Supporting Information

The Interaction between the Third Type III Domain from Fibronectin and Anastellin Involves $\boldsymbol{\beta}$-Strand Exchange

Jessica M. Stine ${ }^{\dagger}$, Gabriel J. H. Ahl ${ }^{\dagger}$, Casey Schlenker ${ }^{\dagger}$, Domnita-Valeria Rusnac ${ }^{\dagger}$, and Klára Briknarová ${ }^{\text {, }, \text {, }}$,
${ }^{\dagger}$ Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
${ }^{\ddagger}$ Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
*Corresponding author
Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, MT 59812.
E-mail: klara.briknarova@umontana.edu.
Phone: (406) 243-4408
ORCID ID: 0000-0003-3737-9803

Table S1. Sequences of recombinant proteins used in this study

Protein	Residues from human fibronectin (P02751)	Sequence $^{\mathrm{a}}$
anastellin	$631-705$	mrgsNAPQ...TSTPgsrshhhhhh
3FN3	$808-905^{\mathrm{b}}$	gshmgtTTAP...PRSDgt
AB	$806-834^{\mathrm{b}}$	gSQTT...WSRP
CG	$835-907$	gQAPI...SDTV

${ }^{\text {a }}$ Extraneous residues preceding or following the fibronectin sequences are shown in lower case.
${ }^{\mathrm{b}}$ The main entry in Uniprot for human fibronectin (P02751) contains a threonine at position 817 and lists proline as a natural variant (rs2577301). Threonine corresponds to the minor allele (T; frequency 0.02% in the 1000 Genomes Project Phase 3) and proline to the major allele (G). Both 3 FN 3 and AB contain a proline at this position.

Table S2. NMR experiments acquired for the AB :anastellin complex

Sample	Experiments
${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-labeled AB + unlabeled anastellin	$2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC; 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC (aliphatic region); 2D ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ HSQC (aromatic region); 3D HNCACB; 3D C(CO)NH; 3D H(CCO)NH; 3D HNCO; 3D HN(CA)CO; 3D CCH-TOCSY; 3D HCCH-TOCSY; 3D aliphatic ${ }^{13} \mathrm{C}$-edited NOESY (without sensitivity enhancement); 3D aliphatic ${ }^{13} \mathrm{C}$-edited NOESY (with sensitivity enhancement); 3D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, aliphatic ${ }^{13} \mathrm{C}$-edited NOESY; 2D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, aliphatic ${ }^{13} \mathrm{C}$ edited NOESY; 3D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, ${ }^{15} \mathrm{~N}$-edited NOESY; $2 D^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, ${ }^{15} \mathrm{~N}$-edited NOESY
${ }^{15} \mathrm{~N}$-labeled $\mathrm{AB}+$ unlabeled anastellin	```\(2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}\) HSQC; 3D \({ }^{15} \mathrm{~N}\)-edited TOCSY; 3D \({ }^{15} \mathrm{~N}\)-edited NOESY; 2D double-quantum-filtered COSY; 2D TOCSY; 2D \({ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}\) NOE```
$\begin{aligned} & { }^{13} \mathrm{C} \text { - and }{ }^{15} \mathrm{~N} \text {-labeled } \\ & \text { anastellin + unlabeled } \\ & \mathrm{AB} \end{aligned}$	$2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC; 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC (aliphatic region); 2D ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ HSQC (aromatic region); 3D HNCACB; 3D CBCA(CO)NH; 3D C(CO)NH; 3D H(CCO)NH; 3D HNCO; 3D HN(CA)CO; 3D CCH-TOCSY; 3D HCCH-TOCSY; 3D aliphatic ${ }^{13} \mathrm{C}$-edited NOESY (without sensitivity enhancement); 3D aliphatic ${ }^{13} \mathrm{C}$-edited NOESY (with sensitivity enhancement); 3 D aromatic ${ }^{13} \mathrm{C}$-edited NOESY; 2D HBCB(CGCD)HD; 3D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, aliphatic ${ }^{13} \mathrm{C}$-edited NOESY; $2 \mathrm{D}{ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, aliphatic ${ }^{13} \mathrm{C}$-edited NOESY; 3D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$ filtered, aromatic ${ }^{13} \mathrm{C}$-edited NOESY; 2D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, aromatic ${ }^{13} \mathrm{C}$-edited NOESY; $3 \mathrm{D}{ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, ${ }^{15} \mathrm{~N}$ edited NOESY; 2D ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-filtered, ${ }^{15} \mathrm{~N}$-edited NOESY
${ }^{15} \mathrm{~N}$-labeled anastellin + unlabeled AB	$\begin{aligned} & \text { 2D }{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \text { HSQC; } 3 \mathrm{D}{ }^{15} \mathrm{~N} \text {-edited TOCSY; 3D }{ }^{15} \mathrm{~N} \text {-edited } \\ & \text { NOESY; 2D }{ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N} \text { NOE } \end{aligned}$

Figure S1. 2D ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HSQC spectra of (A) ${ }^{15} \mathrm{~N}$-labeled AB bound to unlabeled anastellin and (B) of ${ }^{15} \mathrm{~N}$-labeled anastellin bound to unlabeled AB . The assignments are indicated. Signals from T825 and V828 in AB are very weak, and the former is not observable at this contour level. Signals from G661, R644\& and R646e in anastellin are aliased.

Figure S2. Comparison of the AB :anastellin complex with 1FN3 and 3FN3. (A-C) Superimposed backbone traces of the AB :anastellin complex (residues 813-834 of AB and 638-697 of anastellin) (panel A), 1FN3 (residues 610-697) (panel B), and 3FN3 (residues 813-896) (panel C). The color scheme for the AB:anastellin complex is the same as in Fig. 4, i.e. the color of AB changes smoothly from yellow at the N -terminus to orange at the C-terminus, and the color of anastellin changes from blue at the N -terminus to red at the C-terminus. Residues 638-697 in 1FN3 (panel B) and 813-834 in 3FN3 (panel C) are colored as in panel A to facilitate their comparison with anastellin and $A B$, respectively. The rest of 1 FN 3 and 3 FN 3 is colored gray.

