0151 (7)
C4	0.0320 (8)	0.0540 (10)	0.0352 (9)	-0.0034 (7)	0.0020 (6)	0.0171 (8)
C2	0.0433 (9)	0.0288 (8)	0.0503 (10)	0.0009 (6)	0.0124 (7)	0.0140 (7)
C26	0.0365 (8)	0.0398 (8)	0.0273 (8)	0.0057 (6)	0.0007 (6)	0.0120 (7)
C34	0.0475 (9)	0.0291 (8)	0.0427 (9)	0.0012 (6)	-0.0071 (7)	0.0157 (7)

C28	0.0467 (9)	0.0407 (9)	0.0363 (9)	-0.0098 (7)	0.0114 (7)	0.0003 (8)
C11	0.0395 (9)	0.0507 (10)	0.0566 (11)	0.0080 (7)	-0.0115 (8)	0.0257 (9)
C27	0.0353 (8)	0.0557 (10)	0.0327 (9)	-0.0036 (7)	-0.0019 (6)	0.0114 (8)
C14	0.0565 (10)	0.0460 (9)	0.0348 (9)	0.0206 (8)	0.0134 (7)	0.0121 (8)
C35	0.0544 (10)	0.0383 (8)	0.0290 (8)	0.0160 (7)	0.0019 (7)	0.0112 (7)

Geometric parameters (Å, °)

O3—C24	1.2048 (16)	C31—H31B	0.9800
O1—C15	1.2144 (17)	C31—C32	1.507 (2)
O2—C23	1.2121 (16)	C1—H1	0.9400
N2—C23	1.3744 (18)	C1—C2	1.388 (2)
N2—C24	1.3879 (17)	C32—C33	1.385 (2)
N2—C31	1.4615 (17)	С9—Н9	0.9400
N1—C13	1.4053 (18)	C9—C10	1.397 (2)
N1—C15	1.3635 (19)	С36—Н36	0.9400
N1—C14	1.446 (2)	C36—C35	1.376 (2)
C21—H21	0.9900	С29—Н29	0.9400
C21—C24	1.5059 (19)	C29—C30	1.377 (2)
C21—C22	1.5445 (18)	C29—C28	1.380 (3)
C21—C20	1.579 (2)	С33—Н33	0.9400
C23—C22	1.5243 (19)	C33—C34	1.381 (2)
С13—С8	1.387 (2)	С5—Н5	0.9400
C13—C12	1.380 (2)	C5—C4	1.379 (2)
С15—С7	1.545 (2)	С10—Н10	0.9400
С17—Н17	0.9900	C10-C11	1.369 (3)
C17—C16	1.5266 (19)	C25—C30	1.389 (2)
C17—C22	1.5519 (19)	C25—C26	1.390 (2)
C17—C18	1.505 (2)	С30—Н30	0.9400
C8—C7	1.5138 (19)	С3—Н3	0.9400
C8—C9	1.377 (2)	C3—C4	1.378 (2)
C16—H16A	0.9800	C3—C2	1.375 (2)
C16—H16B	0.9800	С12—Н12	0.9400

C16—C7	1.5543 (19)	C12—C11	1.391 (2)
С7—С6	1.5319 (19)	C4—H4	0.9400
С22—Н22	0.9900	C2—H2	0.9400
С20—Н20	0.9900	C26—H26	0.9400
C20—C19	1.507 (2)	C26—C27	1.377 (2)
C20—C25	1.5108 (19)	С34—Н34	0.9400
С37—Н37	0.9400	C34—C35	1.383 (3)
C37—C32	1.391 (2)	C28—H28	0.9400
C37—C36	1.376 (2)	C28—C27	1.376 (3)
C18—H18	0.9400	C11—H11	0.9400
C18—C19	1.319 (2)	С27—Н27	0.9400
C6—C1	1.385 (2)	C14—H14A	0.9700
C6—C5	1.394 (2)	C14—H14B	0.9700
С19—Н19	0.9400	C14—H14C	0.9700
С31—Н31А	0.9800	С35—Н35	0.9400
C23—N2—C24	113.01 (11)	N2—C31—C32	109.52 (11)
C23—N2—C31	125.25 (11)	H31A—C31—H31B	108.2
C24—N2—C31	121.66 (11)	C32—C31—H31A	109.8
C13—N1—C14	125.41 (13)	C32—C31—H31B	109.8
C15—N1—C13	111.34 (12)	С6—С1—Н1	119.7
C15—N1—C14	123.19 (12)	C6—C1—C2	120.61 (14)
C24—C21—H21	110.1	C2—C1—H1	119.7
C24—C21—C22	104.18 (10)	C37—C32—C31	120.05 (13)
C24—C21—C20			120.05 (15)
	110.41 (11)	C33—C32—C37	118.81 (14)
C22—C21—H21	110.41 (11) 110.1	C33—C32—C37 C33—C32—C31	118.81 (14) 121.07 (13)
C22—C21—H21 C22—C21—C20	110.41 (11) 110.1 111.69 (11)	C33—C32—C37 C33—C32—C31 C8—C9—H9	118.81 (14) 121.07 (13) 120.6
C22—C21—H21 C22—C21—C20 C20—C21—H21	110.41 (11) 110.1 111.69 (11) 110.1	C33—C32—C37 C33—C32—C31 C8—C9—H9 C8—C9—C10	118.81 (14) 121.07 (13) 120.6 118.72 (15)
C22—C21—H21 C22—C21—C20 C20—C21—H21 O2—C23—N2	110.41 (11) 110.1 111.69 (11) 110.1 124.20 (13)	C33—C32—C37 C33—C32—C31 C8—C9—H9 C8—C9—C10 C10—C9—H9	118.81 (14) 121.07 (13) 120.6 118.72 (15) 120.6
C22—C21—H21 C22—C21—C20 C20—C21—H21 O2—C23—N2 O2—C23—C22	110.41 (11) 110.1 111.69 (11) 110.1 124.20 (13) 127.32 (13)	C33—C32—C37 C33—C32—C31 C8—C9—H9 C8—C9—C10 C10—C9—H9 C37—C36—H36	118.81 (14) 121.07 (13) 120.6 118.72 (15) 120.6 120.0
C22—C21—H21 C22—C21—C20 C20—C21—H21 O2—C23—N2 O2—C23—C22 N2—C23—C22	110.41 (11) 110.1 111.69 (11) 110.1 124.20 (13) 127.32 (13) 108.48 (11)	C33—C32—C37 C33—C32—C31 C8—C9—H9 C8—C9—C10 C10—C9—H9 C37—C36—H36 C35—C36—C37	118.81 (14) 121.07 (13) 120.6 118.72 (15) 120.6 120.0 119.99 (15)

C12—C13—N1	128.12 (14)	С30—С29—Н29	119.9
C12—C13—C8	122.29 (13)	C30—C29—C28	120.18 (15)
O3—C24—N2	123.34 (12)	С28—С29—Н29	119.9
O3—C24—C21	128.54 (12)	С32—С33—Н33	119.8
N2-C24-C21	108.10 (11)	C34—C33—C32	120.47 (14)
O1—C15—N1	124.88 (14)	С34—С33—Н33	119.8
O1—C15—C7	126.82 (13)	С6—С5—Н5	119.6
N1—C15—C7	108.28 (11)	C4—C5—C6	120.83 (14)
C16—C17—H17	107.2	С4—С5—Н5	119.6
C16-C17-C22	114.02 (11)	С9—С10—Н10	119.7
С22—С17—Н17	107.2	C11—C10—C9	120.67 (15)
C18—C17—H17	107.2	C11—C10—H10	119.7
C18—C17—C16	115.22 (12)	C30—C25—C20	122.20 (12)
C18—C17—C22	105.43 (11)	C30—C25—C26	118.23 (13)
C13—C8—C7	109.24 (11)	C26—C25—C20	119.56 (13)
C9—C8—C13	119.71 (13)	C29—C30—C25	120.84 (14)
C9—C8—C7	130.91 (13)	С29—С30—Н30	119.6
C17—C16—H16A	108.8	С25—С30—Н30	119.6
C17—C16—H16B	108.8	С4—С3—Н3	120.3
C17—C16—C7	113.93 (11)	С2—С3—Н3	120.3
H16A—C16—H16B	107.7	C2—C3—C4	119.36 (14)
C7—C16—H16A	108.8	C13—C12—H12	121.4
C7—C16—H16B	108.8	C13—C12—C11	117.20 (16)
C15—C7—C16	111.62 (11)	C11—C12—H12	121.4
C8—C7—C15	101.46 (11)	С5—С4—Н4	119.8
C8—C7—C16	111.35 (11)	C3—C4—C5	120.46 (15)
C8—C7—C6	114.55 (11)	С3—С4—Н4	119.8
C6—C7—C15	105.86 (11)	С1—С2—Н2	119.7
C6—C7—C16	111.45 (11)	C3—C2—C1	120.53 (15)
C21—C22—C17	112.85 (11)	С3—С2—Н2	119.7
C21—C22—H22	109.6	C25—C26—H26	119.6
C23—C22—C21	103.81 (10)	C27—C26—C25	120.75 (15)

C23—C22—C17	111.29 (11)	C27—C26—H26	119.6
С23—С22—Н22	109.6	С33—С34—Н34	120.0
C17—C22—H22	109.6	C33—C34—C35	119.99 (14)
C21—C20—H20	106.1	С35—С34—Н34	120.0
C19—C20—C21	109.50 (11)	С29—С28—Н28	120.2
С19—С20—Н20	106.1	C27—C28—C29	119.55 (14)
C19—C20—C25	114.60 (12)	С27—С28—Н28	120.2
C25—C20—C21	113.81 (11)	C10-C11-C12	121.40 (15)
С25—С20—Н20	106.1	C10—C11—H11	119.3
С32—С37—Н37	119.6	C12—C11—H11	119.3
С36—С37—Н37	119.6	С26—С27—Н27	119.8
C36—C37—C32	120.71 (14)	C28—C27—C26	120.41 (15)
C17—C18—H18	120.9	С28—С27—Н27	119.8
C19—C18—C17	118.13 (12)	N1—C14—H14A	109.5
C19—C18—H18	120.9	N1—C14—H14B	109.5
C1—C6—C7	121.86 (13)	N1—C14—H14C	109.5
C1—C6—C5	118.21 (13)	H14A—C14—H14B	109.5
C5—C6—C7	119.78 (12)	H14A—C14—H14C	109.5
С20—С19—Н19	120.6	H14B—C14—H14C	109.5
C18—C19—C20	118.85 (13)	C36—C35—C34	120.03 (15)
C18—C19—H19	120.6	C36—C35—H35	120.0
N2—C31—H31A	109.8	C34—C35—H35	120.0
N2—C31—H31B	109.8		

Figure S2. X-ray crystal structure of compound 6a

8. ¹H, ¹³C and ¹⁹F NMR Spectra of the Title Compounds

¹H NMR spectrum of purified **3aa**

¹³C NMR spectrum of purified **3aa**

¹H NMR spectrum of purified **3aa'**

¹³C NMR spectrum of purified **3aa'**

¹H NMR spectrum of purified **3ab**

¹³C NMR spectrum of purified **3ab**

¹H NMR spectrum of purified **3ac**

¹³C NMR spectrum of purified **3ac**

¹H NMR spectrum of purified **3ad**

f1 (ppm)

¹H NMR spectrum of purified **3ae**

¹H NMR spectrum of purified **3af**

110 100 f1 (ppm)

¹H NMR spectrum of purified **3ag**

¹H NMR spectrum of purified **3ah**

¹H NMR spectrum of purified **3aj**

¹H NMR spectrum of purified **3ak**

110 100 f1 (ppm)

¹H NMR spectrum of purified **3al**

¹H NMR spectrum of purified **3am**

110 100 f1 (ppm) -1 ¹H NMR spectrum of purified **3ba**

¹H NMR spectrum of purified **3ca**

¹H NMR spectrum of purified **3fa**

¹H NMR spectrum of purified **3ia**

¹H NMR spectrum of purified **3ja**

110 100 f1 (ppm)

¹H NMR spectrum of purified **3la**

¹³C NMR spectrum of the mixture of **3ma** and **3ma**'

¹H NMR spectrum of the mixture of **3na** and **3na**'

¹H NMR spectrum of purified **30a**

¹³C NMR spectrum of purified **30a**

¹H NMR spectrum of purified **3pa**

¹³C NMR spectrum of purified **3pa**

¹⁹F NMR spectrum of purified **3ad**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

¹⁹F NMR spectrum of purified **3ca**

¹⁹F NMR spectrum of purified **3ia**

NOE of 3aa'

