SUPPORTING INFORMATION.

Solvated Structure of Cellulose

in a Phosphonate-based Ionic Liquid.

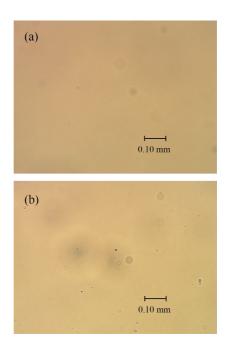
Kazu Hirosawa,¹ Kenta Fujii,^{2*} Kei Hashimoto³, and Mitsuhiro Shibayama^{1*}

¹ Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan. ² Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan. ³ Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

AUTHOR EMAIL ADDRESS: k-fujii@yamaguchi-u.ac.jp (K. F.), sibayama@issp.utokyo.ac.jp (M. S.)

Section S1: Microscope Observation of Cellulose in [C₂mIm][CH₃HPO₃] Solutions.

Droplets of the prepared cellulose in $[C_2mIm][CH_3HPO_3]$ solutions are observed by an optical microscope (BX51N-33P-O-SP, Olympus Co.). Figure S1 shows optical microscope images of neat $[C_2mIm][CH_3HPO_3]$ and cellulose in $[C_2mIm][CH_3HPO_3]$ solution of $\phi = 0.047$, which is the highest concentration examined. The cellulose solution looked almost the same as that of neat $[C_2mIm][CH_3HPO_3]$. It indicated that undissolved cellulose powder granules did not exist in all the cellulose solutions examined in the present study.



Optical microscope images of (a) neat $[C_2mIm][CH_3HPO_3]$ and (b) cellulose in $[C_2mIm][CH_3HPO_3]$ solution of $\phi = 0.047$. A scale bar of 0.10 mm is also shown in the images.

Section S2: X-ray Structure Factor, *S*(*q*) at Whole *q*-Range.

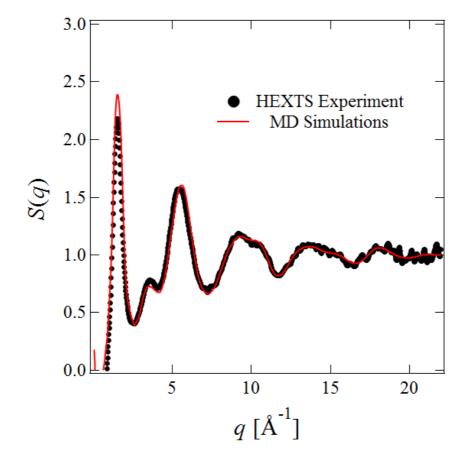


Figure S2.

X-ray structure factors, S(q) obtained from HEXTS experiments (filled circles) and MD simulations (red solid line) for 30 wt% cellobiose in [C₂mIm][CH₃HPO₃] solution, at the whole *q*-range examined.

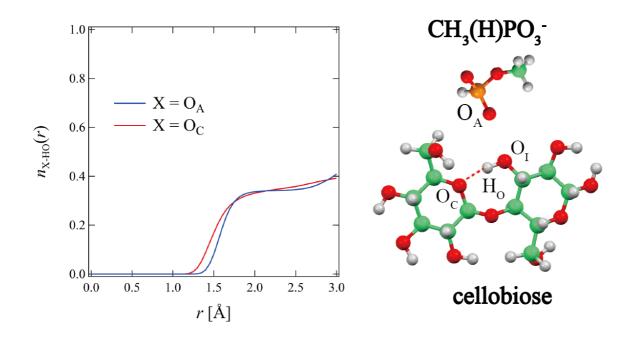
Section S3: Estimation of the Abundance Ratio of the Intramolecular Hydrogen Bonds within Cellobiose to the Intermolecular Ones between Cellobiose and CH₃HPO₃⁻.

The atom-atom pair correlation function between *i*-atoms and *j*-atoms, $g^{MD}_{i,j}(r)$ is calculated from the MD simulation trajectory according to the following equations:

$$g_{i-j}^{\text{MD}}(r) = \frac{1}{4\pi r^2 \Delta r} \frac{V}{N_i N_j} \left\langle \sum_{m=1}^{n_i} \Delta N_m^{ij}(r) \right\rangle$$
(Intermolecular correlations) (S1)

$$g_{i-j}^{\rm MD}(r) = \frac{1}{4\pi r^2 \Delta r} \frac{V}{N_i} \left\langle \sum_{m=1}^{n_i} \Delta N_m^{ij}(r) \right\rangle$$
 (Intramolecular correlations) (S2)

Here, N_i (N_j) and V denote the total number of *i*-atoms (*j*-atoms) and the volume of the MD cell, respectively. $\Delta N^{ij}_{m}(r)$ is the number of *j*-atoms in the spherical shell of radius *r* and thickness Δr centered on a *m* th *i*-atom.



The coordination number of the atoms around Ho, $n_{X-HO}(r)$ (X = O_A, O_c).

As mentioned in the main text, the intramolecular hydrogen bonds $O_C \cdots H_0 - O_1$ exist in cellobiose molecules dissolved in $[C_2mIm][CH_3HPO_3^-]$. Here, we estimated the abundance ratio of the intramolecular hydrogen bonds, $O_C \cdots H_0 - O_1$ to the intermolecular hydrogen bonds, $O_A \cdots H_0 - O_1$ from the viewpoint of the coordination number. The coordination number of *i*-atoms around *j*-atom is calculated by the following equation;

$$n_{i-j}(r) = \int_0^r \left[\frac{N_i}{V} g_{i-j}^{\text{MD}}(r') \right] 4\pi r'^2 \mathrm{d}r'$$
(S3)

The abundance ratio can be estimated from the ratio of $n_{\text{OA-HO}}(r)$ to $n_{\text{OC-HO}}(r)$ at the first coordination shell. As shown in Figure S3, both of $n_{\text{OA-HO}}(r)$ and $n_{\text{OC-HO}}(r)$ reached a plateau at r = 2.0 Å; thus we decided that the outer limit of the first coordination shell is r = 2.0 Å. The value of $n_{\text{OA-HO}}(r)$

and $n_{\text{OC-HO}}(r)$ at r = 2.0 Å was 0.34 and 0.33, respectively. Hence, the abundance ratio was found to be 0.33:0.34 = 0.97:1.00.

Section S4: Calculation of the Collective Diffusion Coefficient: A Partial-heterodyne Method.

A "partial-heterodyne" method in dynamic light scattering analysis has been established for scattering medias which contain frozen heterogeneity, such as polymer gels.¹ The analytical procedures are summarized below. According to the main manuscript, the time correlation function of light scattering intensity at a given measurement point, $g_p^{(2)}(\tau) - 1$ can be approximated as follows:

$$g_{p}^{(2)}(\tau) - 1 = \beta \sigma_{1}^{2} \left[A \exp\left(-D_{A, \text{fast}, p} q^{2} \tau\right) + (1 - A) \exp\left(-D_{A, \text{slow}, p} q^{2} \tau\right) \right]^{2}$$
(S4)

where β is the coherence factor. σ_1^2 is related to the fraction of time-averaged scattering intensity originating from thermal fluctuation, $\langle I_F \rangle$ in the total scattering intensity, $\langle I \rangle_p$ as follows:

$$\sigma_{\rm I}^2 = X_p (2 - X_p) \tag{S5}$$

$$X_p = \frac{\langle I_{\rm F} \rangle}{\langle I \rangle_p} \quad (S6)$$

When light scattering intensity of sample is comparable with scattering intensity from solvent (I_{back}) , we need to subtract I_{back} from $\langle I \rangle_p$ and $\langle I_F \rangle$ in eq. (S6). Then eq. (S6) should be revised as follows:

$$X_p = \frac{\langle I_{\rm F} \rangle - I_{\rm back}}{\langle I \rangle_p - I_{\rm back}}$$
(S7)

The apparent diffusion coefficient $D_{A,fast,p}$ is affected by the value of X_p and thus $D_{A,fast,p}$ depends on position. The true collective diffusion coefficient D_{fast} can be estimated from $D_{A,fast,p}$ using the following relationship.

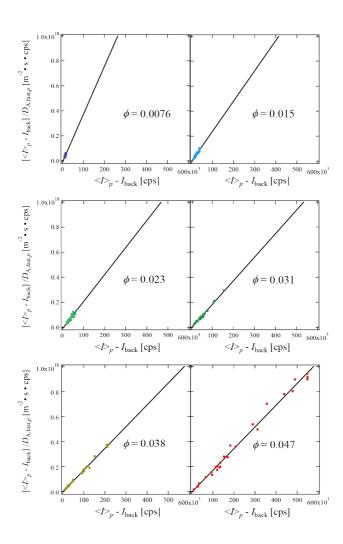
$$D_{\text{fast}} = \left(2 - X_p\right) D_{\text{A,fast},p} \qquad (S8)$$

Based on eq. (S7) and eq. (S8), one can derive the following equation.

$$\frac{\langle I \rangle_p - I_{\text{back}}}{D_{\text{A,fast},p}} = \frac{2}{D_{\text{fast}}} \left(\langle I \rangle_p - I_{\text{back}} \right) - \frac{\langle I_{\text{F}} \rangle - I_{\text{back}}}{D_{\text{fast}}}.$$
(S9)

Eq. (S9) indicates that D_{fast} can be obtained from the slope of the plot of $(\langle I \rangle_p - I_{\text{back}})/D_{\text{A,fast,}p}$ vs $(\langle I \rangle_p - I_{\text{back}})$.

Figure S4.



 $(\langle I \rangle_p - I_{back})/D_{A,fast,p}$ vs $(\langle I \rangle_p - I_{back})$ plots for cellulose in [C₂mIm][CH₃HPO₃] solutions of various volume fractions.

Figure S4 shows the plots of $(\langle I \rangle_p - I_{back})/D_{A,fast,p}$ vs $(\langle I \rangle_p - I_{back})$ for cellulose in $[C_2mIm][CH_3HPO_3]$ solutions of various volume fractions. Eventually, the correlation length, ξ was estimated from D_{fast} using Einstein-Stokes equation shown in eq. (9) in the main text.

 Shibayama, M., Universality and Specificity of Polymer Gels Viewed by Scattering Methods. *Bull. Chem. Soc. Jpn.* 2006, 79, 1799-1819.