Supplementary information ## For Waste glass fiber fabric as a support for facile synthesis of microporous carbon to adsorb Cr(VI) from waste water Meiling Huang, Shivani Bhardwaj Mishra, and Shiquan Liu* Pages 2 Tables 2 ## S1 Adsorption kinetics The result obtained by fitting the adsorption data with the Langmuir⁵⁰, Freundlich⁵¹ and Temkin⁵² models are listed in Table S1. In the equations in Table S1, C_e (mg/L), q_e (mg/g), q_m and K_L are the concentration of Cr in solution, the amount of adsorbed Cr at equilibrium, Langmuir constants related to adsorption capacity (mg/g) and the energy of adsorption (L/g), respectively. K_f and 1/n are the Freundlich constants related to sorption capacity and sorption intensity, respectively. K_t is the equilibrium binding constant (L/mol) corresponding to the maximum binding energy and constant B is related to the heat of sorption. Table S1. Freundlich, Langmuir and Temkin isotherm constants for Cr adsorption on AC@GFF | Analyte | Isotherms | | | | | | | |---------|---|------------------------------------|-----------------------------|--|--|--|--| | | Langmuir | Freundlich | Temkin | | | | | | Formula | $\frac{C_e}{q_e} = \frac{1}{q_m K_L} + \frac{C_e}{q_m}$ | $lgq_e = lgK_F + \frac{1}{n}lgC_e$ | $q_e = B ln K_t + B ln C_e$ | | | | | | | y = 0.1333x + 0.9766 | y = 0.5801x - 0.035 | y = 1.3406x + 1.1102 | | | | | | Cr(VI) | $q_{\rm m} = 7.5019$ | $K_F = 0.9226$ | $K_t = 2.2890$ | | | | | | | $K_L = 0.1365$ | 1/n = 0.5801 | B= 1.3406 | | | | | | | $R^2 = 0.9839$ | $R^2 = 0.9207$ | $R^2 = 0.9750$ | | | | | ## S2 Adsorption isotherms In the present study, the data were fitted with pseudo-first-order⁵⁴, pseudo-second-order⁵⁵ and intra-particle-diffusion⁵⁶ kinetic models. And the results are listed in Table S2. In the equations, q_e and q_t refer to the amount of Cr(VI) (mg/g) at equilibrium and at any time, respectively. K_1 and K_2 are the equilibrium rate constants of pseudo-first-order and pseudo-second-order adsorption (min⁻¹), respectively. C is the intercept and K_{id} is the intra-particle diffusion rate constant. Table S2. The Pseudo-first-order, Pseudo-second-order and Intra-particle-diffusion kinetic modeling constants for Cr adsorption on AC@GFF | Analyte | Pseudo-first | -order | Pseudo-seco | ond-order | Intra-particle-diffusion | | |---------|-------------------------------------|--------|---|-----------|-----------------------------------|--------| | Formula | $\ln(q_e - q_t) = \ln(q_e) - k_1 t$ | | $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$ | | $q_t = k_{id}t^{\frac{1}{2}} + C$ | | | | y = -0.0017x + 3.7914 | | y = 0.0304x + 4.1497 | | y = 1.4381x - 1.2178 | | | Cr(VI) | K ₁ | R^2 | K_2 | R^2 | K _{id} | R^2 | | | 0.0017 | 0.9201 | 0.0002 | 0.9814 | 1.4381 | 0.9627 |