Supporting Information

Excitation-independent dual-color carbon dots: surface-state controlling and solid-state lighting

Daqin Chen^{*}, Haobo Gao, Xiao Chen, Gaoliang Fang, Shuo Yuan, Yongjun Yuan

College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China

Corresponding author: dqchen@hdu.edu.cn (D. Q. Chen)

Sample	Carbon source	Solvent	Reaction	Luminescent color	
			conditions		
No. 1	PP (0.25 mmol)	FA (20 mL)	160°C/1h	orange	
No. 2	PP (0.25 mmol)	FA (20 mL)	160°C/2h	orange	
No. 3	PP (0.25 mmol)	FA (20 mL)	160°C/3h	orange	
No. 4	PP (0.25 mmol)	FA (20 mL)	160°C/4h	orange	
No. 5	PP (0.25 mmol)	FA (20 mL)	160°C/6h	blue	
No. 6	PP (0.25 mmol)	FA (20 mL)	160°C/18h	blue	
No. 7	PP (0.25 mmol)	FA (20 mL)	180°C/1h	orange	
No. 8	PP (0.25 mmol)	FA (20 mL)	180°C/2h	orange	
No. 9	PP (0.25 mmol)	FA (20 mL)	180°C/3h	orange	
No. 10	PP (0.25 mmol)	FA (20 mL)	180°C/4h	blue	
No. 11	PP (0.25 mmol)	FA (20 mL)	180°C/24h	blue	
No. 12	PP (0.25 mmol)	FA (20 mL)	200°C/0.5h	orange	
No. 13	PP (0.25 mmol)	FA (20 mL)	200°C/1h	orange	
No. 14	PP (0.25 mmol)	FA (20 mL)	200°C/1.5h	blue	
No. 15	PP (0.25 mmol)	FA (20 mL)	200°C/4h	blue	
No. 16	PP (0.25 mmol)	FA (20 mL)	220°C/1h	orange	
No. 17	PP (0.25 mmol)	FA (20 mL)	240°C/1h	blue	
No. 18	PP (1 mmol)	FA (20 mL)	180°C/1h	orange	
No. 19	PP (5 mmol)	FA (20 mL)	180°C/1h	orange	
No. 20	PP (10 mmol)	FA (20 mL)	180°C/1h	orange	
No. 21	PP (20 mmol)	FA (20 mL)	180°C/1h	orange	

Table S1 Fabrication of C-dots with orange/blue luminescence by different combinations of solvothermal reaction temperature and time. PP and FA represent p-phenylenediamine and formamide, respectively.

Table S2 Photoelectric parameters of C/PiG-LED with C-dot film thickness of 1.5mm and operating current of 350 mA at different working time intervals

Working time interval (h)	Chromaticity coordinates	CCT (K)	CRI
0	(0.371, 0.376)	4250	85.3
6	(0.373, 0.375)	4246	85.5
12	(0.371, 0.377)	4251	85.3
24	(0.372, 0.376)	4250	85.4
36	(0.374, 0.375)	4253	85.2
48	(0.369, 0.374)	4248	85.3
60	(0.372, 0.377)	4251	85.4
72	(0.371, 0.373)	4247	85.1

Figure S1 PL spectra of C-dots obtained by solvothermal reaction at different temperatures for 1 h.

Figure S2 PL spectra of C-dots obtained by solvothermal reaction at (a) 160 $^{\circ}$ C, (b) 180 $^{\circ}$ C and (c) 200 $^{\circ}$ C for different times.

Figure S3 PL spectra of C-dots obtained by solvothermal reaction at 180°C/1h with the addition of different phenylenediamine contents.

Figure S4 PL spectra of (a) orange C-dots and (b) blue C-dots recorded under the excitation of different wavelength lights.

Figure S5 Raman spectrum of orange C-dots recorded under the excitation of 532 nm laser.

Figure S6 Decay curves of orange C-dots by monitoring different emission wavelengths (550~650 nm) under the excitation of 475 nm picosecond laser.

Figure S7 Decay curves of blue C-dots by monitoring different emission wavelengths (380~480 nm) under the excitation of 375 nm picosecond laser.

Figure S8 pH-dependent excitation-emission mappings for (a-c) blue C-dots and (d-f) orange C-dots dispersed in aqueous solutions.

Figure S9 pH-dependent absorption spectra for (a) blue C-dots and (b) orange C-dots dispersed in aqueous solutions.

Figure S10 Comparison of PLE/PL spectra for the commercial Ce: YAG phosphors and the investigated orange C-dots.

Figure S11 Investigation on photostability of orange C-dot film: exposure time dependent PL spectra under the excitation of 465 nm blue light.

Figure S12 (a) Electroluminescence spectra, (b) color coordinates, and (c) CCT/CRI for the C/PiG-LED with C-dot film thickness of 1.5 mm at different working time intervals.