Supplementary information

For

Waste glass fiber fabric as a support for facile synthesis of microporous carbon to adsorb Cr(VI) from waste water

Meiling Huang, Shivani Bhardwaj Mishra, and Shiquan Liu*

Pages 2

Tables 2

S1 Adsorption kinetics

The result obtained by fitting the adsorption data with the Langmuir⁵⁰, Freundlich⁵¹ and Temkin⁵² models are listed in Table S1. In the equations in Table S1, C_e (mg/L), q_e (mg/g), q_m and K_L are the concentration of Cr in solution, the amount of adsorbed Cr at equilibrium, Langmuir constants related to adsorption capacity (mg/g) and the energy of adsorption (L/g), respectively. K_f and 1/n are the Freundlich constants related to sorption capacity and sorption intensity, respectively. K_t is the equilibrium binding constant (L/mol) corresponding to the maximum binding energy and constant B is related to the heat of sorption.

Table S1. Freundlich, Langmuir and Temkin isotherm constants for Cr adsorption on AC@GFF

Analyte	Isotherms						
	Langmuir	Freundlich	Temkin				
Formula	$\frac{C_e}{q_e} = \frac{1}{q_m K_L} + \frac{C_e}{q_m}$	$lgq_e = lgK_F + \frac{1}{n}lgC_e$	$q_e = B ln K_t + B ln C_e$				
	y = 0.1333x + 0.9766	y = 0.5801x - 0.035	y = 1.3406x + 1.1102				
Cr(VI)	$q_{\rm m} = 7.5019$	$K_F = 0.9226$	$K_t = 2.2890$				
	$K_L = 0.1365$	1/n = 0.5801	B= 1.3406				
	$R^2 = 0.9839$	$R^2 = 0.9207$	$R^2 = 0.9750$				

S2 Adsorption isotherms

In the present study, the data were fitted with pseudo-first-order⁵⁴, pseudo-second-order⁵⁵ and intra-particle-diffusion⁵⁶ kinetic models. And the results are listed in Table S2. In the equations, q_e and q_t refer to the amount of Cr(VI) (mg/g) at equilibrium and at any time, respectively. K_1 and K_2 are the equilibrium rate constants of pseudo-first-order and pseudo-second-order adsorption (min⁻¹), respectively. C is the intercept and K_{id} is the intra-particle diffusion rate constant.

Table S2. The Pseudo-first-order, Pseudo-second-order and Intra-particle-diffusion kinetic modeling constants for Cr adsorption on AC@GFF

Analyte	Pseudo-first	-order	Pseudo-seco	ond-order	Intra-particle-diffusion	
Formula	$\ln(q_e - q_t) = \ln(q_e) - k_1 t$		$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$		$q_t = k_{id}t^{\frac{1}{2}} + C$	
	y = -0.0017x + 3.7914		y = 0.0304x + 4.1497		y = 1.4381x - 1.2178	
Cr(VI)	K ₁	R^2	K_2	R^2	K _{id}	R^2
	0.0017	0.9201	0.0002	0.9814	1.4381	0.9627