Supporting Information for:

Palladium-Catalyzed Dehydrogenative Difunctionalization of Aminoalkenes with Aminals as Oxidants and Electrophiles

Lixin Li, ${ }^{\dagger,}{ }^{\text {II }}$ Xibing Zhou, ${ }^{\ddagger}$ Bangkui Yu, ${ }^{\ddagger}$ and Hanmin Huang ${ }^{*}{ }^{\dagger}, \ddagger, \ddagger$

${ }^{\dagger}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
${ }^{*}$ Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
§ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
${ }^{\text {II }}$ University of Chinese Academy of Science, Beijing 100049, P. R. China
E-mail: hanmin@ustc.edu.cn

Table of contents

1 General experimental details and materials

2 Preparation and spectral data of 2-allylaniline derivates

3 Optimization of the reaction conditions

4 General procedure for the catalytic reaction and spectral data of products

5 Procedure for the synthetic transformation of 2-(2-aminoethyl)indoles

6 References
$7 \quad{ }^{\mathbf{1}} \mathrm{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR spectra of materials and products

1. General experimental details and materials

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before use were dried and degassed by standard methods and stored under nitrogen atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 MHz spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity, coupling constants (Hz) and integration. Coupling constants (J) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass instrument (ESI). Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Aminals used here were known compounds and synthesized according to the reported methods. ${ }^{1}$ 2-allylaniline derivatives were prepared according to the reported methods. ${ }^{2}$ Flash column chromatography was performed using 200-300 mesh silica gels.

2. Preparation and spectral data of 2-allylaniline derivatives

General procedure A:

To a stirred solution of aryl substituted 2-allylaniline (5.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), $\mathrm{TsCl}(6.0 \mathrm{mmol})$ and pyridine $(16.2 \mathrm{mmol})$ were added at room temperature. The mixture was stirred at the same temperature overnight, then solvent was removed and the residue was purified by flash column chromatography to give the desired product as a white solid.

General procedure B:

To a solution of N-(but-2-en-1-yl)aniline ($12.0 \mathrm{~g}, 81.6 \mathrm{mmol}$) in m-xylene (20 mL) under nitrogen, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(11.5 \mathrm{~g}, 81.6 \mathrm{mmol})$ was added at room temperature and stirred at $180^{\circ} \mathrm{C}$ for 18 hours. Then the mixture was cooled to $0^{\circ} \mathrm{C}$ and the saturated solution of NaOH was added. The resulting solution was extracted with EA ($50 \mathrm{~mL} \times 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to give the desired product as yellow oil ($6.5 \mathrm{~g}, 54 \%$ yield). ${ }^{2 \mathrm{~b}}$ Then the yellow oil ($750 \mathrm{mg}, 5.1 \mathrm{mmol}$) was dissolved into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{TsCl}(1.06 \mathrm{~g}, 5.6 \mathrm{mmol})$ and pyridine $(1.21 \mathrm{~g}, 15.3$ $\mathrm{mmol})$ were added into the solution at room temperature. The mixture was stirred at the same temperature overnight, then solvent was removed and the residue was purified by flash column chromatography to give the desired product as a white solid ($1.24 \mathrm{~g}, 81 \%$ yield).

General procedure C:

To a solution of 2-(2-nitrophenyl)but-3-en-1-ol ($800 \mathrm{mg}, 4.14 \mathrm{mmol}$) in EtOH (25 mL) at room temperature under nitrogen, $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($4.67 \mathrm{~g}, 20.7 \mathrm{mmol}$) was added in one portion. The mixture was stirred at room temperature for one hour and for another hour at $60{ }^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature, and water (10 mL) was added. Solid NaHCO_{3} was carefully added until the solution was basic. The mixture was then filtered to remove the solids formed (rinsed with EA), and the filtrate was extracted with EA $(10 \mathrm{~mL} \times 5)$. The combined organic layers were washed with brine $(10 \mathrm{~mL} \times 1)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated under reduced pressure to afford yellow oil, which was used in the next step without further purification. ${ }^{2 b}$ Then the yellow oil was dissolved into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{TsCl}(860 \mathrm{mg}, 4.55 \mathrm{mmol})$ and pyridine (359 mg , 4.55 mmol) were added into the solution at room temperature. The mixture was stirred at the same temperature overnight, then solvent was removed and the residue was purified by flash column chromatography to give the desired product as a white solid (603 mg , 46% yield, over two steps).

Spectral data of 2-allylaniline derivatives

N-(2-allyl-6-chlorophenyl)-4-methylbenzenesulfonamide (1d): The title compound

1d was prepared according to the general procedure A and purified by column chromatography to give a white solid (73% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.25-7.23 (m, 2H), 7.18-7.16 (m, 1H), 7.07-7.06 (m, 1H), $6.55(b r, 1 H)$, 5.78-5.68 (m, 1H), $5.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96\left(\mathrm{dd}, J_{l}=1.2 \mathrm{~Hz}, J_{2}=17.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.1, 136.47, 134.72, 134.4, 133.5, 131.8, 130.3, 129.8, 127.7, 127.1, 126.1, 117.7, 35.8, 21.6. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]: 344.0482$, found: 344.0495 .
N-(2-allyl-5-cyanophenyl)-4-methylbenzenesulfonamide (1f): The title compound was

prepared according to the general procedure A and purified by column chromatography to give a white solid (35% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{l}=8.0, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{br}, 1 \mathrm{H}), 5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.6,136.2,136.1,133.9,131.5,130.0,129.3,127.1,126.5,118.4,118.2,111.7,36.3$, 21.6. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 313.1005$, found: 313.1002.
N-(2-allyl-3,5-dichlorophenyl)-4-methylbenzenesulfonamide (1h): The title compound

1 h was prepared according to the general procedure A and purified by column chromatography to give a white solid (70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, 5.80-5.70 (m, 1H), $5.11(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.41 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,137.5,136.2,135.5,133.2$, 133.1, 129.9, 127.4, 127.2, 126.5, 121.8, 117.2, 32.1, 21.6. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]: 378.0093$, found: 378.0092.
N-(2-(but-3-en-2-yl)phenyl)-4-methylbenzenesulfonamide (1i): The title compound

$1 i$ was prepared according to the general procedure B and purified by column chromatography to give a white solid (81 \% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H})$, $7.24-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.07\left(\mathrm{dt}, J_{l}=1.2 \mathrm{~Hz}\right.$, $\left.J_{2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.95\left(\mathrm{dt}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=17.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,141.8,137.4,136.7$, 134.2, 129.6, 127.4, 127.3, 127.2, 126.5, 124.9, 114.6, 37.7, 21.5, 19.2. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]: 324.1029$, found: 324.1017.

N-(2-(but-3-en-2-yl)-4-methoxyphenyl)-4-methylbenzenesulfona mide (1j): The title compound was prepared according to the general procedure B and purified by column chromatography to give a white solid (73% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$
(d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2 \mathrm{H})$, $6.50(\mathrm{~s}, 1 \mathrm{H}), 5.72-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.00\left(\mathrm{dt}, J_{l}=1.6 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91\left(\mathrm{dt}, J_{l}=1.2\right.$ $\left.\mathrm{Hz}, J_{2}=17.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,143.6,142.0,141.8,136.7,129.5,128.5$, 127.3, 126.4, 114.1, 113.3, 111.6, 55.3, 37.3, 21.5, 19.3. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]: 354.1134$, found: 354.1152.
N-(2-(but-3-en-2-yl)-4-chlorophenyl)-4-methylbenzenesulfonamide (1k): The title

1k compound was prepared according to the general procedure B and purified by column chromatography to give a white solid (59% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.72-5.64$ $(\mathrm{m}, 1 \mathrm{H}), 5.08-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.0,140.9,139.9$, 136.4, 132.7, 132.3, 129.7, 127.7, 127.3, 127.2, 126.5, 115.1, 37.5, 21.5, 19.1. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]$: 358.0639, found: 358.0634.
N-(2-(1-hydroxybut-3-en-2-yl)phenyl)-4-methylbenzenesulfonamide (11): The title

11 compound was prepared according to the general procedure C and purified by column chromatography to give a white solid (46% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33-7.30 (m, 1H), 7.20-7.10 (m, 5H), 5.66-5.58 (m, 1H), $5.04(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.54(\mathrm{~m}$, $1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, $136.9,136.7,136.5,135.0,129.6,128.2,127.4,127.1,126.9,126.2,116.7,66.5,45.3$, 21.5. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}$]: 340.0978, found: 340.0994.

2-(2-((4-methylphenyl)sulfonamido)phenyl)but-3-en-1-yl acetate (1m): The title

1m compound was prepared according to the general procedure A and purified by column chromatography to give a white solid (67% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.47$ (m , $1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.62(\mathrm{~m}$,
$1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,143.7,136.8$, 135.9, 134.7, 133.5, 129. 6, 128.0, 127.8, 127.1, 126.5, 125.8, 117.3, 66.7, 42.1, 21.5, 20.9. HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]$: 382.1083, found: 382.1084.

2-(2-((4-methylphenyl)sulfonamido)phenyl)but-3-en-1-yl pivalate (1n): The title compound was prepared according to the general procedure A and
 purified by column chromatography to give a white solid (68% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.60(\mathrm{~m}$, $1 \mathrm{H}), 5.12\left(\mathrm{dt}, J_{l}=1.2 \mathrm{~Hz}, \quad J_{2}=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.83\left(\mathrm{dt}, J_{l}=1.6 \mathrm{~Hz}, J_{2}\right.$ $=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.1,143.7,136.9,136.1,134.7,133.6,129.5,127.9,127.6$, 127.1, 126.6, 126.5, 117.3, 66.3, 42.2, 38.8, 27.1, 21.5. HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]: 424.1553$, found: 424.1574 .
N-(2-allylphenyl)-1-((1R,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methanesu

$1 q$

Ifonamide (1q): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid (65% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.93(\mathrm{~m}$, $1 \mathrm{H}), 5.18-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47\left(\mathrm{dt}, J_{l}=18.4 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.05$ $(\mathrm{s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.5,135.9,135.4,132.7,130.8$, $127.6,126.0,123.2,116.9,59.4,53.5,50.4,48.6,42.9,36.1,27.0,26.7,19.9,19.7$. HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 348.1628$, found: 348.1624 .

3. Optimization of the reaction conditions

Under nitrogen atmosphere, 1a ($72 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2a ($203 \mathrm{mg}, 0.5 \mathrm{mmol}$), catalyst and silver salt were added into a 25 mL Young-type tube. Then toluene (1 mL) was injected into the reaction mixture. Subsequently, the resulting mixture was stirred at the corresponding temperature for 12 hours. The crude product was purified by flash chromatography on silica gels $(\mathrm{PE} / \mathrm{EA}=30: 1$ to $15: 1)$ directly to give the desired product 3aa as a white solid.

Table S1. Screening of phosphine ligand ${ }^{a}$

 1a		$\begin{gathered} \begin{array}{c} \mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%) \\ \text { Ligand }(5 \mathrm{~mol} \%) \end{array} \\ \hline \text { AgOTf }(10 \mathrm{~mol} \%) \\ \text { Toluene, } 110^{\circ} \mathrm{C}, 12 \mathrm{~h} \end{gathered}$	
entry		ligand	yield (\%) ${ }^{\text {b }}$
1		DPPM	NR
2		DPPE	trace
3		DPPP	52
4		DPPB	53
5		DPPPen	43
6		DPPHex	trace
7		Xantphos	trace
8		DPPF	30
9		BINAP	69
10^{c}		PPh_{3}	21
11		L1	trace
12		L2	trace
13		L3	trace
14		L4	trace

${ }^{a}$ Reaction conditions: 1a $(0.25 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{Pd}_{\left(\mathrm{CH}_{3} \mathrm{CN}\right)}^{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, ligand ($\left.5.5 \mathrm{~mol} \%\right)$, $\operatorname{AgOTf}(10 \mathrm{~mol} \%)$ and toluene (1 mL) for $12 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Ligand ($10 \mathrm{~mol} \%$).

Table S2. Screening of solvent ${ }^{a}$

 1a	$\left\langle_{\mathrm{NBn}_{2}}^{\mathrm{NBn}_{2}}\right.$	$\begin{gathered} \begin{array}{c} \mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%) \\ \text { BINAP }(5 \mathrm{~mol} \%) \end{array} \\ \hline \text { AgOTf }(10 \mathrm{~mol} \%) \\ \text { Solvent, } 110^{\circ} \mathrm{C}, 12 \mathrm{~h} \end{gathered}$	
entry		solvent	yield (\%) ${ }^{\text {b }}$
1		toluene	69
2		DCM	37
3		1,4-Dioxane	57
4		THF	48
5		$\mathrm{CH}_{3} \mathrm{CN}$	54
6		DMSO	48
7		MeOH	41
8		${ }^{\text {i PrOH }}$	56
9		DMF	34
10		m-xylene	67

${ }^{a}$ Reaction conditions: 1a (0.25 mmol), 2a (0.5 mmol), $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, BINAP ($5.5 \mathrm{~mol} \%$), AgOTf ($10 \mathrm{~mol} \%$) and solvent (1 mL) for 12 h . ${ }^{b}$ Isolated yield.

Table S3. Screening of temperature ${ }^{a}$

 1a	$\left\langle\begin{array}{c} \mathrm{NBn}_{2} \\ \mathrm{NBn}_{2} \\ \mathbf{2 a} \end{array}\right.$		
entry		$t\left({ }^{\circ} \mathrm{C}\right)$	yield (\%) ${ }^{b}$
1		110	69
2		90	73
3		70	49
4		50	53
5		30	trace

${ }^{a}$ Reaction conditions: 1a $(0.25 \mathrm{mmol})$, 2a $(0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, BINAP (5.5 mol \%), $\operatorname{AgOTf}(10 \mathrm{~mol} \%)$ and toluene $(1 \mathrm{~mL})$ for $12 \mathrm{~h} .{ }^{b}$ Isolated yield.

Table S4. Screening of the palladium and silver salt ${ }^{a}$

entry	[Pd]	[Ag]	yield (\%) ${ }^{\text {b }}$
1	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	AgOTf	72
2	PdI_{2}	AgOTf	trace
3	$\mathrm{Pd}(\mathrm{TFA})_{2}$	--	NR
4	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	HOTf	trace
5	$\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$	AgOTf	73
6	$\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$	AgBF_{4}	61
7	$\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$	AgClO_{4}	68
8	$\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$	AgTFA	8
9	$\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$	AgSbF_{6}	41
10	$\mathrm{Pd}(\mathrm{BINAP}) \mathrm{Cl}_{2}$	AgOTf	81
11	$\mathrm{Pd}(\mathrm{BINAP}) \mathrm{Cl}_{2}$	--	trace
12	--	AgOTf	NR

${ }^{a}$ Reaction conditions: 1a (0.25 mmol), 2a (0.5 mmol), [Pd] ($5 \mathrm{~mol} \%$), BINAP ($5.5 \mathrm{~mol} \%$), [Ag] (10 $\mathrm{mol} \%)$ and toluene (1 mL) for $12 \mathrm{~h} .{ }^{b}$ Isolated yield.

Table S5. Screening of the Lewis acid ${ }^{a}$

 1a	$\underset{\substack{\mathrm{NBn}_{2} \\ \mathbf{N a n} \\ \hline}}{ }$	$\xrightarrow[\text { Toluene, } 90^{\circ} \mathrm{C}, 12 \mathrm{~h}]{\text { Lewis Acid (5 mol\%) }}$	
entry		Lewis acid	yield (\%) ${ }^{\text {b }}$
1		$\mathrm{Zn}(\mathrm{OTf})_{2}$	NR
2		$\mathrm{Sc}(\mathrm{OTf})_{3}$	NR
3		$\mathrm{Cu}(\mathrm{OTf})_{2}$	NR
4		$\mathrm{Yb}(\mathrm{OTf})_{3}$	NR
5		FeCl_{3}	NR
6		AlCl_{3}	NR
7		PdCl_{2}	NR
8		NiCl_{2}	NR

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.25 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol})$, Lewis acid ($5 \mathrm{~mol} \%$) and toluene (1 mL) for 12
h. ${ }^{b}$ Isolated yield.

4. General procedure for the catalytic reaction and spectral data of products

4.1 General procedure for the catalytic reaction with aminal (A)

The mixture of $\operatorname{Pd}(\operatorname{BINAP}) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), \operatorname{AgOTf}(10 \mathrm{~mol} \%)$ and toluene $(1 \mathrm{~mL})$ were added into a Young-type tube under nitrogen. Then the substrates $\mathbf{1}(0.25 \mathrm{mmol})$ and $\mathbf{2}$ $(0.5 \mathrm{mmol})$ were added. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for 12 h . The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1$ to $15: 1)$ on a silica gel to give the desired product 3 .

General procedure for the catalytic reaction with N, O-aminal (B)

The mixture of $\mathrm{Pd}(\mathrm{BINAP}) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, $\operatorname{AgOTf}(10 \mathrm{~mol} \%)$ and toluene (1 mL) were added into a Young-type tube under nitrogen. Then the substrates $\mathbf{1 i}(0.25 \mathrm{mmol})$ and N, O-aminal (0.5 mmol) were added. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for 12 h . The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1$ to $15: 1)$ on a silica gel to give the desired product 3 .

4.2. Experimental characterization data for new products

N, N-dibenzyl-2-(1-tosyl-1H-indol-2-yl)ethan-1-amine (3aa): The title compound was prepared according to the general procedure A and purified by column chromatography to
give a white solid ($100 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.0$ Hz, 1 H$), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.16(\mathrm{~m}, 13 \mathrm{H}), 7.11-7.09$
$(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90$
$(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $144.8,140.1,139.6,137.2,136.1,129.9,129.8,128.8,128.2$, $126.9,126.2,123.8,123.5,120.1,114.9,109.7,58.3,52.9,26.8,21.5$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 495.2101$, found: 495.2111. The compound was characterized by single X-ray diffraction analysis.

Figure S1: X-ray structure of 3aa
N, N-dibenzyl-2-(5-methoxy-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ba): The title
 compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($79 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.5,144.5,141.0,139.6,136.0,131.8,130.9,129.7,128.8$, 128.2, 126.9, 126.2, $115.8112 .3,110.0,102.8,58.3,55.6,52.9,26.9,21.5$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 525.2206$, found: 525.2221.
$\boldsymbol{N}, \mathrm{N}$-dibenzyl-2-(5-chloro-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ca): The title

compound was prepared according to the general H procedure A and purified by column chromatography to give a white solid ($81 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 12 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $144.9,141.7,139.5,135.8,135.5,131.1,129.9,129.2,128.8,128.2,126.9,126.2,123.9$, $119.7,115.9,109.0,58.4,52.7,26.9,21.5$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ [M+H]: 529.1711, found: 529.1726.
N, N-dibenzyl-2-(7-chloro-1-tosyl-1H-indol-2-yl)ethan-1-amine (3da): The title compound was prepared according to the general procedure A
 and purified by column chromatography to give a white solid ($91 \mathrm{mg}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 12 \mathrm{H})$, 7.12-7.10 (m, 2H), $6.12(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H), 2.28 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,141.7,139.5,135.8,135.5$, 131.1, 129.9, 129.2, 128.8, 128.3, 127.0, 126.2, 123.9, 119.7, 115.9, 109.0, 58.4, 52.6, 26.9, 21.6. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ [M+H]: 529.1711, found: 529.1727.
N, N-dibenzyl-2-(5-fluoro-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ea): The title
 compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($106 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (q, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 10 \mathrm{H})$, 7.12 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.16(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,158,6$,
$144.8,142.0,139.5,135.8,133.4,131.0,130.9,129.9,128.8,128.2,126.9,126.2,116.0$, $115.9,111.7,111.4,109.6,109.6,105.8,105.5,58.4,52.7,26.9,21.6 .{ }^{19}$ F NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.98$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 513.2007$, found: 513.2000 .

2-(2-(dibenzylamino)ethyl)-1-tosyl-1 \boldsymbol{H}-indole-6-carbonitrile (3fa): The title
 compound was prepared according to the general procedure A and purified by column chromatography to give a white solid. ($84 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.48(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.32 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5,144.1,139.3,136.0,135.5,133.1$, $130.1,129.9,128.8,127.0,126.7,126.3,120.9,120.0,119.0,109.2,106.6,58.5,52.4$, 26.8, 21.6. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 520.2053$, found: 520.2045.
N, N-dibenzyl-2-(4,6-dimethyl-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ga): The title
 compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($121 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (s , $1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 3.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4$, 139.7, 138.7, 137.4, 136.4, 133.8, 129.8, 129.0, 128.8, 128.2, 127.0, 126.8, 126.2, 125.5, 112.6, 108.0, 58.3, 52.8, 26.8, 22.0, 21.5, 18.4. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 523.2414, found: 523.2409.
N, N-dibenzyl-2-(4,6-dichloro-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ha): The title
 compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($138 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.20$
$(\mathrm{m}, 11 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 3.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J$
$=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.4,141.5,139.4,137.5$, 135.6, 130.1, 129.7, 128.8, 128.3, 127.2, 127.0, 126.3, 125.6, 123.7, 113.7, 107.3, 58.5, 52.5, 26.8, 21.6. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 563.1321, found: 563.1322 .
N, N-dibenzyl-2-(3-methyl-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ia): The title

3ia compound was prepared according to the general procedure A and purified by column chromatography to give a white solid (109 mg , 86% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 6 \mathrm{H})$, 7.23-7.19 (m, 3H), 7.10-7.08 (m, 2H), 3.72 (s, 4H), $3.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,134.0$, 136.6, 136.1, 135.2, 131.4, 129.7, 128.7, 128.2, 126.8, 126.2, 124.1, 123.3, 118.3, 117.6, 115.2, 58.4, 53.7, 24.9, 21.5, 8.7. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 509.2257$, found: 509.2267.

N,N-dibenzyl-2-(5-methoxy-3-methyl-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ja): The

3ja title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($117 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.37 (m, 4H), 7.29-7.18 (m, 6H), 7.08-7.06 (m, 2H), 6.86-6.83 (m, 1H), $6.73(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 4 \mathrm{H}), 3.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 156.6, 144.2, 134.0, 136.2, $135.9,132.6,131.2,129.6,128.7,128.2,126.8,126.2,117.8,116.2,112.3,101.3,58.4$, 55.6, 53.7, 25.0, 21.5, 8.9. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 539.2363$, found: 539.2379 .
N, N-dibenzyl-2-(5-chloro-3-methyl-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ka): The

3ka title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($110 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}$, 8H), 7.11-7.09 (m, 2H), 3.70 (s, 4H), 3.15 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.29(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.7$, 139.9, 136.9, 135.8, 134.9, 132.8, 129.8, 129.2, 128.7, 128.2, 126.8, 126.2, 124.1, 118.1, 117.1, 116.2, 58.4, 53.6, 25.0, 21.6, 8.7. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 543.1868$, found: 543.1882 .
(2-(2-(dibenzylamino)ethyl)-1-tosyl-1H-indol-3-yl)methanol (3la): The title compound

3la was prepared according to the general procedure A and purified by column chromatography to give a white solid ($73 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.05-8.02 (m, 1 H), 7.55-7.53 (m, 1H), 7.47-7.45 (m, 2H), 7.28-7.24 (m, 6H), 7.14-7.11 (m, 6H), 7.09-7.07 (m, 2H), 4.49 ($\mathrm{s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 2.95(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.6,137.5,137.4$, $136.6,136.1,129.8,129.5,128.2,127.2,126.1,124.3,123.6,122.5,118.5,115.1,60.1$, 53.9, 52.2, 25.7, 21.5. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 525.2206$, found: 525.2221.
(2-(2-(dibenzylamino)ethyl)-1-tosyl- $\mathbf{H} \boldsymbol{H}$-indol-3-yl)methyl acetate (3ma): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid (79 mg , 56% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.29-7.19 (m, 8H), 7.13-7.11 (m, 2H), $4.98(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 3.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8$, $144.8,139.9,139.3,136.0,136.0,129.9,129.5,128.7,128.3,126.9,126.3,124.5,123.7$, 118.7, 116.2, 115.0, 58.3, 56.6, 54.7, 24.7, 21.6, 20.9. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 567.2312$, found: 567.2339.
(2-(2-(dibenzylamino)ethyl)-1-tosyl-1H-indol-3-yl)methyl pivalate (3na): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($100 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 4 \mathrm{H})$,

3na 7.28-7.20 (m, 8H), 7.11-7.09 (m, 2H), $4.97(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H})$, 3.33 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,144.7,139.8$, $139.2,136.6,135.9,129.8,128.7,128.2,126.9,126.2,124.4$, 123.8, 118.8, 117.0, 115.2, 58.3, 56.8, 54.7, 38.8, 27.1, 24.6, 21.5. HRMS (ESI) calcd. for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 609.2782$, found: 609.2798 .

N,N-dibenzyl-2-(1-(methylsulfonyl)-1H-indol-2-yl)ethan-1-am ine (3oa): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($84 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.94-7.91 (m, 1H), 7.47-7.45 (m, 1H), 7.34-7.33 (m, 4H), 7.27-7.18 (m, 8H), $6.35(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 4 \mathrm{H}), 3.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}{ }^{1} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2,139.6,136.7,129.8,128.8,128.2,126.9,124.0$, 123.6, 120.3, 114.1, 109.6, 58.4, 53.0, 40.2, 26.7. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ [M+H]: 419.1788, found: 419.1807.
N, N-dibenzyl-2-(1-((4-nitrophenyl)sulfonyl)-1H-indol-2-yl)ethan-1-amine (3pa):

The title compound was prepared according to the general procedure A and purified by column chromatography to give a yellow solid ($82 \mathrm{mg} 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.13-8.08 (m, 3H), $7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 13 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}$, $1 \mathrm{H}), 3.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $150.4,143.9,139.9,139.5,136.9,130.1,128.8,128.3,127.4,127.0,124.5,124.4,124.4$, $120.5,114.8,111.3,58.6,52.9,27.2$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 526.1795, found: 526.1787.
(1R,4R)-1-(((2-(2-(dibenzylamino)ethyl)-1H-indol-1-yl)sulfonyl)methyl)-7,7-dimethyl bicyclo[2.2.1]heptan-2-one (3qa): The title compound was prepared according to the general procedure A and purified by column chromatography to give a yellow solid (108 $\mathrm{mg} 78 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H})$,

7.35-7.33 (m, 4H), 7.30-7.18 (m, 8H), $6.31(\mathrm{~s}, 1 \mathrm{H}), 3.72\left(\mathrm{dd}, J_{l}=\right.$ $\left.18.0 \mathrm{~Hz}, J_{2}=14.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.40(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.38\left(\mathrm{dt}, J_{1}=\right.$ $\left.18.4 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=18.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.0,140.3,139.7,136.8,129.7,128.8$, $128.4,128.2,126.8,124.0,123.5,120.3,114.2,109.2,58.4,58.2,52.8,50.0,47.9,42.9$, 42.5, 26.9, 26.5, 25.3, 20.0, 19.8. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 555.2676$, found: 555.2669.
(E)-N,N-dibenzyl-2-(4,4-dimethyl-1-tosylpyrrolidin-2-ylidene)ethan-1-amine (3sa):

The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($19 \mathrm{mg}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.72 ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.28 (m, 8H), 7.25-7.23 (m, 2H), $7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 4 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $143.8,140.2,139.8,134.6,129.4,128.7,128.2,127.5,126.8,104.1,62.8,57.6,51.7,43.1$, 34.8, 25.8, 21.5. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 475.2414$, found: 419.2410 .
(E)-N,N-dibenzyl-2-(2-tosyl-2-azaspiro[4.5]decan-3-ylidene)ethan-1-amine (3ta): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($27 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28$ $(\mathrm{m}, 8 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 1.43-1.21(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, $140.1,139.8,134.7,129.4,128.7,128.2,127.4,126.8,104.0,60.7,57.7,51.7,40.5,38.4$, 35.0, 25.9, 23.0, 21.4. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 515.2727$, found: 515.2724.

Figure S2: X-ray structure of 3ta
N, N-dibenzyl-2-(4,4-diphenyl-1-tosyl-4,5-dihydro-1H-pyrrol-2-yl)ethan-1-amine

$3 u a$
(3ua): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($28 \mathrm{mg}, 38 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 10 \mathrm{H})$, 7.17-7.14 (m, 6H), $7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H})$, $3.57(\mathrm{~s}, 4 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8$, $143.5,141.3,139.6,134.5,129.6,129.0,128.3,128.2,127.3,127.1,126.9,126.2,117.7$, 63.7, 58.3, 56.2, 51.5, 26.5, 21.5. HRMS (ESI) calcd. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]$: 621.2546, found: 621.2546.

Figure S3: X-ray structure of 3ua

2-(3-methyl-1-tosyl-1H-indol-2-yl)-N,N-bis(4-(trifluoromethyl)benzyl)ethan-1-amine

 (3ib): The title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($132 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}$, $10 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $4 \mathrm{H}), 3.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,143.9,136.6,135.8$, 134.7, 131.4, 129.7, $129.3(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}), 128.8,127.3,125.2(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.3$, $124.3(\mathrm{q}, ~ J=270.2 \mathrm{~Hz}), 123.6,118.4,118.0,115.3,58.2,54.1,24.8,21.5,8.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.28$ (s, 6F); HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 645.2005, found: 645.2032.
N, N-bis(4-chlorobenzyl)-2-(3-methyl-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ic): The
 title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($140 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 11 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, $4 \mathrm{H}), 3.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 144.4,138.2,136.6,135.9,134.9,132.5,131.4,129.9,129.7$, 128.3, 126.1, 124.2, 123.5, 118.3, 117.8, 115.2, 57.7, 53.8, 24.8, 21.5, 8.9. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 577.1478, found: 577.1503.
 title compound was prepared according to the general

3id procedure A and purified by column chromatography to give a white solid ($83 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 6 \mathrm{H})$, 7.33-7.03 (m, 9H), $3.86(\mathrm{~s}, 4 \mathrm{H}), 3.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.4, 138.7, 136.7, 136.1, 134.9, 132.6, 131.4, 130.3, 129.7, 128.2, 127.3, 126.2, 124.2, 124.1,
123.4, 118.3, 117.8, 115.2, 57.9, 54.3, 24.5, 21.5, 8.9. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 665.0468, found: 665.0496.
N, N-bis(2-chlorobenzyl)-2-(3-methyl-1-tosyl-1H-indol-2-yl)ethan-1-amine (3ie): The
 title compound was prepared according to the general procedure A and purified by column chromatography to give a white solid ($82 \mathrm{mg}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 4 \mathrm{H})$, 7.32-7.20 (m, 5H), 7.15-7.09 (m, 6H), 3.87 (s, 4H), 3.24 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 144.4,137.2,136.7,136.1,134.9,133.9,131.4,130.2,129.7,129.3,127.9$, 126.6, 126.2, 124.1, 123.4, 118.3, 117.8, 115.2, 55.4, 54.3, 24.6, 21.5, 8.8. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 577.1478, found: 577.1491.
N-butyl-N-(2-(3-methyl-1-tosyl-1H-indol-2-yl)ethyl)butan-1-amine (3if): The title

compound was prepared according to the general procedure B and purified by column chromatography to give a white solid ($66 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.13 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,136.6,136.1,135.5,131.5,129.7,126.2,124.1,123.4,118.3$, 117.4, 115.1, 56.0, 53.8, 29.5, 24.2, 21.5, 20.8, 14.2, 9.0. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 441.2566$, found: 441.2570 .
N-(2-(3-methyl-1-tosyl-1H-indol-2-yl)ethyl)-N-propylpropan-1-amine (3ig): The title

3ig compound was prepared according to the general procedure B and purified by column chromatography to give a white solid ($56 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=$
$7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $1.56-1.47(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4,136.6$, $136.1,135.5,131.5,129.7,126.2,124.1,123.4,118.3,117.3,115.1,56.1,54.0,24.2,21.5$, 20.5, 12.0, 9.0. HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$ [M+Na]: 435.2061, found: 435.2077.

4-(2-(3-methyl-1-tosyl-1H-indol-2-yl)ethyl)morpholine (3ih): The title compound was

3ih prepared according to the general procedure B and purified by column chromatography to give a white solid (70 mg , 70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.21 (m, 2H), $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.21(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.5,136.6,136.0,134.5,131.4,129.8,126.2,124.3,123.5$, 118.5, 117.8, 115.1, 67.1, 58.8, 53.6, 23.9, 21.6, 9.0. HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 399.1737$, found: 399.1737.

5. General procedure for the synthetic transformation of 2-(2-aminoethyl)indoles

Synthesis of product 7

The mixture of $\operatorname{Pd}(\mathrm{BINAP}) \mathrm{Cl}_{2}(1 \mathrm{~mol} \%)$, $\operatorname{AgOTf}(2 \mathrm{~mol} \%)$ and toluene $(30 \mathrm{~mL})$ were added into a 250 mL Schlenk flask under nitrogen. Then the substrates $\mathbf{1 a}(2.87 \mathrm{~g}, 10$ $\mathrm{mmol})$ and $\mathbf{2 a}(8.12 \mathrm{~g}, 20 \mathrm{mmol})$ were added. The resulting mixture was stirred at $90{ }^{\circ} \mathrm{C}$ under N_{2} for 36 h . The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1$ to $15: 1)$ on a silica gel to give the desired product $\mathbf{3 a a}(3.53 \mathrm{~g}, 71 \%)$ as a white solid.

To a flame dried 250 mL Schlenk flask was added 3aa ($3.85 \mathrm{~g}, 7.79 \mathrm{mmol}$), EtOH (50 $\mathrm{mL})$ and $\mathrm{KOH}(4.36 \mathrm{~g}, 77.9 \mathrm{mmol})$ sequentially under nitrogen, then reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. After the reaction completed as monitored by TLC, the solvent was evaporated under reduced pressure and the residue was washed with water $(20 \mathrm{~mL})$, and extracted with EA ($10 \mathrm{~mL} \times 3$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduce pressure to give the desired product 4 as yellow oil ($2.64 \mathrm{~g}, 99 \%$ yield $).{ }^{3}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 2.96(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 138.9,138.7,135.8,129.2,128.6,128.5,127.3,120.8,119.7$, 119.4, 110.5, 99.5, 58.5, 52.8, 25.4. HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]: 341.2012$, found: 341.2020 .

To a flame dried 250 mL Schlenk flask was added 4 ($2.64 \mathrm{~g}, 7.79 \mathrm{mmol}$), DMF (25 mL), and $\mathrm{NaH}(338 \mathrm{mg}, 14.1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ sequentially under nitrogen. After the reaction mixture was stirred for one hour at room temperature, $\mathrm{MeI}(1.21 \mathrm{~g}, 8.5 \mathrm{mmol})$ was added into the mixture, and the resulting mixture was stirred overnight. After the reaction completed as monitored by TLC, brine (30 mL) was added into the reaction mixture to quench the reaction. The resulting mixture was extracted with $\mathrm{EA}(15 \mathrm{~mL} \times 3)$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, concentrated under reduced pressure. Purification by flash column chromatography on silica gels $(\mathrm{PE} / \mathrm{EA}=50: 1$ to 15:1) gave the desired product 5 as a pale white solid ($2.45 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.14-7.02$ (m, 2H), 6.17 (s, 1H), $3.67(\mathrm{~s}, 4 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 139.6,139.0,137.3,128.8,128.3,127.8,127.0$,
120.6, 119.7, 119.2, 108.8, 99.4, 58.6, 52.6, 29.2, 25.2. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2}$ [M+H]: 355.2169, found: 355.2174.

To a flame dried 50 mL round flask was added 5 ($1.2 \mathrm{~g}, 3.39 \mathrm{mmol}$), EtOH (20 mL) and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \% \mathrm{wt}, 240 \mathrm{mg})$ sequentially at open air, then the 50 mL round flask was placed into an autoclave. The autoclave was purged and charged with H_{2} (5 atm). The reaction mixture was stirred at room temperature for 24 hours. After the reaction completed as monitored by TLC, the reaction mixture was filtrated through a short column of silica gel (200-300 mesh, eluent: $20 \mathrm{~mL} \times 3$ of MeOH) and the solvent was evaporated under reduced pressure to give colorless oil without further purification. ${ }^{4}$ To a flame dried 50 mL Schlenk flask was added the crude product, DCM (10 mL), NEt_{3} (376 $\mathrm{mg}, 3.73 \mathrm{mmol}$) and phenyl chloroformate ($531 \mathrm{mg}, 3.39 \mathrm{mmol}$) sequentially at room temperature, and the reaction mixture was stirred overnight. After the reaction completed as monitored by TLC, brine (30 mL) was added into the reaction mixture and the resulting mixture was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Purification by flash column chromatography on silica gels ($\mathrm{PE} / \mathrm{EA}=10: 1$ to $2: 1$) gave the desired product 6 as a white solid ($504 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $5.25(\mathrm{br}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,151.0,137.6,137.2,129.4,127.7,125.4,121.6,121.2,120.0$, 119.6, 109.1, 99.9, 40.2, 29.6, 27.2. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]:$ 317.1260 , found: 317.1272 .

To a flame dried 25 mL Young-type tube was added $6(294 \mathrm{mg}, 1.0 \mathrm{mmol})$, toluene (5 $\mathrm{mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(170 \mathrm{mg}, 1.2 \mathrm{mmol})$ slowly under nitrogen atmosphere, the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ overnight. Then the reaction was quenched with saturated NaHCO_{3} solution (10 mL) and the resulting mixture was stirred until the solid was disappeared. The resulting mixture was extracted with $\operatorname{DCM}(10 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, concentrated under reduced pressure. Purification by flash column chromatography on silica gels $(E A / M e O H=200: 1$ to $50: 1$)
gave the desired product 7 as a white solid ($188 \mathrm{mg}, 94 \%$ yield). ${ }^{5}{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 8.20-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9$, 144.6, 137.3, 125.4, 122.4, 121.9, 121.0, 109.2, 105.5, 40.6, 29.9, 21.9. HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]: 223.0842$, found: 223.0838.

Synthesis of product 10

The mixture of $\operatorname{Pd}(\mathrm{BINAP}) \mathrm{Cl}_{2}(1 \mathrm{~mol} \%)$, $\operatorname{AgOTf}(2 \mathrm{~mol} \%)$ and toluene $(30 \mathrm{~mL})$ were added into a 250 mL Schlenk flask under nitrogen. Then the substrates $\mathbf{1 h}(3.01 \mathrm{~g}, 10$ $\mathrm{mmol})$ and $\mathbf{2 a}(8.12 \mathrm{~g}, 20 \mathrm{mmol})$ were added. The resulting mixture was stirred at $90{ }^{\circ} \mathrm{C}$ under N_{2} for 36 h . The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1$ to $15: 1)$ on a silica gel to give the desired product 3ha ($3.55 \mathrm{~g}, 70 \%$ yield) as a white solid.

To a flame dried 250 mL Schlenk flask was added 3ha (3.0 g, 5.9 mmol), EtOH (30 $\mathrm{mL})$ and $\mathrm{KOH}(3.3 \mathrm{~g}, 59.0 \mathrm{mmol})$ sequentially under nitrogen, then the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. After the reaction completed as monitored by TLC, the solvent was evaporated under reduced pressure and the residue was washed with water $(10 \mathrm{~mL})$ and extracted with EA $(10 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and concentrated under reduce pressure. Purification by flash chromatography on silica gels $(\mathrm{PE} / \mathrm{EA}=50: 1$ to $15: 1)$ directly gave the desired product $\mathbf{8}$
as colorless oil $(1.96 \mathrm{~g}, 94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{br}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.19$ (m, 11H), 7.12-7.03 (m, 2H), 3.65 (s, 4H), 2.93 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.82(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,135.1,134.2$, 129.2, 129.0, 128.5, 127.3, 120.7, 118.7, 117.9, 110.3, 106.4, 58.4, 52.5, 23.0, 8.4. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]: 355.2169$, found: 355.2182.

To a flame dried 50 mL round flask was added $\mathbf{8}(1.8 \mathrm{~g}, 5.08 \mathrm{mmol})$, EtOH (20 mL) and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \% \mathrm{wt}, 360 \mathrm{mg})$ sequentially at open air, then the 50 mL round flask was placed into an autoclave, and the autoclave was purged and charged with $\mathrm{H}_{2}(5 \mathrm{~atm})$. The reaction mixture was stirred at room temperature about 24 hours. After the reaction completed as monitored by TLC, the reaction mixture was filtrated through a short column of silica gel (200-300 mesh, eluent: $20 \mathrm{~mL} \times 3$ of MeOH) and the solvent was removed under reduced pressure to give colorless oil without further purification. ${ }^{4}$ To a flame dried 50 mL Schlenk flask was added the crude product, DCM (15 mL), NEt_{3} (513 $\mathrm{mg}, 5.08 \mathrm{mmol}$) and phenyl chloroformate ($795 \mathrm{mg}, 5.08 \mathrm{mmol}$) sequentially at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred overnight. After the reaction completed as monitored by TLC, the reaction was quenched with brine (30 mL) and the resulting mixture was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Purification by flash column chromatography on silica gels $(\mathrm{PE} / \mathrm{EA}=10: 1$ to $2: 1$) gave the desired product 9 as a white solid ($1.31 \mathrm{~g}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.58$ $(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $154.9,150.9,135.5,131.2,129.4,129.2,125.5,121.6,119.3,118.3,110.5,108.6,40.8$, 26.8, 8.6. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ [M+Na]: 317.1260, found: 317.1272.

To a flame dried 50 mL Schlenk flask was added 9 ($490 \mathrm{mg}, 1.67 \mathrm{mmol}$), toluene (10 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(230 \mathrm{mg}, 1.67 \mathrm{mmol})$ sequentially under nitrogen, the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ overnight. After the reaction completed as monitored by TLC, the crude product was purified by flash chromatography on silica gels $(\mathrm{PE} / \mathrm{EA}=5: 1$ to $1: 1$) directly to give the desired product $10\left(332 \mathrm{mg}, 99.6 \%\right.$ yield) as a pale white solid. ${ }^{61} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21$
$(\mathrm{m}, 2 \mathrm{H}), 6.21(\mathrm{br}, 1 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 152.6,135.0,130.4,130.1,123.7,122.4,118.0,115.1,110.7$, 39.4, 21.3, 8.4. HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]: 223.0842$, found: 223.0842.

General procedure for the synthesis of intermediate 3aa' and 3sa'

The mixture of N-(3-chloro-1-phenylbut-3-en-1-yl)toluenesulfonamide ($82 \mathrm{mg}, 0.3$ mmol), $\mathrm{CuI}(11 \mathrm{mg}, 0.06 \mathrm{mmol}), N, N$ 'dimethylethylenediamie ($13 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($196 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dioxane (10 mL) was refluxed for 2 h under nitrogen atmosphere. The resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated in vacuo and the crude product 3sa' was essentially pure. Purification by flash column chromatography on basic alumina (PE/EA $=15: 1$ to $4: 1$) gave the desired product 3aa' as a white solid (70 mg , 99% yield). ${ }^{7}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.5,143.8,134.8,129.4,127.4,90.4,63.2,47.0,34.8,25.5$, 21.6.

The mixture of 3sa' ($66 \mathrm{mg}, 0.25 \mathrm{mmol}$), aminal 2a ($101 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added into a Young-type tube under nitrogen. Then toluene (1 mL) was added into the reaction mixture. The resulting mixture was stirred at $90{ }^{\circ} \mathrm{C}$ under N_{2} for 12 h . The solvent was evaporated under reduced pressure and the residue was purified by flash column
chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1$ to $15: 1)$ on a silica gel to give the desired product $\mathbf{3 s a}$ ($60.4 \mathrm{mg}, 51 \%$ yield).

References

1. (a) Heaney, H.; Papageorgiou, G.; Wilkins, R. F. Tetrahedron., 1997, 53, 2941; (b) T. Rosenau, A. Potthast and P. Kosma, Tetrahedron., 2004, 60, 301; (c) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804.
2. (a) Liwosz, T. W.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 2020; (b) Brucelle F.; Renaud P. J. Org. Chem. 2013, 78, 6245.
3. Zhu, C.; Ma, S.; Org. Lett., 2013, 15, 2782.
4. Li, L.; Liu, P.; Su, Y.; Huang, H.; Org. Lett., 2016, 18, 5736.
5. Wehle, S.; Espargaró, A.; Sabaté, R.; Decker, M.; Tetrahedron, 2016, 72, 2535.
6. Kato, M.; Nishino, S.; Ito, K.; Yamakuni, H.; Takasugi, H.; Chem, Pharm. Bull. 1994, 42, 2556.
7. Lu, H.; Yuan, X.; Zhu, S.; Sun, C.; Li, C. J. Org. Chem. 2008, 73, 8665.
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of the staring materials and products

LLX-X160816-2-HNMR

LLX-X160816-2-CNMR

1d

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

ZXB-X170617-1-H

ZXB-X170617-1-C

LLX-X160816-1-CNMR

$1 i$

LLX-X160411-1-HNMR (16)

LLX-X160411-1-CNMR (17)

LLX-X160425-1-HNMR (19)

LLX-X16X08-3-H

LLX-X16X09-1-CNMR

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

ON CDCl3 \{E:\data\} ROO

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \text { ppm }\end{array}$

LLX-X160726-1-HNMR

1n

LLX-X160726-1-CNMR

ZXB-X170614-H

ZXB-X170614-3-C

LLX-X15Z02-1-HNMR

LLX-X15Z08-1-CNMR

$3 a \mathrm{a}$

LLX-X16X17-3-H


```
    LLX-X16X17-3-C
```


LLX-X160406-1-HNMR (13)

LLX-X160406-1-CNMR (14)

LLX-X160829-4-CNMR

ZXB-X170620-2-H

3ea

ZXB-X170620-2-F

ZXB-X170618-1-H

3fa

ZXB-X170618-1-C

3fa

LLX-X160829-3-HNMR

LLX-X160829-3-CNMR

LLX-X16X12-1-HNMR

LLX-X16X12-1-CNMR

LLX-X16Y09-2-CNMR

LLX-X160829-1-HNMR

LLX-X160829-1-CNMR

LLX-X160829-2-HNMR

LLX-X160829-2-CNMR

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

LLX-X160818-1-HNMR

LLX-X160818-1-CNMR

LLX-X160818-2-HNMR

LLX-X160818-2-CNMR

LLX-X160818-3-HNMR

LLX-X160818-3-CNMR

LLX-X16Y14-1-HNMR

LLX-X16Y14-1-CNMR

XB-X170616-1-3-

LLX-X170327-1-HNMR

LLX-170328-1-CNMR

LLX-X170405-1-H

LLX-X160901-3-HNMR

LLX-X160901-3-CNMR

LLX-X160831-2-HNMR

LLX-X160831-2-CNMR

	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40

[ON CDCl3 \{E:\data\} ROC

C13CPD CDCl3 \{E:\data\} ROOT 7

[ON CDCl3 \{E: \data\} ROC

C13CPD CDCl3 \{E: \data\} ROOT 8

$\begin{array}{llllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

LLX-X170602-1-H

S-100

LLX-X170602-1-C

S-102

LLX-X170526-1-C

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$

LLX-X170518-1-H

S-104

LLX-X170518-1-C

in

3ih

S-106

LLX-X170410-1-CNMR

[^0]LLX-X160922-1-H

LLX-X160922-1-C

llx-X16X24-1-HNMR

11x-X16X24-1-CNMR

LLX-X16X26-1-HNMR

LLX-X16X26-2-CNMR

LLX-X16Y07-3-H

LLX-X16Y07-4-C

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

LLX-X16X10-1-CNMR

LLX-X16Y29-1-HNMR


```
LLX-X16Y30-1-C
```


9

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\right)$

LLX-X16YZ01-1-H


```
LLX-X16Z01-1-C
```


10

[^0]: $\begin{array}{lllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

