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Figure S1. The change of absorbance at 535 nm responsible for 

[PPN][MnII(TMSPS3)(DABCO)](2) upon addition of different equivalents of DABCO 

into the solution of [PPN]2[(MnII(TMSPS3))2] (1; 0.3 mM). 

 

Figure S2. Magnetic susceptibility plots of χM (open circles) and χMT (open squares) 

versus temperature for 4. The solid line is the best fit of the experimental data to the 

theoretical expression. 

 

Figure S3. Comparison of cyclic voltammograms of Li3
TMSPS3 (black line), 1 (red 

line) and 2 (blue line) measured in a 1 mM CH3CN solution with 0.1 M [n-Bu4N][PF6] 

as the supporting electrolyte at room temperature, scan rate 0.1 V/s.  

 

Figure S4. The 77 K EPR X-band spectra for 1 (orange; 0.6 mM) and 2 (purple; 0.6 

mM) frozen in CH3CN.The experimental parameters: microwave frequency = 9.54 

GHz, microwave power = 5 mW, modulation amplitude = 1.6 G.  

 

Figure S5. ESI-MS spectra of 1 in CH3CN. Some oxygenated fragments may be 

derived from oxygenation during the injection of solution of 1 into the instrument. 

Simulations for some major fragments are also presented.1 

 

Figure S6. Black line shows the UV−vis spectrum of [PPN]2[(MnIII(TMSPS3))2(µ-O)] 

(4) generated from the reaction of [PPN]2[(MnII(TMSPS3))2](1) (0.098 mM) and 

[PPN][MnIV(O2)(
TMSPS3)](3) (0.065 mM) based on eq : 3/2 1 + 3 � 2 4. Red line 

shows the UV−vis spectrum of 4 generated from reaction of 

[PPN][MnII(TMSPS3)(DABCO)] (2) (0.195 mM) and 3 (0.065 mM) based on eq : 3 2 

+ 3 � 2 4.  

 

Figure S7. Microcrystals of 2 were placed under dry O2 at ambient temperature for 30 

min. (a) Microcrystals of 2 appears to be a light-purple color. (b) The color change 

during oxidation of solid-state 2 with O2 is observed from light purple to dark 

red-purple. 

Figure S8. (a) Conversion of 2 to 3 monitored by ATR-FTIR spectroscopy after 

microcrystals of 2 were stood in open air at ambient temperature. The initial spectrum 

is labeled as black solid line. The measured interval between two curves is 3 min. (b) 

FTIR spectra of solid-state 2 upon treating 16O2 (red line) and 18O2 (black line). (c) a 
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difference spectrum between FTIR spectra of solid-state 2 upon treating 16O2 and 
18O2. 

Figure S9. The powder diffraction patterns of microcrystal 2 after exposed to O2 for 2 

h (black solid line) and microcrystal 3 (red line, acting as a standard). The powder 

X-ray diffraction (PXRD) data were performed at the wiggler beamline BL17A at 

National Synchrotron Radiation Research Center (NSRRC), Taiwan. The 

experimental wavelength of the X-ray source is 1.3216 Å. Silicon powder was used as 

the calibrant and the refined sample-to-detector distance is 251 mm. Samples were 

ground firstly and packed into a 1.0 mm glass capillary and measured at room 

temperature. 

Figure S10. Black line shows the UV−vis spectrum obtained from reaction of 

[PPN][MnII(TMSPS3)(DABCO)] (2) (0.2 mM) and excess amounts O2 (purging into 

the solution) in CH3CN at ambient temperature. UVvis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (8%, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(63 %, blue line) are calculated for best fit to the experiment data (black line). 

Figure S11. Black line shows the UV−vis spectrum obtained from reaction of 

[PPN][MnII(TMSPS3)(DABCO)] (2) (0.2 mM) and excess amounts O2 (layered above 

the solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (25 %, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(37 %, blue line) are calculated for the best fit with experiment data (black line). 

 

Figure S12. Changes in UV–vis spectra (gray lines) after treating 2 (black line)with 

excess amounts of O2 in CH3CH2CN at −80℃. Red line represent the UV−vis 

spectrum of Mn(IV)−peroxo 3. The time interval is 2 min.  

 

Figure S13. Changes of infrared spectra monitored by ATR-FTIR spectroscopy after 

microcrystals of 1 were stood in open air at ambient temperature. The initial spectrum 

is labeled as black solid line. The measured interval between two curves is 5 min. 

 

Figure S14. Microcrystals of 1 were placed under dry O2 at ambient temperature for 2 

h. (a) Microcrystals of 1 appears to be an orange-red color. (b) The color change 

during oxidation of solid-state 1 with O2 is observed from orange red to yellow 

brown. 

 

Figure S15. (a) Black line shows the UV−vis spectrum obtained from reaction of 
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[PPN]2[(MnII(TMSPS3))2](1) (0.16 mM) and excess amounts O2 (purging into the 

solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (50 %, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(24 %, blue line) are calculated for the best fit with experiment data (black line). (b) 

Black line shows the UV−vis spectrum obtained from reaction of 

[PPN]2[(MnII(TMSPS3))2](1) (0.16 mM) and excess amounts O2 (layered above the 

solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (68 %, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(12 %, blue line) are calculated for best fitting with experiment data (black line). 

 

Figure S16. (a) Oxidation of 2 (one equiv.) with ferrocenium tetrafluoroborate (one 

equiv, [Fc][BF4]) under N2 leads to the formation of mononuclear neutral Mn(III) 

[Mn(TMSPS3)(DABCO)] (yield, 90%). (b) Comparisons of UV−vis spectra between 2 

(black line, 0.2 mM in CH3CN) and [MnIII(TMSPS3)(DABCO)] (red line, 0.2 mM in 

THF). (c) ORTEP diagrams of neutral [MnIII(TMSPS3)(DABCO)] with thermal 

ellipsoids drawn at the 50% probability level (X-ray Crystallographic Data shown in 

Table S1). Hydrogen atoms and solvent of crystallization are omitted for clarity. (d) 

Selected bond distances (Å) an angles (deg) of 2 and [MnIII(TMSPS3)(DABCO)]. 

Figure S17. ESI-MS spectra of 2 in CH3CN (negative mode). The oxygenated 

fragments may be derived from oxygenation with air during the injection of solution 

of 2 into the instrument. 

 

Figure S18 (a) UV−vis spectra of 1 (0.50 mM) in CH3CN measured at variant 

temperature. (b) UV−vis spectra of 1 (0.50 mM) with DABCO (100 equiv) 

(suggesting 100 % conversion from 1 to 2) in CH3CN measured at variant 

temperature. 

 

Figure S19. Optimized ab initio gas phase structure of the 3-protio S = 5/2 analog of 

the DABCO anion 2. Density function theory, B3LYP/6-31+g*, with a double zeta 

basis set used. 

 

Table S1. X-ray Crystallographic Data for 1, 2, 4 and [MnIII(TMSPS3)(DABC O)] 

 

Table S2. Contrast in calculated and experimental ground states for 2 for two spin 

states 

 

Table S3. Electronic Spectra Data Calculated with DFT-TD for 2 in nm (with 

intensity given as oscillator strength) 
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Figure S1. The change of absorbance at 535 nm responsible for 

[PPN][MnII(TMSPS3)(DABCO)](2) upon addition of different equivalents of DABCO 

into the solution of [PPN]2[(MnII(TMSPS3))2](1; 0.3 mM).  
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Figure S2. Magnetic susceptibility plots of χM (open circles) and χMT (open squares) 

versus temperature for 4. The solid line is the best fit of the experimental data to the 

theoretical expression.  
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Figure S3. Comparison of cyclic voltammograms of Li3

TMSPS3 (black line), 1 (red 

line) and 2 (blue line) measured in a 1 mM CH3CN solution with 0.1 M [n-Bu4N][PF6] 

as the supporting electrolyte at room temperature, scan rate 0.1 V/s.  
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Figure S4. The 77 K EPR X-band spectra for 1 (orange; 0.6 mM) and 2 (purple; 0.6 

mM) frozen in CH3CN.The experimental parameters: microwave frequency = 9.54 

GHz, microwave power = 5 mW, modulation amplitude = 1.6 G.  
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Figure S5. ESI-MS spectra of 1 in CH3CN (negative mode). Some oxygenated 

fragments may be derived from oxygenation with air during the injection of solution 

of 1 into the instrument. Simulations for some major fragments are also presented.1 
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Figure S6. Black line shows the UV−vis spectrum of [PPN]2[(MnIII(TMSPS3))2(µ-O)] 

(4) generated from the reaction of [PPN]2[(MnII(TMSPS3))2](1) (0.098 mM) and 

[PPN][MnIV(O2)(
TMSPS3)](3) (0.065 mM) based on eq : 3/2 1 + 3 � 2 4. Red line 

shows the UV−vis spectrum of 4 generated from reaction of [PPN][MnII(TMSPS3)- 

(DABCO)] (2) (0.195 mM) and 3 (0.065 mM) based on eq : 3 2 + 3 � 2 4 + 3 

DABCO.  
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Figure S7. Microcrystals of 2 were placed under dry O2 at ambient temperature for 30 

min. (a) Microcrystals of 2 appears to be a light-purple color. (b) The color change 

during oxidation of solid-state 2 with O2 is observed from light purple to dark 

red-purple.  
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Figure S8. (a) Conversion of 2 to 3 monitored by ATR-FTIR spectroscopy after 

microcrystals of 2 were stood in open air at ambient temperature. The initial spectrum 

is labeled as black solid line. The measured interval between two curves is 3 min. (b) 

FTIR spectra of solid-state 2 upon treating 16O2 (red line) and 18O2 (black line). (c) a 

difference spectrum between FTIR spectra of solid-state 2 upon treating 16O2 and 
18O2. 
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Figure S9. The powder diffraction patterns of microcrystal 2 after exposed to O2 for 2 

h (black solid line) and microcrystal 3 (red line, acting as a standard). The powder 

X-ray diffraction (PXRD) data were performed at the wiggler beamline BL17A at 

National Synchrotron Radiation Research Center (NSRRC), Taiwan. The 

experimental wavelength of the X-ray source is 1.3216 Å. Silicon powder was used as 

the calibrant and the refined sample-to-detector distance is 251 mm. Samples were 

ground firstly and packed into a 1.0 mm glass capillary and measured at room 

temperature. 

 

 

 

Figure S10. Black line shows the UV−vis spectrum obtained from reaction of 

[PPN][MnII(TMSPS3)(DABCO)] (2) (0.2 mM) and excess amounts O2 (purging into 

the solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (8%, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(63 %, blue line) are calculated for best fit to the experiment data (black line). 
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Figure S11. Black line shows the UV−vis spectrum obtained from reaction of 

[PPN][MnII(TMSPS3)(DABCO)] (2) (0.2 mM) and excess amounts O2 (layered above 

the solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (25 %, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(37 %, blue line) are calculated for the best fit with experiment data (black line). 
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Figure S12. Changes in UV–vis spectra (gray lines) after treating 2 (black line)with 

excess amounts of O2 in CH3CH2CN at −80℃. Red line represent the UV−vis 

spectrum of Mn(IV)−peroxo 3. The time interval is 2 min.  
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Figure S13. Changes of infrared spectra monitored by ATR-FTIR spectroscopy after 

microcrystals of 1 were stood in open air at ambient temperature. The initial spectrum 

is labeled as black solid line. The measured interval between two curves is 5 min.  
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Figure S14. Microcrystals of 1 were placed under dry O2 at ambient temperature for 2 

h. (a) Microcrystals of 1 appears to be an orange-red color. (b) The color change 

during oxidation of solid-state 1 with O2 is observed from orange red to yellow 

brown. 
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Figure S15. (a) Black line shows the UV−vis spectrum obtained from reaction of 

[PPN]2[(MnII(TMSPS3))2](1) (0.16 mM) and excess amounts O2 (purging into the 

solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (50 %, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(24 %, blue line) are calculated for the best fit with experiment data (black line). (b) 

Black line shows the UV−vis spectrum obtained from reaction of 

[PPN]2[(MnII(TMSPS3))2](1) (0.16 mM) and excess amounts O2 (layered above the 

solution) in CH3CN at ambient temperature. UV−vis spectra of 

[PPN]2[(MnIII(TMSPS3))2(µ-O)] (4) (68 %, red line) and [PPN][MnIV(O2)(
TMSPS3)](3) 

(12 %, blue line) are calculated for best fitting with experiment data (black line). 
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(b)                                    (c)  
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(d) 

 [MnII(TMSPS3)(DABCO)]− (2) [MnIII(TMSPS3)(DABCO)] 

Mn−S1 2.5295(8) 2.3663(5) 

Mn−S2 2.4987(8) 2.3579(5) 

Mn−S3 2.5041(9) 2.3684(6) 

Mn−N1 2.226(2) 2.0856(15) 

Mn−P1 2.4429(8) 2.2997(5) 

∠S1−Mn−S2 117.67(3) 118.99(2) 

∠S1−Mn−S3 121.44(3) 117.08(2) 

∠S2−Mn−S3 112.94(3) 117.99(2) 

∠N1−Mn−P1 172.99(7) 179.45(5) 

 

Figure S16. (a) Oxidation of 2 (one equiv.) with ferrocenium tetrafluoroborate (one 

equiv, [Fc][BF4]) under N2 leads to the formation of mononuclear neutral Mn(III) 

[Mn(TMSPS3)(DABCO)] (yield, 90%). (b) Comparisons of UV−vis spectra between 2 

(black line, 0.2 mM in CH3CN) and [MnIII(TMSPS3)(DABCO)] (red line, 0.2 mM in 

THF). (c) ORTEP diagrams of neutral [MnIII(TMSPS3)(DABCO)] with thermal 

ellipsoids drawn at the 50% probability level (X-ray Crystallographic Data shown in 

Table S1). Hydrogen atoms and solvent of crystallization are omitted for clarity. (d) 

Selected bond distances (Å) an angles (deg) of 2 and [MnIII(TMSPS3)(DABCO)]. 
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Figure S17. ESI-MS spectra of 2 in CH3CN (negative mode). The oxygenated 

fragments may be derived from oxygenation with air during the injection of solution 

of 2 into the instrument.  
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Figure S18. (a) UV−vis spectra of 1 (0.50 mM) in CH3CN measured at variant 

temperature. (b) UV−vis spectra of 1 (0.50 mM) with DABCO (100 equiv) 

(suggesting 100 % conversion from 1 to 2) in CH3CN measured at variant 

temperature.  
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Table S1. X-ray Crystallographic Data for 1, 2, 4 and [MnIII(TMSPS3)(DABC O)] 

 
1⋅6THF 2⋅CH3CN 4⋅1.5ether⋅3.5C

H3CN 

[MnIII(TMSPS3)(

DABCO)] ⋅THF 

Empirical formula C150 H184 Mn2 

N2 O6 P6 S6 Si6 

C71 H81 Mn N4 

P3 S3 Si3 

C139 H157.5 Mn2 

N5.5 O2.5 P6 S6 

Si6  

C37 H56 Mn N2 

O P S3 Si3 

Formula weight 2767.59 1318.69 2601.80 811.19 

T, K 200(2) K 150(2) 150(2) 150(2) 

Crystal system Orthorhombic Orthorhombic Triclinic Monoclinic 

Space group Pbca Pna21 P-1 P21/c 

a, Å 26.4554(7)  25.2754(10) 14.9573(6) 15.0330(4) 

b, Å 20.2956(5) 9.8216(4) 16.8240(7) 11.8932(3) 

c, Å 27.6687(8) 28.4013(10) 31.5766(12) 23.2927(7) 

α, ° 90 90 75.113(2) 90 

β, ° 90 90 82.277(2) 93.0579(9) 

γ, ° 90 90 68.066(2) 90 

V, Å3 14856.1(7) 7050.5(5) 7116.9(5) 4158.6(2) 

Z 4 4 2 4 

ρcalcd, Mg m-3 1.237 1.242 1.214 1.296 

µ, mm-1 0.421 0.438 0.434 0.624 

Goodness-of-fit on F2 1.174 1.010 1.069 1.060 

R [I>2sigma(I)] : R1a 

(wR2)
 b 

0.0772 (0.1726) 0.0303 (0.0651) 0.0830 (0.2025) 0.0340 (0.0832) 

R (all data): R1a (wR2)
 

b 

0.1022(0.1850) 0.0377 (0.0679) 0.1571 (0.2448) 0.0430 (0.0900) 

a R1 = (Σ||Fo|-|Fc||)/(Σ|Fo|).  b wR2 = [Σw(Fo
2-Fc

2)2/Σw(Fo
2)2]1/2. 
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Computational Details 

ab initio calculations. To better understand the electronic structure and nature of the 

intermediates in these reactions ab initio density functional theory has been employed 

to model the ground states and their spectroscopy. For computational efficiency the 

model adopted had the three trimethylsilyl groups truncated to three protons, Figure 

S17. Both high and low spin ground states were optimized and both ground state 

structures are contrasted with the solid state crystallographic data in Table S2. 

 

Table S2. Contrast in calculated and experimental ground states for 2 for two spin 

states 

Metric S = 5/2 S = 1/2 Exp. 

Energy 

(A.U.) 

−3725.579

32749 

−3725.535

93600 
− 

Mn−N 2.31181 Å 2.20397 Å 2.226(2) Å 

Mn−P 2.44523 2.19397 2.4429(8) 

Mn−S 2.54017 2.32156 2.5695(8) 

Mn−S 2.53976 2.30806 2.4987(8) 

Mn−S 2.53986 2.33250 2.5041(9) 

S−Mn−S 117.87° 112.96° 117.67(3)° 

S−Mn−S 118.07 132.02 121.44(3) 

S−Mn−S 117.69 113.77 112.94(3) 

 

As can be seen the contraction of the coordination sphere predicted with a low spin 

state is not in agreement with the experimental data which is well described by the 

high spin geometry. Over all the metric parameters for the truncated ligand used in the 

calculated model are quite close to those found for experimental chelate ligand. 
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Surprisingly the DABCO ligand has an experimental Mn−N bond length about 0.09 Å 

closer than the calculated value and yet the steric constraints for the model complex 

are expected to be less due to the truncation of the three trimethylsilyl groups. This 

indicates that in the condensed phase of the crystal structure packing effects, in 

particular the presence of the PPN cation, are important.  

The predicted high spin ground state for 2 is consistent the observed spectroscopy. 

The gas phase electronic energy difference for the anion, gives 27.2 kcal/mol in favor 

of the high spin state. This is clearly in accord with the magnetic results and also the 

room temperature electronic spectra calculated for the first 30 states by time 

dependent DFT, Table S3.  

As can be seen in Table S3 the first observed visible band at 535 nm corresponds 

well with the lowest energy band in for the high spin spectrum, but there is a marked 

progression for the low spin spectrum with bands predicted in the near IR and to 

lower energies in the visible. Clearly the electronic spectrum matches the high spin 

state and provides additional confirmation for this assignment. For the strong field 

donors in 2, one triarylphosphine and three thiolates, the stability of the S = 5/2 state 

comes in part from the ligand enforced trigonal bipyramidal geometry.  

 

 

Figure S19. Optimized ab initio gas phase structure of the 3-protio S = 5/2 analog of 

the DABCO anion 2. Density function theory, B3LYP/6-31+g*, with a double zeta 

basis set used. 
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Table S3. Electronic Spectra Data Calculated with DFT-TD for 2 in nm (with 

intensity given as oscillator strength).  

DFT-TD S=5/2 DFT-TD S=1/2 Experiment 

 2358.29(0.0003)  

 1305.57(0.0002)  

 1151.95(0.0028)  

 941.48(0.0020)  

 801.80(0.0027)  

 636.10(0.0001)  

526.81(0.0068) 617.01(0.0002)  

526.28(0.0068) 526.22(0.0068) 535 

486.62(0.0031) 493.06(0.0010)  

430.10(0.0008) 487.66(0.0005)  

429.95(0.0008) 479.10(0.0003)  

423.36(0.0004) 466.97(0.0022)  

411.52(0.0004) 456.57(0.0046)  

411.29(0.0004) 454.14(0.0002)  

408.78(0.0006) 452.28(0.0018)  

396.58(0.0013) 450.97(0.0046)  

395.71(0.0012) 443.18(0.0000)  

395.59(0.0012) 440.37(0.0004)  

386.74(0.0100) 432.96(0.0011)  

386.26(0.0000) 424.78(0.0095)  

386.14(0.0000) 423.22(0.0011)  

379.47(0.0000) 417.71(0.0011)  

378.85(0.0001) 406.75(0.0036)  
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378.79(0.0001)   

373.87(0.0018)   

369.47(0.0034)   

369.46(0.0035)   

368.64(0.0107)   

367.77(0.0017)   

367.66(0.0017)   

366.05(0.0044)   

366.02(0.0044)   

365.44(0.0052)  370 

363.00(0.0066)   

362.89(0.0066)   

361.19(0.0020)   

 

Theoretical methods. All of the calculations described above were performed using 

Gaussian 03.2 Computations were carried out at the restricted Hartree-Fock (RHF),3 

and Density Functional Theory (DFT) levels. DFT calculations used the hybrid 

B3LYP  functional and triple zeta 6-31+G* basis sets.4 The calculated molecular 

geometries were fully optimized and correspond to minima on the potential energy 

surface as confirmed by the absence of imaginary vibrational frequencies. All 

transition states were confirmed by reaction path (IRC) following calculations. 
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