### Supporting Information

### **Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reaction**

### between Unactivated C(sp<sup>2</sup>)-H and C(sp<sup>3</sup>)-H Bonds

Qun Li,<sup>†</sup> Weipeng Hu,<sup>†</sup> Renjian Hu,<sup>†</sup> Hongjian Lu<sup>\*,†</sup> and Guigen Li<sup>\*,†,‡</sup>

<sup>†</sup>Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing, 210023, China <sup>‡</sup>Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409-1061, USA hongjianlu@nju.edu.cn, guigenli@nju.edu.cn

### **Table of Contents**

| Scheme S1 ·····S2                                                              |
|--------------------------------------------------------------------------------|
| General Information S3                                                         |
| Preparation of Starting Materials                                              |
| General Procedure for Cross-Dehydrogenative Coupling Reaction between Aromatic |
| Carboxamides 1 and Alkyl Sources 2······S4                                     |
| Radical Trapping Experiment S33                                                |
| Intermolecular Competition Experiment······S34                                 |
| H/D Scrambling Experiment S35                                                  |
| KIE Experimet······S36                                                         |
| Synthesis of <b>6a</b> in 1.0 mmol scale·····S38                               |
| References······S39                                                            |
| <sup>1</sup> H and <sup>13</sup> CNMR Spectra S40                              |

### Scheme S1. Mechanistic studies

| 1a                                  | +    | c-C <sub>6</sub> H <sub>12</sub><br>(cyclohexane)                       | TEMPO (4.0 equiv)<br>Co(acac) <sub>2</sub> (20 mol %)<br>DTBP (4.0 equiv)<br>140 °C, 12 h, Ar                                                                                | c-C <sub>6</sub> H <sub>11</sub> -O-N + 3a<br>not<br>7, 72% observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eq S1 |
|-------------------------------------|------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1a                                  | +    | c-C <sub>6</sub> H <sub>12</sub><br>or c-C <sub>6</sub> D <sub>12</sub> | $\frac{\text{Co}(\text{acac})_2 (20 \text{ mol }\%)}{\text{DTBP } (4.0 \text{ equiv})}$ $140 ^{\circ}\text{C, Ar}$ $k_{\text{H}}/k_{\text{D}}=2.1$ (from parall experiments) | Me O<br>N<br>H<br>$c-C_6H_{11}/c-C_6D_{11}$<br>3a or $D_{11}$ -3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eq S2 |
| 1f/1g                               | +    | c-C <sub>6</sub> H <sub>12</sub>                                        | <u>Co(acac)<sub>2</sub> (20 mol %)</u><br>DTBP (4.0 equiv)<br>140 °C, 2 h, Ar                                                                                                | OMe/F <sub>3</sub> C<br>C-C <sub>6</sub> H <sub>11</sub><br>3f (22%)/3g (9%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eq S3 |
| <b>D<sub>5</sub>-1i</b><br>(>99% D) | +    | c-C <sub>6</sub> H <sub>12</sub>                                        | Co(acac) <sub>2</sub> (20 mol %)<br>DTBP (4.0 equiv)<br>140 °C, 2 h, Ar                                                                                                      | $\begin{array}{c} \mathbf{D}(\mathbf{H}) & \mathbf{O} \\ \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{O} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | eq S4 |
| 1i or D <sub>5</sub> -              | 1i - | + c-C <sub>6</sub> H <sub>12</sub>                                      | <u>Co(acac)<sub>2</sub> (20 mol %</u> )<br>DTBP (4.0 equiv)<br>140 °C, Ar<br><b>k<sub>H</sub>/k<sub>D</sub> =1.0</b><br>(from parall experiments                             | $H_4/D_4 \xrightarrow[-C_6]{U} PIP$<br>3i or $D_4$ -3i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eq S5 |

### **General Information**

Unless otherwise noted, the reagents were purchased from commercial sources and were used directly without further purification. 2-(Pyridin-2-yl)isopropyl amine (PIP-NH<sub>2</sub>) was synthesized according to the known method.<sup>1</sup> Thin layer chromatography (TLC) was measured on EMD preloaded plates (silica gel 60 F254) and was visualized under UV light (254 nm). Column chromatography was performed with silica gel (200-300 mesh). <sup>1</sup>H NMR and <sup>13</sup>C NMR was recorded on Bruker DPX 400 MHz spectrometer. Chemical shifts ( $\delta$ ) were reported in ppm referenced to tetramethylsilane (TMS) as internal standard. Abbreviations were used to describe signal couplings: s = singlet, d = doublet, t = triplet, q= quartet, m = multiplet, dd = doublet of doublet, td = triplet of doublet, ddd = doublet of doublet. Coupling constants (J) were reported in hertz (Hz). Infrared (IR) spectras were recorded on a ThermoFisher Nicolet iS5 spectrophotometer and reported as wave number (cm<sup>-1</sup>). High resolution mass spectra were obtained on Agilent 6540 Series Q-TOF equipped with ESI.

### **Preparation of Starting Materials**



Compound  $1a^2_{,2} 1b^2_{,2} 1c^3_{,3} 1d^5_{,5} 1e^4_{,4} 1f^2_{,2} 1g^2_{,2} 1h^2_{,2} 1i^2_{,2} 1k^5_{,5} 1l^2_{,2} 1m^3_{,3} 1n^5_{,5} 1o^4$  and D<sub>5</sub>-1i<sup>5</sup> were known compounds and prepared according the literature procedure.

## General Procedure for Cross-Dehydrogenative Coupling Reaction

### between Aromatic Carboxamides 1 and Alkyl Sources 2



Reaction condition A: A 25 mL oven-dried Schlenk tube was charged with a stir bar,

amide 1 (0.2 mmol), Co(acac)<sub>2</sub> (0.04 mmol, 10.3 mg). After the tube was evacuated and filled with Ar, alkyl sources 2 (1.0 mL) and DTBP (0.8 mmol, 117.0 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (2.0 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (CH<sub>2</sub>Cl<sub>2</sub> or hexane/EtOAc) to give the desired product.

**Reaction condition B:** A 25 mL oven-dried Schlenk tube was charged with a stir bar, amide 1 (0.2 mmol),  $Co(acac)_2$  (0.04 mmol, 10.3 mg). After the tube was evacuated and filled with Ar, alkyl sources 2 (4.0 mmol), DTBP (0.8 mmol, 117.0 mg) and benzene (1.0 mL) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (2.0 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (CH<sub>2</sub>Cl<sub>2</sub> or hexane/EtOAc) to give the desired product.

#### 2-Cyclohexyl-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3a)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3a** (52.4 mg, 78%) as a white solid (m.p. 115–116 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (d, J = 4.2 Hz, 1H), 8.03 (s, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.27–7.16 (m, 2H), 7.14 (d, J = 7.8 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 2.75 (t, J = 11.6 Hz, 1H), 2.37 (s, 3H), 1.93–1.89 (m, 8H), 1.81–1.64 (m, 3H), 1.47–1.39 (m, 2H), 1.33–1.19 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 164.3, 147.4, 144.2, 138.1, 137.2, 134.1, 128.4, 127.5, 123.5, 121.9, 119.5, 57.0, 41.2, 34.5, 27.4, 27.0, 26.2, 19.3. IR (neat) v 3328, 2926, 2850, 1659, 1501, 1471, 1379, 1298, 889, 786, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 337.2280, found: 337.2276.

#### 2-Cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)-6-(trifluoromethyl)benzamide (3b)



The general procedure was followed with **1b** (61.7 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3b** (66.5 mg, 85%) as a white solid (m.p. 135–136 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 4.3 Hz, 1H), 8.25 (s, 1H), 7.75 (t, J = 7.3 Hz, 1H), 7.59–7.37 (m, 4H),

7.23–7.15 (m, 1H), 2.86 (t, J = 11.7 Hz, 1H), 1.98–1.87 (m, 8H), 1.84–1.75 (m, 2H), 1.73–1.66 (m, 1H), 1.50–1.37 (m, 2H), 1.34–1.21 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.0, 164.1, 147.4, 146.4, 137.2, 135.7, 130.2, 128.7, 126.8 (q, J = 31.0 Hz), 124.1 (q, J = 274.3 Hz), 123.5 (q, J = 5.0 Hz), 121.9, 119.5, 57.3, 40.8, 35.0, 34.1, 27.1, 27.0, 26.8, 26.7, 26.0. IR (neat) v 3322, 2928, 2853, 1667, 1506, 1473, 1318, 1127, 1100, 888, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>26</sub>F<sub>3</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 391.1997, found: 391.1995.

#### 2-Chloro-6-cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3c)



The general procedure was followed with **1c** (55.0 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3c** (57.7 mg, 81%) as a white solid (m.p. 118–119 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, J = 4.5 Hz, 1H), 8.11 (s, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.33–7.13 (m, 4H), 2.77 (t, J = 11.7 Hz, 1H), 2.02–1.87 (m, 8H), 1.78 (d, J = 10.5 Hz, 2H), 1.70 (d, J = 8.7 Hz, 1H), 1.52–1.35 (m, 2H), 1.34–1.14 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 164.1, 147.5, 146.9, 137.2, 137.1, 130.5, 129.6, 126.8, 124.7, 121.9, 119.5, 57.3, 41.5, 34.5, 27.4, 26.9(2), 26.9, 26.1. IR (neat) v 3320, 2926, 2851, 1664, 1503, 1472, 1299, 1116, 887, 786, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>26</sub>ClN<sub>2</sub>O (M+H)<sup>+</sup>: 357.1734, found: 357.1732.

#### 2-Bromo-6-cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3d)



The general procedure was followed with **1d** (63.8 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3d** (51.4 mg, 64%) as a white solid (m.p. 104–105 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.6 Hz, 1H), 8.09 (s, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.27–7.25 (m, 1H), 7.22–7.14 (m, 2H), 2.78 (t, J = 11.7 Hz, 1H), 2.01–1.88 (m, 8H), 1.78 (d, J = 9.7 Hz, 2H), 1.69 (d, J = 7.1 Hz, 1H), 1.50–1.34 (m, 2H), 1.28–1.19 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.9, 164.1, 147.4, 147.0, 139.0, 137.2, 129.9, 129.8(9), 125.2, 122.0, 119.5, 119.5(3), 57.3, 41.7, 35.0, 34.2, 27.3, 26.9, 26.1. IR (neat) v 3323, 2927, 2851, 1666, 1503, 1472, 1380, 1298, 886, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>26</sub>BrN<sub>2</sub>O (M+H)<sup>+</sup>: 401.1229, found: 401.1225.

#### 2-Cyclohexyl-6-methoxy-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3e)



The general procedure was followed with **1e** (54.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **3e** (33.4 mg, 47%) as a white solid (m.p. 108–109 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, *J* = 4.3 Hz, 1H), 7.80–7.64 (m, 2H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.33–7.23 (m, 1H), 7.20–7.12 (m, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 3.81 (s, 3H), 2.77 (t, *J* = 11.7 Hz, 1H), 1.92–1.89 (m, 8H), 1.77 (d, *J* = 11.6 Hz, 2H), 1.69 (d, *J* = 9.6 Hz, 1H), 1.47–1.38 (m, 2H), 1.35–1.19 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.2, 164.5, 155.9, 147.6, 146.4, 137.0, 129.4, 127.6, 121.7, 119.6, 118.5, 108.4, 57.3, 55.9, 41.0, 34.4, 27.7, 26.9, 26.2. IR (neat) v 3338, 2926, 2851, 1660, 1502, 1470, 1261, 1084, 889, 787, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 353.2229, found: 353.2225.

#### 2-Cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)-5-(trifluoromethyl)benzamide (3f)



The general procedure was followed with **1f** (61.7 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3f** (50.9 mg, 65%) as a white solid (m.p. 134–135 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (d, J = 3.2 Hz, 1H), 8.22 (s, 1H), 7.76 (t, J = 7.2 Hz, 1H), 7.65 (s, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.46 (t, J = 7.9 Hz, 2H), 7.25–7.15 (m, 1H), 3.04 (t, J = 11.6 Hz, 1H), 1.95–1.91 (m, 8H), 1.80 (d, J = 10.7 Hz, 2H), 1.72 (d, J = 8.5 Hz, 1H), 1.49–1.31 (m, 2H), 1.38–1.20 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.0, 149.2, 147.5, 138.3, 137.3, 127.1, 127.9 (q, J = 32.7 Hz), 126.0 (q, J = 3.6 Hz), 124.0 (q, J = 272.0 Hz), 123.8 (q, J = 3.7 Hz), 122.1, 119.5, 57.2, 40.6, 34.3, 27.4, 26.8, 26.0. IR (neat) v 3308, 2929, 2853, 1650, 1507, 1449, 1337, 1125, 833, 786, 747 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>26</sub>F<sub>3</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 391.1997, found: 391.1995.

## 2,6-Dicyclohexyl-*N*-(2-(pyridin-2-yl)propan-2-yl)-3-(trifluoromethyl)benzamide (3f')



The general procedure was followed with **1f** (61.7 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3f'** (17.4 mg, 18%) as a white solid (m.p. 60–61 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 4.4 Hz, 1H), 8.36 (s, 1H), 7.77 (td, J = 7.9, 1.8 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 6.8 Hz, 1H), 7.22 (dd, J = 7.4, 4.9 Hz, 1H), 3.11 (t, J = 11.9 Hz, 1H), 2.84 (t, J = 11.5 Hz, 1H), 2.24–1.97 (m, 8H), 1.88–1.63 (m, 10H), 1.48–1.13 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.7, 163.9, 149.9, 147.4, 142.6, 138.9, 137.3, 126.5, 126.4, 125.0 (q, J = 273.9 Hz), 124.2, 122.0, 119.5, 57.4, 42.3, 40.6, 34.7, 34.3, 32.7, 32.1, 27.6, 27.5, 27.2, 26.9, 26.8, 26.6, 26.1, 26.0. IR (neat) v 3326, 2926, 2852, 1661, 1499, 1448, 1312, 1118, 830, 785, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>28</sub>H<sub>36</sub>F<sub>3</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 473.2780, found: 473.2783.

#### 2-Cyclohexyl-5-methoxy-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3g)



The general procedure was followed with **1g** (54.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3g** (28.9 mg, 41%) as a white solid (m.p. 92–93 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.06 (s, 1H), 7.79–7.70 (m, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.5 Hz, 1H), 7.20 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H), 7.00–6.86 (m, 2H), 3.82 (s, 3H), 2.94 (tt, J = 11.8, 3.2 Hz, 1H), 1.96–1.87 (m, 8H), 1.79 (d, J = 12.0 Hz, 2H), 1.71 (d, J = 10.0 Hz, 1H), 1.48–1.40 (m, 2H), 1.36–1.24 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 164.3, 157.2, 147.6, 138.7, 137.2, 137.1, 127.6, 121.9, 119.4, 115.3, 112.0, 57.1, 55.4, 39.8, 34.8, 27.5, 27.0, 26.2. IR (neat) v 3335, 2925, 2850, 1660, 1506, 1472, 1287, 1042, 996, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 353.2229, found: 353.2229.

#### 2,6-Dicyclohexyl-3-methoxy-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3g')



The general procedure was followed with **1g** (54.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3g'** (32.7 mg, 38%) as a white solid (m.p. 74–75 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (dd, J = 4.8, 0.7 Hz, 1H), 8.00 (s, 1H), 7.75 (td, J = 7.9, 1.8 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.19 (ddd, J = 7.4, 4.9, 0.8 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 6.88 (d, J = 8.6 Hz, 1H), 3.82 (s, 3H), 2.79 (t, J = 11.8 Hz, 1H), 2.70 (tt, J = 11.6, 3.0 Hz, 1H), 2.21–

2.08 (m, 2H), 2.01–1.86 (m, 8H), 1.83–1.65 (m, 8H), 1.49–1.15 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.2, 164.4, 156.6, 147.5, 139.0, 137.0, 136. 5, 131.1, 124.4, 121.8, 119.4, 111.8, 57.0, 55.3, 42.4, 40.6, 35.4, 34.4, 30.6, 30.0, 27.4, 27.3, 27.2(5), 27.0, 26.2, 26.2. IR (neat) v 3336, 2925, 2850, 1659, 1499, 1472, 1259, 1069, 996, 785, 747 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>28</sub>H<sub>39</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 435.3012, found: 435.3013.

#### 2-Cyclohexyl-5-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3h)



The general procedure was followed with **1h** (50.9 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3h** (29.6 mg, 44%) as a white solid (m.p. 116–117 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.4 Hz, 1H), 7.96 (s, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.23–7.14 (m, 4H), 2.99–2.85 (m, 1H), 2.33 (s, 3H), 1.93–1.89 (m, 8H), 1.77 (d, J = 11.8 Hz, 2H), 1.69 (d, J = 9.9 Hz, 1H), 1.46–1.37 (m, 2H), 1.34–1.20 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.9, 164.4, 147.6, 142.1, 137.7, 137.1, 135.1, 130.1, 127.4, 126.4, 121.9, 119.5, 57.1, 40.1, 34.6, 27.5, 27.0, 26.2, 20.9. IR (neat) v 3335, 2925, 2851, 1659, 1504, 1472, 1446, 1309, 893, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 337.2280, found: 337.2279.

#### 2, 6-Dicyclohexyl-3-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3h')



The general procedure was followed with **1h** (50.9 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3h'** (27.8 mg, 33%) as a white solid (m.p. 155–156 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (d, J = 3.7 Hz, 1H), 8.04 (s, 1H), 7.71 (t, J = 7.4 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.17–7.13 (m, 1H), 7.10–7.05 (s, 2H), 2.93 (t, J = 11.1 Hz, 1H), 2.71 (t, J = 9.9 Hz, 1H), 2.46 (s, 3H), 2.05–1.62 (m, 18H), 1.47–1.02 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.1, 164.4, 147.5, 142.0, 140.5, 138.9, 137.1, 133.9, 132.3, 123.7, 121.9, 119.5, 57.1, 43.9, 41.1, 35.1, 34.4, 31.1, 30.7, 27.6, 27.4, 27.3, 27.2, 27.0, 26.3, 26.2, 21.7. IR (neat) v 3336, 2926, 2851, 1656, 1498, 1471, 1447, 1378, 817, 786, 753 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>28</sub>H<sub>39</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 419.3062, found: 419.3060.

#### 2-Cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3i)



The general procedure was followed with **1i** (48.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3i** (12.9 mg, 20%) as a white solid (m.p. 120–121 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.2 Hz, 1H), 8.02 (s, 1H), 7.74 (td, J = 7.9, 1.6 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 7.3 Hz, 1H), 7.38–7.32 (m, 2H), 7.23–7.16 (m, 2H), 3.01 (tt, J = 11.8, 3.1 Hz, 1H), 1.97–1.86 (m, 8H), 1.82–1.75 (m, 2H), 1.70 (d, J = 10.6 Hz, 1H), 1.50–1.38 (m, 2H), 1.37–1.20 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.8, 164.4, 147.6, 145.2, 137.8, 137.1, 129.3, 126.8, 126.5, 125.5, 121.9, 119.5, 57.1, 40.4, 34.5, 27.5, 27.0, 26.2. IR (neat) v 3333, 2925, 2851, 1660, 1502, 1472, 1446, 1306, 1126, 884, 786, 751 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 323.2123, found: 323.2122.

#### 2, 6-Dicyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3i')



The general procedure was followed with **1i** (48.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3i'** (44.6 mg, 55%) as a white solid (m.p. 176–177 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (d, J = 4.4 Hz, 1H), 8.02 (s, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.19–7.14 (m, 3H), 2.74 (t, J = 11.7 Hz, 2H), 2.01–1.86 (m, 10H), 1.80–1.74 (m, 4H), 1.69 (d, J = 4.8 Hz, 2H), 1.49–1.36 (m, 4H), 1.35–1.19 (m, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.2, 164.3, 147.5, 144.1, 137.4, 137.1, 128.5, 123.6, 121.9, 119.5, 57.0, 41.3, 35.2, 34.2, 27.4, 27.2, 26.9, 26.2. IR (neat) v 3301, 2923, 2850, 1636, 1516, 1473, 1447, 1296, 1124, 910, 785, 757 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>27</sub>H<sub>37</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 405.2906, found: 405.2902.

#### 2-Cyclohexyl-4-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3j)



The general procedure was followed with 1j (50.9 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave 3j

(16.8 mg, 25%) as a white solid (m.p. 123–124 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.3 Hz, 1H), 7.96 (s, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 7.21–7.16 (m, 1H), 7.13 (s, 1H), 7.01 (d, J = 7.7 Hz, 1H), 3.06–2.97 (m, 1H), 2.36 (s, 3H), 1.93–1.89 (m, 8H), 1.78 (d, J = 12.2 Hz, 2H), 1.70 (d, J = 10.7 Hz, 1H), 1.49–1.38 (m, 2H), 1.36–1.22 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.9, 164.5, 147.5, 145.2, 139.1, 137.1, 135.1, 127.2, 126.9, 126.2, 121.8, 119.5, 57.0, 40.3, 34.5, 27.5, 27.0, 26.2, 21.5. IR (neat) v 3336, 2925, 2851, 1659, 1507, 1472, 1447, 1305, 880, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 337.2280, found: 337.2280.

#### 2, 6-Dicyclohexyl-4-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3j')



The general procedure was followed with **1j** (50.9 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3j'** (38.6 mg, 46%) as a white solid (m.p. 194–195 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.40 (d, J = 4.3 Hz, 1H), 7.94 (s, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.21–7.12 (m, 1H), 6.95 (s, 2H), 2.72 (t, J = 11.7 Hz, 2H), 2.34 (s, 3H), 1.92–1.87 (m, 10H), 1.79–1.74 (m, 4H), 1.68 (d, J = 4.3 Hz, 2H), 1.52–1.36 (m, 4H), 1.34–1.19 (m, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.4, 164.4, 147.5, 144.0, 137.9, 137.0, 134.8, 124.3, 121.8, 119.5, 57.0, 41.2, 35.1, 34.2, 27.4, 27.2, 26.9, 26.2, 21.7. IR (neat) v 3335, 2925, 2851, 1657, 1501, 1471, 1447, 1379, 881, 786, 751 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. For C<sub>28</sub>H<sub>39</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 419.3062, found: 419.3061.

#### 2-Cyclohexyl-4-fluoro-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3k)



The general procedure was followed with **1k** (51.7 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3k** (23.1 mg, 34%) as a white solid (m.p. 126–127 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (d, J = 4.3 Hz, 1H), 8.08 (s, 1H), 7.73 (td, J = 8.0, 1.4 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.39 (dd, J = 8.3, 6.1 Hz, 1H), 7.19 (dd, J = 6.8, 5.2 Hz, 1H), 7.01 (dd, J = 10.7, 2.3 Hz, 1H), 6.88 (td, J = 8.3, 2.4 Hz, 1H), 3.06 (t, J = 10.3 Hz, 1H), 1.97–1.86 (m, 8H), 1.79 (d, J = 11.0 Hz, 2H), 1.70 (d, J = 10.9 Hz, 1H), 1.43–1.19 (m, 5H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.9, 164.3, 163.4 (d, J = 247.3 Hz), 148.46 (d, J = 7.1 Hz), 147.6, 137.1, 133.9 (d, J = 3.0 Hz), 128.8 (d, J = 8.6 Hz), 121.9, 119.4, 113.4 (d,

J = 21.6 Hz), 112.4 (d, J = 21.6 Hz), 57.1,  $\delta$  40.3 (d, J = 1.2 Hz), 34.4, 27.4, 26.8, 26.1. IR (neat) v 3323, 2927, 2852, 1652, 1589, 1507, 1472, 1380, 1157, 880, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>26</sub>FN<sub>2</sub>O (M+H)<sup>+</sup>: 341.2029, found: 341.2028.

#### 2, 6-Dicyclohexyl-4-fluoro-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3k')



The general procedure was followed with **1k** (51.7 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3k'** (34.2 mg, 40%) as a white solid (m.p. 183–184 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 4.3 Hz, 1H), 8.06 (s, 1H), 7.73 (t, J = 7.1 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.18 (dd, J = 6.8, 5.2 Hz, 1H), 6.82 (d, J = 10.2 Hz, 2H), 2.77 (t, J = 10.6 Hz, 2H), 1.92–1.88 (m, 10H), 1.81–1.64 (m, 6H), 1.43–1.19 (m, 10H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 164.2, 163.1 (d, J = 244.8 Hz), 147.5, 146.9 (d, J = 7.2 Hz), 137.1, 133.4 (d, J = 2.7 Hz), 121.9, 119.4, 110.4 (d, J = 21.6 Hz), 57.0, 41.3 (d, J = 1.5 Hz), 35.0, 34.1, 27.3, 27.0, 26.8, 26.1. IR (neat) v 3299, 2926, 2851, 1659, 1596, 1507, 1472, 1447, 1307, 857, 786, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>27</sub>H<sub>36</sub>FN<sub>2</sub>O (M+H)<sup>+</sup>: 423.2812, found: 423.2812.

#### 4-Cyano-2-cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (31)



The general procedure was followed with **11** (53.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **31** (22.3 mg, 32%) as a white solid (m.p. 181–182 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.8 Hz, 1H), 8.29 (s, 1H), 7.77 (td, J = 7.8, 1.7 Hz, 1H), 7.62 (s, 1H), 7.54–7.44 (m, 3H), 7.22 (dd, J = 7.4, 4.9 Hz, 1H), 3.01 (tt, J = 11.7, 3.0 Hz, 1H), 1.98–1.87 (m, 8H), 1.83–1.80 (m, 2H), 1.74–1.65 (m, 1H), 1.47–1.36 (m, 2H), 1.33–1.25 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.8, 163.8, 147.5, 146.5, 141.8, 137.4, 130.7, 129.4, 127.6, 122.1, 119.4, 118.8, 113.2, 57.2, 40.4, 34.3, 27.3, 26.7, 25.9. IR (neat) v 3308, 2927, 2852, 2230, 1651, 1507, 1472, 1449, 1310, 880, 786, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>26</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 348.2076, found: 348.2075.

#### 4-Cyano-2,6-dicyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3l')



The general procedure was followed with **11** (53.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **31'** (35.2 mg, 41%) as a white solid (m.p. 152–153 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 4.6 Hz, 1H), 8.25 (s, 1H), 7.76 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.43 (s, 2H), 7.21 (dd, J = 7.1, 5.2 Hz, 1H), 2.82–2.70 (m, 2H), 1.95–1.85 (m, 10H), 1.84–1.73 (m, 4H), 1.70 (d, J = 5.8 Hz, 2H), 1.46–1.17 (m, 10H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 163.8, 147.5, 145.5, 141.3, 137.3, 127.7, 122.1, 119.4, 119.3, 112.5, 57.2, 41.2, 35.0, 34.0, 27.3, 26.9, 26.7, 25.9. IR (neat) v 3321, 2928, 2852, 2229, 1661, 1506, 1448, 1381, 1302, 875, 787, 737 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>28</sub>H<sub>36</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 430.2858, found: 430.2855.

#### 2-Cyclohexyl-N-(2-(pyridin-2-yl)propan-2-yl)-1-naphthamide (3m)



The general procedure was followed with **1m** (58.1 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3m** (46.2 mg, 62%) as a white solid (m.p. 143–144 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (d, J = 4.3 Hz, 1H), 8.21 (s, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.86–7.77 (m, 2H), 7.74 (t, J = 7.5 Hz, 1H), 7.53–7.39 (m, 4H), 7.20–7.13 (m, 1H), 2.98 (t, J = 11.9 Hz, 1H), 2.06 (s, 3H), 2.00 (s, 3H), 1.94 (d, J = 12.0 Hz, 2H), 1.86–1.70 (m, 3H), 1.57 (dd, J = 22.2, 10.9 Hz, 2H), 1.40–1.20 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.9, 164.2, 147.5, 141.2, 137.2, 134.2, 131.9, 130.3, 128.7, 127.8, 126.6, 125.4, 125.3, 124.4, 121.9, 119.5, 57.3, 41.7, 34.6, 33.7, 27.7, 27.4, 27.0, 26.8, 26.2. IR (neat) v 3327, 2926, 2851, 1659, 1498, 1472, 1447, 1379, 1288, 817, 786, 747 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>25</sub>H<sub>29</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 373.2280, found: 373.2276.

# 3-Cyclohexyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzo[*b*]thiophene-2-carboxamide (3n)



The general procedure was followed with **1n** (59.3 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3n** (40.9 mg, 54%) as a white solid (m.p. 111–112 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (s, 1H), 8.49 (d, J = 4.2 Hz, 1H), 8.10–8.03 (m, 1H), 7.86–7.79 (m, 1H), 7.75 (td, J = 8.0, 1.6 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.39–7.32 (m, 2H), 7.21 (dd, J = 6.7, 5.0 Hz, 1H), 3.57 (tt, J = 12.4, 3.4 Hz, 1H), 2.21–2.07 (m, 2H), 1.98–1.84 (m, 10H), 1.76 (d, J = 9.4 Hz, 1H), 1.46–1.32 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.2, 163.5, 147.4, 141.8, 139.4, 139.1, 137.3, 133.3, 125.1, 124.7, 123.8, 122.8, 122.0, 119.5, 57.4, 39.5, 31.5, 27.5, 27.1, 26.2. IR (neat) v 3318, 2927, 2852, 1656, 1496, 1471, 1449, 1291, 786, 734 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>27</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 379.1844, found: 379.1841.

## 5-Chloro-3-cyclohexyl-*N*-(2-(pyridin-2-yl)propan-2-yl)thiophene-2-carboxamide (30)



The general procedure was followed with **10** (56.2 mg, 0.20 mmol) and cyclohexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **30** (41.7 mg, 57%) as a white solid (m.p. 109–110 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (s, 1H), 8.55–8.48 (m, 1H), 7.78 (td, J = 7.9, 1.8 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.25 (ddd, J = 7.4, 4.9, 0.8 Hz, 1H), 6.87 (s, 1H), 3.50–3.24 (m, 1H), 2.02–1.96 (m, 2H), 1.90–1.82 (m, 8H), 1.77–1.73 (m, 1H), 1.45–1.37 (m, 4H), 1.31–1.23 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.3, 161.3, 149.1, 147.4, 137.4, 132.4, 131.7, 127.1, 122.1, 119.5, 57.3, 38.5, 34.1, 27. 6, 26.6, 26.0. IR (neat) v 3335, 2927, 2852, 1648, 1498, 1472, 1450, 1297, 997, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>19</sub>H<sub>23</sub>ClN<sub>2</sub>OS (M+H)<sup>+</sup>: 363.1298, found: 363.1295.

#### 2-Cyclopentyl-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3p)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and cyclopentane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3p** (53.5 mg, 83%) as a white solid (m.p. 116–117 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, J = 4.2 Hz, 1H), 7.99 (s, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.25–7.15 (m, 3H), 7.02 (d, J = 7.2 Hz, 1H), 3.23–3.12 (m, 1H), 2.37 (s, 3H), 2.11–2.02 (m, 2H), 1.91 (s, 6H), 1.83–1.74 (m, 2H), 1.65–1.55 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 164.3, 147.5, 143.1, 138.7, 137.1, 134.0, 128.5, 127.4, 123.3, 121.9, 119.5, 57.1, 42.5, 35.6, 27.4, 25.9, 19.3. IR (neat) v 3331, 2953, 2867,

1660, 1501, 1471, 1447, 1379, 1298, 887, 786, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for  $C_{21}H_{27}N_2O$  (M+H)<sup>+</sup>: 323.2123, found: 323.2123.

2-Cycloheptyl-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3q)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and cycloheptane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3q** (56.0 mg, 80%) as a white solid (m.p. 112–113 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 1.6 Hz, 1H), 8.03 (s, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.23–7.16 (m, 2H), 7.12 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 7.2 Hz, 1H), 2.90 (t, J = 9.9 Hz, 1H), 2.36 (s, 3H), 1.98–1.88 (m, 8H), 1.75–1.35 (m, 10H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 164.3, 147.5, 146.3, 137.2, 137.1, 134.0, 128.5, 127.1, 123.6, 121.9, 119.5, 57.0, 42.9, 37.0, 27.8, 27. 6, 27.4, 19.3. IR (neat) v 3331, 2924, 2853, 1659, 1501, 1471, 1446, 1379, 1298, 887, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>31</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 351.2436, found: 351.2437.

2-Cyclooctyl-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (3r)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and cyclooctane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3r** (48.9 mg, 67%) as a white solid (m.p. 88–89 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 4.7 Hz, 1H), 8.11 (s, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.24–7.16 (m, 2H), 7.10 (d, J = 7.8 Hz, 1H), 7.00 (d, J = 7.4 Hz, 1H), 3.02 (t, J = 9.8 Hz, 1H), 2.36 (s, 3H), 1.94 (s, 6H), 1.91–1.83 (m, 2H), 1.81–1.68 (m, 4H), 1.66–1.44 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.4, 164.3, 147.5, 147.2, 137.3, 137.1, 133.9, 128.5, 127.1, 124.1, 12.9, 119.5, 57.0, 40.5, 35.8, 27.4, 26.6, 26.5, 26.3, 19.4. IR (neat) v 3333, 2921, 2852, 1659, 1500, 1471, 1445, 1379, 1298, 887, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>33</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 365.2593, found: 365.2593.

2-(Bicyclo[2.2.1]heptan-2-yl)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (3s)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and norbornane (914.0 mg). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3s** (43.8 mg, 63%, a mixture, C(1):C(2)=1:6, determined by <sup>1</sup>H NMR) as a white solid (m.p. 100–101 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (d, J = 4.6 Hz, 1H), 8.03 (s, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.24–7.11 (m, 3H), 7.06–7.00 (m, 1H), 3.44 (dd, J = 6.5, 4.5 Hz, 0.14H), 3.00–2.92 (m, 0.86H), 2.42–2.25 (m, 5H), 1.93 (s, 6H), 1.79–1.60 (m, 3H), 1.53–1.43 (m, 2H), 1.30–1.13 (m, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 164.3, 147.5, 143.9, 138.7, 137.1, 134.2, 128.2,127.6(4), 127.6, 127.3, 123.0, 121.9, 119.5, 57.0, 43.8, 43.7, 41.5, 40.1, 37.8, 36.8, 36.4, 30.8, 29.9, 28.7, 27.5, 27.3, 23.0, 19.3, 19.3. IR (neat) v 3332, 2953, 2869, 1659, 1501, 1471, 1448, 1298, 1205, 887, 786, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 349.2280, found: 349.2278.

#### 2-(Hexan-2-yl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (3t)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *n*-hexane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **3t** (56.8 mg, 84%, a mixture, C(1):C(2):C(3)=1:6:2, determined by <sup>1</sup>H NMR) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44–8.37 (m, 1H), 8.15–8.02 (m, 1H), 7.73 (td, J = 8.1, 1.6 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.26–7.21 (m, 1H), 7.19–7.15 (m, 1H), 7.13 (d, J = 7.8 Hz, 0.69H), 7.08 (d, J = 7.7 Hz, 0.31H), 7.06–7.00 (m, 1H), 3.00–2.91 (m, 0.67H), 2.80–2.71 (m, 0.27H), 2.70–2.64 (m, 0.11H), 2.38 (s, 3H), 1.93 (s, 6H), 1.73–1.47 (m, 2.62H), 1.33–1.06 (m, 5.88H), 0.85–0.73 (m, 3.67H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 169.2, 164.3, 147.4, 147.3(9), 144.4, 142.8, 139.4, 139.3, 138.5, 137.1, 134.3, 134.0, 133.9, 128.5, 128.4, 128.2, 127.5, 127.4, 127.3, 126.6, 123.2, 123.1, 121.9, 119.5, 119.4, 57.0(3), 57.0, 43.2, 39.2, 38.1, 36.0, 33.5, 32.0, 31.7, 30.2, 30.0, 29.5, 27.4, 27.3(8), 27.3, 23.0, 22.8, 22.5, 19.4, 19.3, 19.2, 14.4, 14.0, 12.3. IR (neat) v 3334, 2927, 2857, 1660, 1500, 1471, 1447, 1379, 1297, 887, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>31</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 339.2436, found: 339.2438.









2-Benzyl-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4a)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and toluene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4a** (54.6 mg, 79%) as a white solid (m.p. 123–124 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, J = 4.1 Hz, 1H), 7.94 (s, 1H), 7.74–7.66 (m, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.25–7.10 (m, 7H), 7.07 (d, J = 7.5 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 4.08 (s, 2H), 2.40 (s, 3H), 1.84 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 164.2, 147.5, 141.0, 138.7, 137.1(2), 137.1, 134.6, 129.1, 128.4, 128.3(7), 128.1, 127.5, 125.9, 121.9, 119.4, 57.1, 38.7, 27.3, 19.4. IR (neat) v 3325, 2975, 2924, 1659, 1501, 1471, 1380, 1299, 1204, 885, 786, 700 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 345.1967, found: 345.1965.

#### 2-Methyl-6-(2-methylbenzyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4b)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *o*-xylene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4b** (53.7 mg, 75%) as a white solid (m.p. 111–112 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.40 (d, J = 5.6 Hz, 1H), 7.91 (s, 1H), 7.69 (td, J = 8.0, 1.8 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.17–7.06 (m, 6H), 7.01 (dd, J = 8.1, 4.7 Hz, 1H), 6.75 (d, J = 7.6 Hz, 1H), 4.06 (s, 2H), 2.41 (s, 3H), 2.23 (s, 3H), 1.81 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 164.2, 147.5, 138.8(3), 138.8, 137.1, 136.7, 136.5, 134.5, 130.1, 129.7, 128.5, 128.0, 126.6, 126.3, 126.0, 121.9, 119.4, 57.0, 36.2, 27.3, 19.7, 19.3. IR (neat) v 3326, 2974, 2925, 1658, 1471, 1380, 1299, 1204, 886, 787, 741 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 359.2123, found: 359.2122.

#### 2-Methyl-6-(3-methylbenzyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4c)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *m*-xylene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4c** (47.5 mg, 66%) as a white solid (m.p. 105–106 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (d, J = 4.7 Hz, 1H), 7.99 (s, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.21–7.08 (m, 4H), 7.05–6.92 (m, 4H), 4.06 (s, 2H), 2.42 (s, 3H), 2.25 (s, 3H), 1.87 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 164.2, 147.5, 140.9, 138.7, 137.9, 137.2, 137.1, 134.6, 129.8, 128.4, 128.3, 128.0, 127.5, 126.7, 126.1, 121.9, 119.4, 57.1, 38.6, 27.3, 21.4, 19.4. IR (neat) v 3328, 2975, 2923, 1659, 1502, 1471, 1300, 1205, 887, 773, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 359.2123, found: 359.2121.

#### 2-Methyl-6-(4-methylbenzyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4d)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *p*-xylene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4d** (45.1 mg, 63%) as a white solid (m.p. 97–98 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, *J* = 4.4 Hz, 1H), 7.91 (s, 1H), 7.69 (td, *J* = 8.0, 1.4 Hz, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.16 (dd, *J* = 9.8, 5.3 Hz, 2H), 7.11–7.00 (m, 5H), 6.94 (d, *J* = 7.6 Hz, 1H), 4.03 (s, 2H), 2.39 (s, 3H), 2.25 (s, 3H), 1.85 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 164.2, 147.5, 138.6, 137.9, 137.4, 137.0, 135.3, 134.5, 129.0, 128.9, 128.4, 128.0, 127.4, 121.8, 119.4, 57.1, 38.2, 27.3, 21.0, 19.3. IR (neat) v 3326, 2975, 2923, 1659, 1501, 1471, 1300, 1204, 885, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 359.2123, found: 359.2123.

#### 2-(4-Fluorobenzyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4e)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *p*-fluorotoluene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4e** (51.4 mg, 71%) as a white solid (m.p. 143–144 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.37 (d, *J* = 4.1 Hz, 1H), 7.98 (s, 1H), 7.70 (td, *J* = 8.0, 1.8 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.20–7.11 (m, 4H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.91–6.84 (m, 2H), 4.02 (s, 2H), 2.39 (s, 3H), 1.85 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.9, 164.0, 161.3 (d, *J* = 243.6 Hz), 147.4, 138.7, 137.1, 137.0, 136.7 (d, *J* = 3.1 Hz), 134.7, 130.4 (d, *J* = 7.8 Hz), 128.5, 128.2, 127.4, 121.9, 119.4, 115.1 (d, *J* = 21.1 Hz), 57.0, 37.9, 27.3, 19.4. IR (neat) v 3304, 2987, 2923, 1643, 1530, 1506, 1473, 1307, 1224, 1158, 804, 770 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>24</sub>FN<sub>2</sub>O (M+H)<sup>+</sup>: 363.1873, found: 363.1870.

2-(4-Chlorobenzyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4f)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *p*-chlorotoluene (506.3 mg, 4.0 mmol). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **4f** (48.5 mg, 64%) as a white solid (m.p. 121–122 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.36 (d, *J* = 4.2 Hz, 1H), 8.00 (s, 1H), 7.70 (td, *J* = 7.9, 1.7 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.21–7.07 (m, 7H), 6.94 (d, *J* = 7.6 Hz, 1H), 4.02 (s, 2H), 2.40 (s, 3H), 1.85 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.9, 164.0, 147.4, 139.5, 138.7, 137.1, 136.5, 134.8, 131.7, 130.3, 128.5, 128.4, 128.3, 127.5, 121.9, 119.3, 57.0, 38.1, 27.3, 19.4. IR (neat) v 3324, 2975, 2925, 1656, 1492, 1471, 1301, 1091, 885, 786, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>24</sub>ClN<sub>2</sub>O (M+H)<sup>+</sup>: 379.1577, found: 379.1575.

#### 2-(4-Bromobenzyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (4g)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and *p*-bromotoluene (684.1 mg, 4.0 mmol). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **4g** (48.3 mg, 57%) as a white solid (m.p. 105–106 °C). <sup>1</sup>H

NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.36 (d, *J* = 4.2 Hz, 1H), 8.00 (s, 1H), 7.70 (td, *J* = 7.9, 1.7 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.21–7.15 (m, 2H), 7.10–7.05 (m, 3H), 6.94 (d, *J* = 7.6 Hz, 1H), 4.01 (s, 2H), 2.40 (s, 3H), 1.85 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.8, 164.0, 147. 5, 140.1, 138.7, 137.1, 136.4, 134.8, 131.4, 130.7, 128.5, 128.3, 127.5, 121.9, 119.8, 119.3, 57.0, 38.1, 27.3, 19.4. IR (neat) v 3324, 2975, 2925, 1658, 1503, 1471, 1301, 1070, 1011, 885, 786 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>24</sub>BrN<sub>2</sub>O (M+H)<sup>+</sup>: 423.1072, found: 423.1070.

# 2-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)-6-(4-(trifluoromethyl)benzyl)benzamid e (4h)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 4-Methylbenzotrifluoride (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4h** (49.7 mg, 60%) as a white solid (m.p. 149–150 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.34 (d, J = 2.5 Hz, 1H), 8.04 (s, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 7.7 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.17–7.09 (m, 2H), 6.96 (d, J = 7.5 Hz, 1H), 4.12 (s, 2H), 2.41 (s, 3H), 1.84 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.8, 163.9, 147.4, 145.2 (q, J = 1.3 Hz), 138.8, 137.2, 136.0, 134.9, 129.2, 128.6, 128.5, 128.2 (q, J = 32.3 Hz), 127.6, 125.2 (q, J = 3.8 Hz), 124.3 (q, J = 271.9 Hz), 122.0, 119.3, 57.0, 38.6, 27.3, 19.4. IR (neat) v 3312, 2977, 2926, 1656, 1503, 1472, 1326, 1162, 1123, 1067, 885, 787, 747 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>24</sub>F<sub>3</sub>N<sub>2</sub>O (M+H)<sup>+</sup>: 413.1841, found: 413.1837.

#### 2-Methyl-N-(2-(pyridin-2-yl)propan-2-yl)-6-(thiophen-2-ylmethyl)benzamide (4i)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 2-methylthiophene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:10) gave **4i** (43.4 mg, 62%) as a white solid (m.p. 109–110 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, J = 4.1 Hz, 1H), 7.91 (s, 1H), 7.70 (t, J = 7.2 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.24–7.13 (m, 2H), 7.11–7.04 (m, 3H), 6.86–6.82 (m, 1H), 6.79–6.75 (m, 1H), 4.23 (s, 2H), 2.39 (s, 3H), 1.86 (s, 6H). <sup>13</sup>C NMR (101

MHz, CDCl<sub>3</sub>)  $\delta$  168.7, 164.1, 147.5, 144.0, 138.2, 137.1, 136.5, 134.8, 128.6, 128.5, 127.2, 126.8, 125.4, 123.8, 121.9, 119.4, 57.1, 33.1, 27.3, 19.4. IR (neat) v 3320, 2974, 2924, 1657, 1503, 1472, 1299, 1203, 884, 787, 696 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 351.1531, found: 351.1529.

# 2-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)-6-(tetrahydrofuran-2-yl)benzamide (5a)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and THF (288.4 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5a** (45.4 mg, 70%) as as a white solid (m.p. 75–76 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (d, J = 4.5 Hz, 1H), 8.08 (s, 1H), 7.72 (t, J = 7.7 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.20–7.15 (m, 1H), 7.11 (d, J = 7.4 Hz, 1H), 5.08 (t, J = 7.2 Hz, 1H), 4.11 (dd, J = 14.3, 7.2 Hz, 1H), 3.89 (dd, J = 14.4, 7.3 Hz, 1H), 2.44–2.28 (m, 4H), 2.07–1.86 (m, 8H), 1.84–1.74 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.7, 164.1, 147.6, 140.5, 137.1, 136.7, 134.1, 128.9, 128.7, 122.6, 121.9, 119.4, 78.3, 68.9, 57.1, 35.3, 27.4, 27.3, 26.3, 19.2. IR (neat) v 3323, 2975, 2927, 1659, 1503, 1472, 1299, 1065, 887, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 325.1916, found: 325.1914.

# 2-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)-6-(tetrahydro-2*H*-pyran-2-yl)benzami de (5b)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and tetrahydro-2*H*-pyran (344.5 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5b** (48.7 mg, 72%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, *J* = 4.0 Hz, 1H), 8.04 (s, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.21–7.15 (m, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 4.53 (d, *J* = 10.4 Hz, 1H), 4.05 (d, *J* = 11.1 Hz, 1H), 3.55 (t, *J* = 11.5 Hz, 1H), 2.38 (s, 3H), 1.93–1.87 (m, 8H), 1.73–1.48 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 164.2, 147.7, 139.5, 137.0, 136.9, 134.2, 129.2, 128.7, 123.3, 121.9, 119.4, 77.7, 69.2, 57.1, 33.7, 27.5, 27.4, 25.9, 24.1, 19.3. IR (neat) v 3325, 2933, 2853, 1659, 1503, 1298, 1203, 1085, 1045, 887, 788 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 339.2073, found: 339.2072.

#### 2-(1,4-Dioxan-2-yl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (5c)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 1,4-dioxane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5c** (53.4 mg, 78%) as a white solid (m.p. 133–134 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, J = 4.5 Hz, 1H), 8.12 (s, 1H), 7.74 (t, J = 7.2 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.21–7.14 (m, 2H), 4.82 (dd, J = 10.0, 2.5 Hz, 1H), 4.02 (dd, J = 11.5, 2.5 Hz, 1H), 3.92–3.79 (m, 2H), 3.77–3.66 (m, 2H), 3.54–3.37 (m, 1H), 2.38 (s, 3H), 1.94 (s, 3H), 1.93 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.2, 164.0, 147.5, 137.5, 137.2, 134.9, 134.3, 129.9, 128.7, 124.0, 122.0, 119.4, 75.8, 72.5, 67.2, 66.3, 57.2, 27.5, 27.3, 19.2. IR (neat) v 3320, 2922, 2852, 1655, 1504, 1471, 1300, 913, 879, 786 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 341.1865, found: 341.1864.

# 2-(2,2-Dimethyl-1,3-dioxolan-4-yl)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benz amide (5d)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 2,2-dimethyl-1,3-dioxolane (408.5 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5d** (53.3 mg, 75%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, J = 4.7 Hz, 1H), 8.06 (s, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.19 (dd, J = 7.2, 5.0 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 5.30–5.25 (m, 1H), 4.36 (dd, J = 8.1, 6.5 Hz, 1H), 3.66 (t, J = 8.1 Hz, 1H), 2.39 (s, 3H), 1.91 (s, 6H), 1.56 (s, 3H), 1.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.0, 147.6, 137.2, 136.5, 134.0, 129.6, 128.9, 122.8, 122.0, 119.4, 109.3, 75.3, 72.2, 57.1, 27.5, 27.3, 26.4, 25.8, 19.2. IR (neat) v 3321, 2983, 2931, 1659, 1503, 1472, 1380, 1157, 864, 787 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 355.2022, found: 355.2019.

# 2-(2,3-Dihydrobenzofuran-2-yl)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benza mide (5e)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 2,3-Dihydrobenzofuran (480.6 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5e** (45.4 mg, 61%) as a white solid (m.p. 114–115 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (d, J = 4.3 Hz, 1H), 8.19 (s, 1H), 7.71 (t, J = 7.1 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.25 (dd, J = 12.8, 4.7 Hz, 1H), 7.19–7.09 (m, 4H), 6.84 (t, J = 7.6 Hz, 2H), 5.97 (t, J = 8.9 Hz, 1H), 3.62 (dd, J = 15.9, 9.5 Hz, 1H), 3.19 (dd, J = 15.9, 8.3 Hz, 1H), 2.42 (s, 3H), 1.90 (s, 3H), 1.89 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.0, 159.7, 147.6, 139.1, 137.2, 136.6, 134.4, 129.7, 129.0, 128.0, 126.8, 125.0, 122.7, 122.0, 120.7, 119. 5, 109.2, 81.7, 57.2, 39.2, 27.5, 27.3, 19.3. IR (neat) v 3316, 2975, 2926, 1658, 1595, 1504, 1479, 1302, 1232, 878, 787, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 373.1916, found: 373.1912.

### 2-(2,3-Dihydrobenzo[*b*][1,4]dioxin-2-yl)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl) )benzamide (5f)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 1,4-Benzodioxan (544.6 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5f** (45.2 mg, 58%) as a white solid (m.p. 84–85 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, J = 4.2 Hz, 1H), 8.14 (s, 1H), 7.69 (t, J = 7.3 Hz, 1H), 7.44–7.31 (m, 3H), 7.23 (d, J = 7.5 Hz, 1H), 7.19–7.13 (m, 1H), 6.96–6.80 (m, 4H), 5.33 (d, J = 7.4 Hz, 1H), 4.55 (dd, J = 11.2, 1.6 Hz, 1H), 3.97 (dd, J = 10.9, 9.3 Hz, 1H), 2.43 (s, 3H), 1.89 (s, 3H), 1.86 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 163.9, 147.6, 144.0, 143.2, 137.6, 137.2, 134.5, 133.3, 130.6, 129.0, 124.1, 122.0, 121.4, 121.3, 119.4, 117.4, 117.2, 72.9, 69.4, 57.3, 27.7, 27.1, 19.2. IR (neat) v 3310, 2976, 2924, 1655, 1592, 1494, 1264, 1070, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 389.1865, found: 389.1864.

#### 2-Methyl-6-(1-phenoxyethyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (5g)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and ethoxybenzene (488.7 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **5g** (57.6 mg, 77%) as a white solid (m.p. 110–111 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.7 Hz, 1H), 8.34 (s, 1H), 7.75 (td, J = 7.9, 1.7 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.25–7.18 (m, 2H), 7.15–7.09 (m, 3H), 6.95 (d, J = 8.0 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 5.57 (q, J = 6.3 Hz, 1H), 2.40 (s, 3H), 1.94 (s, 6H), 1.66 (d, J = 6.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.0, 157.7, 147.5, 140.1, 137.3, 136.5, 133.9, 129.3, 129.2, 129.1, 122.7, 122.1, 120.4, 119.5, 115.7, 72.6, 57.1, 27.4, 27.3, 24.7, 19.2. IR (neat) v 3324, 2976, 2928, 1656, 1597, 1497, 1236, 887, 788, 752 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 375.2073, found: 375.2070.

#### 2-Methyl-6-(phenoxymethyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (5h)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and anisole (1.0 mL). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **5h** (48.4 mg, 67%) as a white solid (m.p. 105–106 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, J = 4.3 Hz, 1H), 8.03 (s, 1H), 7.61 (td, J = 8.0, 1.3 Hz, 1H), 7.37–7.31 (m, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.20–7.11 (m, 4H), 6.89–6.85 (m, 3H), 5.08 (s, 2H), 2.40 (s, 3H), 1.76 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.1, 164.1, 158.6, 147.6, 138.0, 137.0, 135.0, 133.2, 130.2, 129.3, 128.8, 126.4, 121.9, 120.8, 119.4, 114.7, 67.7, 57.2, 27.4, 19.3. IR (neat) v 3317, 2925, 1655, 1598, 1497, 1301, 1238, 886, 786, 752 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23H25</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 361.1916, found: 361.1914.

#### 2-(1-Ethoxyethyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (5i)



The general procedure was followed with 1a (50.9 mg, 0.20 mmol) and diethyl ether

(296.5 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5i** (43.1 mg, 66%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (d, *J* = 4.4 Hz, 1H), 8.18 (s, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.22–7.17 (m, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 4.67 (q, *J* = 6.3 Hz, 1H), 3.35 (q, *J* = 6.8 Hz, 2H), 2.39 (s, 3H), 1.92 (s, 6H), 1.46 (d, *J* = 6.4 Hz, 3H), 1.13 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 164.1, 147.4, 141.1, 137.6, 137.2, 133.9, 129.0, 128.9, 123.0, 122.0, 119.5, 74.3, 64.0, 57.1, 27.4, 24.6, 19.1, 15.4. IR (neat) v 3326, 2974, 2928, 1659, 1502, 1472, 1299, 1106, 887, 788, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 327.2073, found: 327.2069.

2-(1-(2-Ethoxyethoxy)ethyl)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (5j)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 1,2-diethoxyethane (1.0)mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave 5j (26.7 mg, 36%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (d, J = 4.2 Hz, 1H), 8.15 (s, 1H), 7.74 (td, J = 7.9, 1.7 Hz, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.18 (dd, J = 7.0, 5.3 Hz, 1H), 7.12 (d, J = 7.4 Hz, 1H), 4.70 (q, J = 6.4 Hz, 1H), 3.54–3.38 (m, 6H), 2.38 (s, 3H), 1.92 (s, 3H), 1.91 (s, 3H), 1.48 (d, J = 6.4 Hz, 3H), 1.16 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 168.5, 164.1, 147.5, 140.7, 137.6, 137.2, 133.9, 129.0, 128.9, 123.2, 122.0, 119.4, 74.9, 69.8, 68.0, 66.4, 57.1, 27.4, 27.4, 24.6, 19.1, 15.1. IR (neat) v 3326, 2974, 2928, 1660, 1502, 1472, 1299, 1105, 887, 789, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 371.2335, found: 371.2334.

#### 2-(1,2-Diethoxyethyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (5j')



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 1,2-diethoxyethane (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5j'** (31.1 mg, 42%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, *J* = 4.3 Hz, 1H), 8.07 (s, 1H), 7.73 (td, *J* = 7.9, 1.7 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.36 (d, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0, 5.3 Hz, 1H), 7.14 (d, *J* = 7.4 Hz, 1H), 4.81 (dd, *J* = 7.6, 4.3 Hz, 1H), 3.70 (dd, *J* = 7.4 Hz, 1H), 7.86 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0, 5.3 Hz, 1H), 7.14 (dd, *J* = 7.4 Hz, 1H), 4.81 (dd, *J* = 7.6 Hz, 1H), 3.70 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.14 (dd, *J* = 7.4 Hz, 1H), 4.81 (dd, *J* = 7.6 Hz, 1H), 3.70 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.14 (dd, *J* = 7.4 Hz, 1H), 4.81 (dd, *J* = 7.6 Hz, 1H), 3.70 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.14 (dd, *J* = 7.4 Hz, 1H), 4.81 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.14 (dd, *J* = 7.4 Hz, 1H), 4.81 (dd, *J* = 7.6 Hz, 1H), 3.70 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.6 Hz, 1H), 7.18 (dd, *J* = 7.0 Hz, 1H), 7.18 (dd, J = 7.0

10.1, 7.9 Hz, 1H), 3.53 (dd, J = 10.4, 4.3 Hz, 1H), 3.49–3.36 (m, 4H), 2.38 (s, 3H), 1.91 (s, 3H), 1.90 (s, 3H), 1.14 (t, J = 7.0 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.3, 147.6, 138.3, 137.0, 136.8, 134.3, 129.5, 128.6, 123.9, 121.9, 119.5, 75.1, 66.5, 64.4, 57.2, 27.5, 19.2, 15.3, 15.0. IR (neat) v 3326, 2974, 2926, 1660, 1503, 1471, 1110, 887, 788, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 371.2335, found: 371.2333.

# 2-((2-Methoxyethoxy)methyl)-6-methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamid e (5k)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 1,2-dimethoxyethane (360.5 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5k** (24.0 mg, 35%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (d, J = 4.2 Hz, 1H), 8.03 (s, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.32–7.23 (m, 2H), 7.20–7.14 (m, 2H), 4.63 (s, 2H), 3.73–3.57 (m, 2H), 3.57–3.43 (m, 2H), 3.31 (s, 3H), 2.38 (s, 3H), 1.90 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.3, 147.7, 137.9, 137.0, 134.9, 134.4, 129.8, 128.6, 126.4, 121.9, 119.5, 71.9, 70.8, 69.3, 58.9, 57.2, 27.5, 19.3. IR (neat) v 3325, 2923, 1659, 1504, 1472, 1472, 1300, 1094, 886, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 343.2022, found: 343.2018.

#### 2-(1,2-Dimethoxyethyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (5k')



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and 1,2-dimethoxyethane (360.5 mg, 4.0 mmol) in benzene (1.0 mL). Purification by column chromatography (EtOAc/n-hexane 1:5) gave **5k'** (31.5 mg, 46%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (d, J = 4.3 Hz, 1H), 8.18 (s, 1H), 7.74 (td, J = 7.9, 1.8 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.36–7.28 (m, 2H), 7.23–7.13 (m, 2H), 4.72 (dd, J = 8.0, 3.7 Hz, 1H), 3.64 (dd, J = 10.1, 8.3 Hz, 1H), 3.51 (dd, J = 10.3, 3.7 Hz, 1H), 3.30 (s, 3H), 3.26 (s, 3H), 2.39 (s, 3H), 1.92 (s, 3H), 1.91 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.2, 164.2, 147.5, 138.5, 137.1, 135.6, 134.4, 129.8, 128.7, 123.9, 122.0, 119.5, 79.3, 77.1, 59.0, 57.2, 57.0, 27.4(4), 27.4, 19.2. IR (neat) v 3324, 2925, 1660, 1504, 1472, 1300, 1103, 887, 788, 750 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup>: 343.2022, found: 343.2019.

#### 2-(1-(Ethylthio)ethyl)-6-methyl-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (6a)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and diethyl sulfide (1.0 mL). Purification by column chromatography (EtOAc/hexane 1:10) gave **6a** (57.2 mg, 84%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (d, *J* = 4.4 Hz, 1H), 8.14 (s, 1H), 7.73 (td, *J* = 8.0, 1.5 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.28 (t, *J* = 7.7 Hz, 1H), 7.18 (dd, *J* = 6.9, 5.1 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 4.29 (q, *J* = 6.9 Hz, 1H), 2.54–2.25 (m, 5H), 1.92 (s, 3H), 1.92 (s, 3H), 1.55 (d, *J* = 7.0 Hz, 3H), 1.11 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 164.1, 147.5, 141.1, 137.8, 137.2, 134.0, 128.9, 128.5, 124.5, 122.0, 119.5, 57.2, 40.6, 27. 5, 27.4, 25.6, 23. 7, 19.3, 14.6. IR (neat) v 3326, 2970, 2867, 1660, 1501, 1471, 1447, 1379, 1296, 996, 886, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 343.1844, found: 343.1840.

# 2-Methyl-6-(1-(propylthio)propyl)-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (6b)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and propyl sulfide (1.0 mL). Purification by column chromatography (EtOAc/hexane 1:10) gave **6b** (60.5 mg, 82%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47–8.39 (m, 1H), 8.11 (s, 1H), 7.75 (td, J = 8.0, 1.8 Hz, 1H), 7.49–7.44 (m, 2H), 7.28 (t, J = 7.7 Hz, 1H), 7.19 (ddd, J = 7.4, 4.9, 0.9 Hz, 1H), 7.08 (d, J = 7.4 Hz, 1H), 4.03 (t, J = 7.3 Hz, 1H), 2.50–2.42 (m, 1H), 2.39 (s, 3H), 2.35–2.22 (m, 1H), 1.94 (s, 3H), 1.93 (s, 3H), 1.88 (dd, J = 14.7, 7.4 Hz, 2H), 1.55–1.33 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 164.1, 147. 5, 140.2, 138.5, 137.1, 133.8, 128.7, 128.4, 124.8, 122.0, 119.5, 57.1, 47. 9, 33.4, 30. 7, 27.5, 27.3, 22.9, 19.3, 13.5, 12.4. IR (neat) v 3334, 2963, 2871, 1660, 1500, 1471, 1432, 1379, 1295, 996, 886, 787, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>22</sub>H<sub>31</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 371.2157, found: 371.2143.

#### 2-Methyl-6-(1-(phenylthio)ethyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (6c)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and ethyl phenyl sulfide (4.0 mmol, 552.9 mg) in benzene (1.0 mL). Purification by column chromatography (EtOAc/hexane 1:10) gave **6c** (55.8 mg, 71%) as a viscous oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (d, *J* = 4.3 Hz, 1H), 7.91 (s, 1H), 7.74 (td, *J* = 7.9, 1.8 Hz, 1H), 7.49–7.45 (m, 2H), 7.36–7.31 (m, 2H), 7.27 (t, *J* = 7.7 Hz, 1H), 7.23–7.18 (m, 1H), 7.16–7.07 (m, 4H), 4.73 (q, *J* = 6.9 Hz, 1H), 2.39 (s, 3H), 1.90 (s, 3H), 1.89 (s, 3H), 1.64 (d, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 164.1, 147.6, 139.8, 137. 6, 137.1, 135. 6, 134.3, 131.6, 129.0, 128.8, 128.6, 126.7, 124.4, 121.9, 119.4, 57.2, 44.3, 27.6, 27.2, 23.5, 19.4. IR (neat) v 3325, 2925, 1658, 1506, 1472, 1379, 1296, 886, 787, 746, 691 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 391.1844, found: 391.1847.

#### 2-Methyl-6-((phenylthio)methyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (6d)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and thioanisole (1.0 mL). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **6d** (41.4 mg, 55%) as a white solid (m.p. 102–103 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (dd, *J* = 4.8, 0.7 Hz, 1H), 7.97 (s, 1H), 7.67 (td, *J* = 7.9, 1.8 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.30–7.26 (m, 2H), 7.23–7.09 (m, 7H), 4.24 (s, 2H), 2.39 (s, 3H), 1.86 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.2, 147.7, 138.3, 137.0, 136.7, 135.0, 133.4, 129.4, 129.3, 128.8, 128.5, 127.2, 126.2, 121.9, 119.4, 57.3, 36.4, 27.5, 19.4. IR (neat) v 3324, 2921, 2850, 1655, 1504, 1472, 1438, 1301, 787, 742, 690 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 377.1688, found: 377.1686.

#### 2-Methyl-6-((methylthio)methyl)-N-(2-(pyridin-2-yl)propan-2-yl)benzamide (6e)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and dimethyl sulfide (4.0 mmol, 284.5 mg) in benzene (1.0 mL). Purification by column chromatography (EtOAc/hexane 1:10) gave a mixture **1a+6e** (67% determine by <sup>1</sup>H NMR) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.49–8.46 (m, 1H), 8.00 (s, 1H), 7.73–7.69 (m, 1H), 7.51–7.46 (m, 1H), 7.24–7.22 (m, 2H), 7.19–7.16 (m, 1H), 7.11 (dd, *J* = 6.1, 2.4 Hz, 1H), 3.81 (s, 2H), 2.40 (s, 3H), 2.08 (s, 3H), 1.93 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.2, 147.7, 138.3, 137.0, 135.0, 134.7, 129.0, 128.4, 127.1, 121.9, 119.5, 57.3, 35.6, 27.5, 19.4, 15.5. IR (neat) v 3325, 2922, 2855, 1660, 1506, 1472, 1431, 1304, 995, 787, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>18</sub>H<sub>23</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 315.1531, found: 315.1528.

# 2-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)-6-(tetrahydrothiophen-2-yl)benzamide (6f)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and tetrahydrothiophene (1.0)mL). Purification by column chromatography (EtOAc/CH<sub>2</sub>Cl<sub>2</sub> 1:20) gave **6f** (50.4 mg, 74%) as a white solid (m.p. 139–140 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.3 Hz, 1H), 8.02 (s, 1H), 7.73 (td, J = 7.9, 1.8 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.28–7.24 (m, 1H), 7.18 (ddd, J = 7.4, 4.9, 0.8 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 4.74 (t, J = 7.2 Hz, 1H),3.19-3.09 (m, 1H), 3.00-2.93 (m, 1H), 2.47-2.40 (m, 1H), 2.37 (s, 3H), 2.29-2.19 (m, 1H), 1.96–1.86 (m, 8H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 168.8, 164.1, 147.6, 139.8, 138.3, 137.1, 134.0, 128.7, 128.6, 124.9, 121.9, 119.5, 57.2, 49.2, 41.1, 33.7, 31.3, 27.6, 27.3, 19.2. IR (neat) v 3320, 2927, 2858, 1656, 1502, 1471, 1380, 1297, 887, 787, 749 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>20</sub>H<sub>25</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 341.1688, found: 341.1684.

# 2-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)-6-(tetrahydro-2H-thiopyran-2-yl)benz amide (6g)



The general procedure was followed with **1a** (50.9 mg, 0.20 mmol) and thiane (4.0 mmol, 408.8 mg) in benzene (1.0 mL). Purification by column chromatography (EtOAc/hexane 1:10) gave **6g** (56.2 mg, 79%) as a white solid (m.p. 94–95 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.51 (d, J = 4.2 Hz, 1H), 7.86 (s, 1H), 7.74 (td, J = 7.9, 1.8 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.26 (t, J = 7.7 Hz, 1H), 7.19 (ddd, J = 7.4, 4.9, 0.9 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 4.15 (dd, J = 11.3, 2.2

Hz, 1H), 2.89 (t, J = 12.0 Hz, 1H), 2.64 (d, J = 13.4 Hz, 1H), 2.38 (s, 3H), 2.17 (dd, J = 13.0, 2.8 Hz, 1H), 2.07–1.88 (m, 9H), 1.76–1.63 (m, 1H), 1.53–1.38 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.3, 147.9, 139.1, 137.4, 136.8, 134.8, 129.1, 128.8, 124.6, 121.8, 119.5, 57.3, 44.3, 31.1, 27.9, 27.3, 27.2, 26.8, 19.4. IR (neat) v 3325, 2926, 2850, 1660, 1506, 1472, 1379, 1296, 886, 786, 748 cm<sup>-1</sup>. HRMS (ESI, m/z): calcd. for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>OS (M+H)<sup>+</sup>: 355.1844, found: 355.1848.

### **Radical Trapping Experiment**



A 25 mL oven-dried Schlenk tube was charged with a stir bar, amide **1a** (0.2 mmol, 50.9 mg), Co(acac)<sub>2</sub> (0.04 mmol, 10.2 mg) and TEMPO (0.8 mmol, 125.1 mg). After the tube was evacuated and filled with Ar, cyclohexane (1.0 mL) and DTBP (0.8 mmol, 117.0 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (2.0 mL), filtered through a celite pad, analyzed by GC-MS, and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/hexane 1:100, v/v) to afford compound **7** as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.65–3.51 (m, 1H), 2.13–2.02 (m, 2H), 1.80–1.70 (t, *J* = 8.1 Hz, 2H), 1.57–1.44 (m, 6H), 1.27–1.08 (m, 18H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  81.7, 59.6, 40.3, 34.5, 32.9, 26.0, 25.1, 20.3, 17.3.<sup>6</sup>



### **Intermolecular Competition Experiment**



A 25 mL oven-dried Schlenk tube was charged with a stir bar, benzamide **1f** (61.7 mg, 0.2 mmol), benzamide **1g** (54.1 mg, 0.2 mmol) and Co(acac)<sub>2</sub> (0.04 mmol, 10.3 mg). After the tube was evacuated and filled with Ar, cyclohexane (1.0 mL) and DTBP (0.8 mmol, 117.0 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for 2 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (2.0 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was analyzed by <sup>1</sup>H NMR in CDCl<sub>3</sub> using CH<sub>2</sub>Br<sub>2</sub> as internal standard.

### H/D scrambling experiment



A 25 mL oven-dried Schlenk tube was charged with a stir bar, D<sub>5</sub>-1i (49.1 mg, 0.2 mmol) and Co(acac)<sub>2</sub> (0.04 mmol, 10.3 mg). After the tube was evacuated and filled with Ar, cyclohexane (1.0 mL) and DTBP (0.8 mmol, 117.0 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for 2 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (2.0 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (gradient eluent of 20% EtOAc in CH<sub>2</sub>Cl<sub>2</sub>, v/v).



### **KIE Experiment**

#### **Parallel KIE Experiments**



A 25 mL oven-dried Schlenk tube was charged with a stir bar, **1i** (48.1 mg, 0.2 mmol) or D<sub>5</sub>-**1i** (49.1 mg, 0.2 mmol) and Co(acac)<sub>2</sub> (0.04 mmol, 10.3 mg). After the tube was evacuated and filled with Ar, cyclohexane (1.0 mL) and DTBP (0.8 mmol, 117.0 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for the indicated time. The reaction was stopped by rapid cooling, diluted with EtOAc (2.0 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was analyzed by <sup>1</sup>H NMR in CDCl<sub>3</sub> using CH<sub>2</sub>Br<sub>2</sub> as internal standard.

| Time (min)                           | 30 | 60 | 90 | 120 | 150 |
|--------------------------------------|----|----|----|-----|-----|
| Yield <b>3i</b> (%)                  | 8  | 21 | 28 | 31  | 41  |
| Yield D <sub>4</sub> - <b>3i</b> (%) | 7  | 19 | 26 | 30  | 38  |



Equation for **3i:** y = 0.2533x + 3  $R^2 = 0.9582$ Equation for D<sub>4</sub>-**3i:** y = 0.2433x + 2.1  $R^2 = 0.9689$  $k_{\rm H}/k_{\rm D} = 0.2533/0.2433 \approx 1.0$


A 25 mL oven-dried Schlenk tube was charged with a stir bar, **1a** (0.2 mmol, 50.9 mg) and Co(acac)<sub>2</sub> (0.04 mmol, 10.3 mg). After the tube was evacuated and filled with Ar, cyclohexane (1.0 mL) or cyclohexane- $d_{12}$  (1.0 mL) and DTBP (0.8 mmol, 117.0 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for the indicated time. The reaction was stopped by rapid cooling, diluted with EtOAc (2.0 mL), filtered through a celite pad, and concentrated under reduced pressure. The residue was analyzed by <sup>1</sup>H NMR in CDCl<sub>3</sub> using CH<sub>2</sub>Br<sub>2</sub> as internal standard.

| Time (min)                    | 30 | 60 | 90 | 120 | 150 |
|-------------------------------|----|----|----|-----|-----|
| Yield <b>3a</b> (%)           | 6  | 12 | 20 | 27  | 39  |
| Yield D <sub>11</sub> -3a (%) | 4  | 9  | 11 | 16  | 20  |



Equation for **3a**: y = 0.27x - 3.5  $R^2 = 0.984$ Equation for  $D_{11}$ -**3a**: y = 0.13x + 0.3  $R^2 = 0.9877$  $k_{\rm H}/k_{\rm D} = 0.27/0.13 \approx 2.1$ 

#### Synthesis of 6a in 1.0 mmol scale



A 50 mL oven-dried Schlenk tube was charged with a stir bar, amide **1a** (1.0 mmol, 254.3 mg),  $Co(acac)_2$  (0.2 mmol, 51.5 mg). After the tube was evacuated and filled with Ar, diethyl sulfide (5.0 mL) and DTBP (4.0 mmol, 584.9 mg) were injected into the tube by syringe. The tube was then stirred vigorously at 140 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10.0 mL), filtered through a celite pad, and concentrated under reduced pressure. Purification by column chromatography (EtOAc/hexane 1:10) gave **6a** (255.1 mg, 74%) as a colorless oil.

#### References

(1) Zhang, Q.; Chen, K.; Rao, W.-H.; Zhang, Y.; Chen, F.-J.; Shi, B.-F. Angew. Chem., Int. Ed. 2013, 52, 13588.

(2) Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. 2014, 16, 3904.

(3) Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-J.; Shi, B.-F. Chem. - Eur. J. 2015, 21, 205.

(4) Li, B.; Liu, B.; Shi, B.-F. Chem. Commun. 2015, 51, 5093.

(5) Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. 2014, 16, 5644.

(6) Cadot, C. P.; Dalko, I.; Cossy, J.; Ollivier, C.; Chuard, R; Renaud, P. J. Org. Chem. **2002**, *67*, 7193.

# <sup>1</sup>H and <sup>13</sup>C NMR Spectra





#### S41

# Compound 3b



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm) Compound 3c







#### Compound 3e





110 100 f1 (ppm) 140 130 120 Ó 

# Compound 3f



#### Compound 3f'



# Compound 3f'







#### Compound 3h



# Compound 3h'





Compound 3i'





Compound 3j'





# Compound 3k



#### Compound 3k'



# Compound 3k'





#### Compound 31

# Compound 3l'



#### Compound 3m

2.964 2.964 2.964 2.966 2.966 2.966 7.2.966 7.2.000 1.811 1.838 1.838 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.6158 1.



Ň.





S65



S66






















## Compound 4e



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1(ppm)







# Compound 4h



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)





### **Compound 5a**





## **Compound 5c**





### **Compound 5e**





















# Compound 5k



















