Nazarov Cyclization and Tandem [4+2]Cycloaddition Reactions of DonorAcceptor Cyclopropanes

Gangarajula Sudhakar,*S. K. Mahesh, S. Phani Babu Vemulapalli, and Jagadeesh Babu Nanubolu

* E-mail: gsudhakar@iict.res.in
Contents Page No.s

1. General Schemes S2
2. General Materials and Methods S9
3. Experimental Procedures for Starting Materials S10
4. Experimental Procedures for Nazarov cyclization of dienyl DACs. S37
5. Experimental Procedures for Interrupted Nazarov cyclization of dienyl DACs S49
6. Experimental Procedures for Nazarov cyclization followed by [4+2]-cycloaddition
from dienyl DACs. S54
7. Experimental Procedures for Nazarov cyclization followed by [4+2]-cycloaddition
(Diels-Alder reaction) from dienyl DACs S63
8. 2D NMR Information. S65
9. X-ray Crystallography Information S109
10. References. S115
11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S116

1. General Table and Schemes

Optimization of reaction conditions:

We employed aryl vinyl DAC 1a with several Lewis acids and Bronsted acid, trifluoroacetic acid (TFA). To our gratification, the reaction is found to afford the desired product in high yields. When 1 M TiCl 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was used, the reaction gave the desired product 2a in 93% yield (entry 1). Slightly improved yield (95\%) was obtained with TFA (entry 2). When 1a was subjected with 0.1 equiv of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$, the formation of $\mathbf{2 a}$ was observed in almost quantitative yield (entry 3). Other Lewis acids such as $\mathrm{FeCl}_{3}, \mathrm{Cu}(\mathrm{OTf})_{2}$, and $\mathrm{Sc}(\mathrm{OTf})_{3}$ also provided in very good yields (entries 4-6). With $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$, dienyl DACs with different ester groups ($\mathbf{1 b}$ and $\mathbf{1 c}$) were tested to verify the effect of the ester group in the conversion of the product. Obtaining $\mathbf{2 b}$ in 96% and 2c in 93% yield (comparable with a yield of 2a) implies that there is no such profound effect of the ester group (entries $7 \& 8$).

Entry $^{\mathbf{a}}$	Reagent $^{\mathbf{b}}$	$\mathbf{1}$	Time (h)	(2) Yield $^{\mathbf{c}}$
1	TiCl_{4}	$\mathbf{1 a}(\mathrm{R}=\mathrm{Me})$	1.75	(2a) 93%
2	TFA	$\mathbf{1 a}(\mathrm{R}=\mathrm{Me})$	1.75	(2a) 95%
3	$\mathbf{B F}_{3} \cdot \mathbf{E t}_{2} \mathbf{O}$	$\mathbf{1 a}(\mathbf{R}=\mathbf{M e})$	$\mathbf{1 . 5}$	(2a) $\mathbf{9 9 \%}$
4	FeCl_{3}	$\mathbf{1 a}(\mathrm{R}=\mathrm{Me})$	2.0	(2a) 88%
5	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathbf{1 a}(\mathrm{R}=\mathrm{Me})$	1.5	(2a) 91%
6	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathbf{1 a}(\mathrm{R}=\mathrm{Me})$	1.25	(2a) 90%
7	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	$\mathbf{1 b}(\mathrm{R}=\mathrm{Et})$	1.5	(2b) 96%
8	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	$\mathbf{1 c}(\mathrm{R}=\mathrm{Bn})$	1.5	(2c) 93%

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ with respect to the aryl vinyl DAC $\mathbf{1}$ at $-78{ }^{\circ} \mathrm{C} ;{ }^{\mathrm{b}} 10(\mathrm{~mol} \%)$ acid; ${ }^{\mathrm{c}}$ Isolated product yield.

1a. Nazarov cyclization of Donor-Acceptor Aryl vinyl Cyclopropane and its plausible reaction mechanism

Under standard reaction conditions, compound 1a would provide pentadienyl cation that undergoes 4π-electrocyclization to give cyclic allyl cation. Finally, loss of a proton leads to the formation of 2a as shown in Scheme S1.

Scheme S1. Nazarov cyclization of Donor-Acceptor Aryl vinyl Cyclopropane

1b. Formation of $\mathbf{2 j}$ from $\mathbf{1 j}$

Under the standard reaction conditions, $\mathbf{1} \mathbf{j}$ provided $\mathbf{2} \mathbf{j}$. The structure of $\mathbf{2} \mathbf{j}$ was determined using 2D NMR (Figure S1 and Table S1). The formation of product (+)-2 \mathbf{j} selectively from $\mathbf{1} \mathbf{j}$ may be explained from the torquoselective conrotatory electrocyclization of aryl vinyl cation because of sterically hindered geminal dimethyls as shown in Scheme S2.

Scheme S2. Proposed torquoselectivity for the formation of (+)-2 \mathbf{j} from $\mathbf{1 j}$

1c. Intramolecular cyclopent-annulation from Donor-Acceptor Aryl vinyl Cyclopropane and its plausible reaction mechanism

Under standard conditions, compounds $\mathbf{1 k}$ and $\mathbf{1 l}$ would provide pentadienyl cation that undergoes electrocyclization to form the cyclic allyl cation. Here, loss of a proton from the cyclic allyl cation would provide Nazarov cyclization products $\mathbf{2 k}$ and $\mathbf{2 l}$ as major. The formation of minor cyclopentene compounds $\mathbf{2} \mathbf{k}^{\prime}$ and $\mathbf{2} \mathbf{I}^{\prime}$ could be explained by the enolate addition to the carbon, which is β to the carbocation as shown in Scheme S3.

Scheme S3. Intramolecular cyclopent-annulation from Donor-Acceptor Aryl vinyl Cyclopropane

1d. Interrupted Nazarov cyclization and its plausible reaction mechanism

The addition of a nucleophile to carbocation could be from either below (path c) or above (path b) the plane, but its addition opposite side to phenyl group adjacent to carbocation (path b) is more favorable because of a less steric hindrance. This is apparent from the formation of $\mathbf{3 e}$ as
major and $\mathbf{3} \mathbf{e}^{\mathbf{\prime}}$ as minor, shown in Scheme S 4 . Structures of $\mathbf{3 e}$ and $\mathbf{3 e} \mathbf{e}^{\prime}$ were fully characterized by using 2D NMR (Tables S2-S3 and Figures S2-S3).

Scheme S4. Interrupted Nazarov cyclization

1e. Nazarov cyclization followed by [4+2]-cycloaddition and its plausible reaction mechanism

The addition of benzaldehyde to cyclic allyl cation provided separable 4a and 4a' in the ratio of 8:2 and with 98% combined yield. The major compound 4a has a small amount of inseparable isomer s4a. Compounds $\mathbf{4 a}$, s4a and $\mathbf{4 a} \mathbf{a}^{\prime}$ have been characterized by using 2D NMR (Tables S4S6 and Figures S4-S6). Based on the stereochemistry outcome, we propose the most probable six-membered cyclic transition states TS-SI-SIII (Scheme S5). The diastereoselectivity of major compound 4a might be from TS-SI, in which upcoming alkyl/aryl group (dipolarophile) attacks from opposite side to the phenyl group (α to carbocation) and it attains a pseudo-equatorial position in the six-membered cyclic transition state. Formation of minor compound $\mathbf{4 a}^{\prime}$ could be from transition state TS-SIII, in which dipolarophile attacks from opposite side to the phenyl group (α to carbocation) but attaining a pseudo-axial position in the six-membered cyclic transition state. On the other hand, the formation of s4a could be from attacking dipolarophile
from the same side to the phenyl group (α to carbocation) and attaining a pseudo-equatorial position in the six-membered cyclic transition state (TS-SII).

Scheme S5. Nazarov cyclization followed by [4+2]-cycloaddition

1f. Nazarov cyclization followed by [4+2]-cycloaddition (Diels-Alder reaction) and its plausible reaction mechanism

On the addition of maleic anhydride to dienyl donor-acceptor cyclopropane $\mathbf{1 p}$ in the presence of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ afforded $\mathbf{5 a}$ in 96% yield. The compound $\mathbf{5 a}$ was fully characterized by using 2D NMR (Table S8 and Figure S8). We proposed that the initially formed cyclopentadiene $\mathbf{2 p}$ would react with maleic anhydride to provide $\mathbf{5 a}$. This was further ascertained by treating preformed $\mathbf{2 p}$ with maleic anhydride under a standard condition which afforded 5a in 96% yield and complete endo-selectivity. Due to secondary orbital interactions as shown in the transition state (TS-SIV) could be favored to provide the complete endo-selectivity in product 5a (Scheme S6).

Scheme S6. Nazarov cyclization followed by [4+2]-cycloaddition (Diels-Alder reaction)

1g. Attempts for [4+2]-cycloaddition with 1 p and styrene $\&$ imines:

After achieving [4+2]-cycloaddition products from dienyl donor-acceptor cyclopropane and aldehydes, we have attempted with styrene and imines under various conditions but without success. However, in this process we have isolated $\mathbf{s} 2 \mathbf{p}$ in the presence of $\mathrm{Yb}(\mathrm{OTf})_{3}$ or $\mathrm{Sc}(\mathrm{OTf})_{3}$ and majorly $\mathbf{2 p}$ in other reaction conditions (table shown below). The compound $\mathbf{s} \mathbf{2} \mathbf{p}$ is characterized based on the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS.

Reaction conditions Table

Entry	Reagent	Temperature	Solvent	Result \& Yield (\%)
1	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	$-78{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2p (90)
2	$\mathrm{Yb}(\mathrm{OTf})_{3}$	$-78 /-50{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	s2p (92)
3	SnCl_{4}	$-78{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2 p (85)
4	TiCl_{4}	$-78{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2p (89)
5	TfOH	$-78{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2p (82)
6	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$-78{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	s2p (88)
7	TFA	$-78{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2p (90)

2. General Materials and Methods:

Anhydrous solvents were dried and distilled by standard methods before use. Commercially available reagents were used without further purification unless otherwise specified. All the reactions were performed under an atmosphere of nitrogen or argon in ovendried glassware with magnetic stirring. Column chromatography was carried out using silica gel (60-120 or 100-200 or 230-400 mesh) and basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, and the column was eluted with ethyl acetate-petroleum ether or hexane. Visualization of the spots on TLC plates was achieved either by UV light or by staining in the plates in methanolic anisaldehyde-sulphuric acid-acetic acid or methanol-phosphomolybdic acid-sulphuric acid solution and charring on a hot plate. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR were recorded in a CDCl_{3} solvent on $500 \mathrm{MHz}, 400 \mathrm{MHz}, 300 \mathrm{MHz}$, and $75 \mathrm{MHz}, 100$ $\mathrm{MHz}, 125 \mathrm{MHz}$ spectrometers, respectively at ambient temperature. Chemical shifts are as δ values relative to internal $\mathrm{CHCl}_{3} \delta 7.26$ or TMS $\delta 0.0$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CHCl}_{3} \delta 77.0$ for ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR data is recorded as follows: chemical shift [multiplicity, coupling constant(s) J (Hz), relative integral] where multiplicity is defined as: $s=\operatorname{singlet} ; d=\operatorname{doublet} ; t=\operatorname{triplet} ; q=$ quartet; $d d=$ doublet of doublet; $d t=$ doublet of triplet; $d q=$ doublet of quartet; $t t=$ triplet of triplet; $d d d=$ doublet of doublet of doublet; $m=$ multiplet; $b r s=$ broad singlet; $b r d=$ broad doublet; $q q=$ quartet of quartet. FTIR spectra were recorded as KBr thin films or neat. Mass spectra were recorded for ESI and are given in mass units (m / z). High resolution mass spectra (HRMS) [ESI+] were obtained using either a TOF or a double focusing spectrometer. Melting points were determined using Cintex melting point apparatus. Single crystal X-ray data for the compounds were collected on Bruker Smart Apex CCD diffractometer and Bruker D8 QUEST.

3. Synthesis of Starting Materials

3a. Dienyl alcohols

Method A

S.No

General procedure for the synthesis of dienyl alcohol:

Method A: ${ }^{[1]}$ In a flame-dried flask purged with argon, 1-bromo-3,5-dimethoxybenzene (3.65 $\mathrm{g}, 16.83 \mathrm{mmol}$, 1.1 equiv) was dissolved in THF (35 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. n-Butyllithium solution ($10.5 \mathrm{~mL}, 16.83 \mathrm{mmol}, 1.1$ equiv, 1.6 M in hexanes) was added dropwise, and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 minutes. The desired aldehyde ($1.5 \mathrm{~g}, 15.3 \mathrm{mmol}, 1.0$ equiv, $)$ in THF (9 mL) was then added dropwise, and the reaction was stirred for an hour before it was allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$ over an additional 2-3 hours. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with a volume of saturated ammonium chloride solution equal to the volume of aryl bromide solution and diluted with an equivalent amount of water. The aqueous layer was extracted two times with EtOAc, and the combined layers were washed one time each with water and brine. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the crude product. Purification by using silica gel column chromatography with 10-20\% $\mathrm{EtOAc} /$ hexanes solution furnished the desired product $\mathbf{s 1}$ as shown in Scheme s1.

(E)-1-(3,5-Dimethoxyphenyl)-2-methylpent-2-en-1-ol (s1d):

Yield: 3.45 g , (95%); colorless oil; $\mathrm{R}_{f}=0.5$ (20% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.97(\mathrm{brs}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR (125 MHz, CDCl_{3}): $\delta 160.5,145.0,135.8,129.0,104.1,99.0,79.1,55.2,20.8,13.9,11.6 ;$
IR (Neat): $v_{\max } 3451,2960,2925,1594,1458,1426,1290,1202,1150,1059,1026,826,719$;
HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}-\mathrm{OH})^{+}$219.1373, found 219.1379.

(E)-1-(3,5-Dimethoxyphenyl)-2-methyl-3-phenylprop-2-en-1-ol (s1e):

Yield: 2.05 g , (96%); colorless oil; $\mathrm{R}_{f}=0.5$ ($20 \% \mathrm{EtOAc} /$ hexanes);
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (s, 1H), 3.77 (s, 6H), 2.31 (brs, 1H), $1.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 160.7,144.6,139.2,137.3,128.9,128.0,126.4,126.1,104.4,99.3$, 79.3, 55.2, 13.8; IR (Neat): $v_{\max } 3414,2922,2852,1593,1458,1427,1344,1291,1201,1150$, 1058, 920, 833, 753, 726; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}-\mathrm{OH})^{+}$267.1374, found 267.1379.

(E)-1-(3,5-Dimethoxyphenyl)-4-methyl-2-phenylpent-2-en-1-ol (s1f):

Yield: $1.81 \mathrm{~g},(92 \%)$; colorless oil; $\mathrm{R}_{f}=0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.91(\mathrm{~m}$, $2 \mathrm{H}), 6.43(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.66(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H})$, $2.25(\mathrm{~m}, 1 \mathrm{H}) 1.96(\mathrm{brs}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.4,144.7,140.1,137.8,136.5,129.3,127.8,126.8,104.5,99.5,78.4,55.2$, 27.7, 23.0; IR (Neat): $v_{\max } 3478,2955,2837,1595,1461,1427,1341,1292,1202,1152,1059$, 1032, 922, 840, 702; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 313.1804$, found 313.1803.

Cyclohexenyl(3, 5-dimethoxyphenyl)methanol (s1h):

Yield: 3.3 g , (97\%); colorless oil; $\mathrm{R}_{f}=0.4$ (15\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{t}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{brs}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{brs}$,

2H), 1.99-1.72 (m, 3H), 1.68-1.48 (m, 4H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.5,145.1,139.3$, 123.6, 104.2, 99.0, 78.1, 55.2, 24.9, 23.8, 22.4, 22.3; IR (Neat): $v_{\max } 3432,2924,2836,1594$, 1459, 1427, 1341, 1292, 1202, 1151, 1058, 1023, 916, 837, 731, 692; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 271.1297$, found 271.1304.

(3,5-Dimethoxyphenyl)(2,6,6-trimethylcyclohex-1-enyl)methanol (s1i):

Yield: $2.6 \mathrm{~g},(90 \%) ;$ colorless oil; $\mathrm{R}_{f}=0.4$ (15% EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.61$ (d, $J=2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.33(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 6 \mathrm{H}), 1.97(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{brs}, 0.7 \mathrm{H}), 1.71-1.57(\mathrm{~m}$, $2 \mathrm{H})$ 1.56-1.47 (m, 2H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $160.5,147.6,140.2,133.9,104.0,97.8,70.5,55.1,39.6,34.7,33.5,28.7,28.5,21.4,19.2$; IR (Neat): $v_{\max } 3506,2996,2952,2928,2865,2835,1594,1456,1425,1338,1287,1247,1202$, $1149,1060,1039,1013,995,921,832,732$; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ 313.1770, found 313.1774.
(3,5-Dimethoxyphenyl)((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2yl)methanol (s1j):

Yield: $1.85 \mathrm{~g},(97 \%) ; d r: 7: 3 ;$ colorless oil; $\mathrm{R}_{f}=0.5(15 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.52(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1.3 \mathrm{H}), 6.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.35(\mathrm{~m}, 0.7 \mathrm{H}), 6.35$ $(\mathrm{m}, 0.3 \mathrm{H}), 5.62(\mathrm{brs}, 0.7 \mathrm{H}), 5.62(\mathrm{brs}, 0.3 \mathrm{H}), 5.07(\mathrm{~s}, 0.7 \mathrm{H}), 5.02$ $(\mathrm{s}, 0.3 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.40-2.24(\mathrm{~m}, 3.3 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1.7 \mathrm{H}), 1.81(\mathrm{brs}, 0.7 \mathrm{H})$, $1.60(\mathrm{brs}, 0.3 \mathrm{H}), 1.21(\mathrm{~s}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.7 \mathrm{H})$, $0.78(\mathrm{~s}, 2 \mathrm{H}), 0.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 160.5,149.1,149.0,144.2,144.1$,
$119.3,118.2,104.6,104.2,99.5,99.2,76.5,55.2,42.2,42.1,40.7,40.6,37.7,37.6,32.0,31.8$, 31.2, 31.1, 26.0, 25.9, 21.2, 21.0; IR (Neat): $v_{\max } 3341,2920,2855,1585,1453,1376,1253$, 1170, 1130, 1021, 964, 845, 813, 747; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{M}-\mathrm{H})^{+}$287.1637, found 287.1641.

General procedure for the synthesis of dienyl alcohols from Method B:

Method B:

General Procedure for Method B: ${ }^{[2]}$ In a dry two-neck round bottom flask equipped with magnetic stirring bar, nitrogen inlet, reflux condenser, rubber septum, one iodine pinch and magnesium turnings ($1.8 \mathrm{~g}, 77.0 \mathrm{mmol}, 1.1$ equiv) was stirred with dry THF (70 mL). ($\boldsymbol{E} / \boldsymbol{Z}$) or (\boldsymbol{E}) 2-Bromo-2-butene ($7.1 \mathrm{~mL}, 70 \mathrm{mmol}, 1.0$ equiv) was added drop wise until exothermic
reaction began. On the completion of bromide reagent addition, the Grignard reagent was kept for reflux for 45 min and then stand for 3 h at rt . This Grignard reagent ($18.0 \mathrm{~mL}, 1.1$ equiv) was added to ice cooled solution of the desired aldehyde ($2.0 \mathrm{~g}, 16.12 \mathrm{mmol}, 1.0$ equiv) in dry THF $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and was stirred for 15 min . The reaction was monitored by TLC, after completion of the starting material, the reaction was quenched with aq $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc. The organic layer was washed with aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by using silica gel column chromatography (EtOAc/hexanes) to give dienol s1.

2-Methyl-1-(naphthalen-2-yl)but-2-en-1-ol (s1m):

Yield: $1.26 \mathrm{~g},(93 \%)$; yellow oil; $\mathrm{R}_{f}=0.4(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 3 \mathrm{H})$, $5.97(\mathrm{~s}, 0.8 \mathrm{H}), 5.79(\mathrm{q}, J=6.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.53(\mathrm{q}, J=6.9 \mathrm{~Hz}, 0.8 \mathrm{H})$, $5.31(\mathrm{~s}, 0.2 \mathrm{H}), 2.00(\mathrm{brs}, 1 \mathrm{H}), 1.88(\mathrm{qd}, J=2.8,1.3 \mathrm{~Hz}, 2.5 \mathrm{H}), 1.70$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 2.5 \mathrm{H}), 1.52(\mathrm{~s}, 0.5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $140.0,137.4,137.0,133.2,132.7,132.6,127.9,127.8,127.5,125.9,125.6,124.6,124.5,124.0$, $123.8,122.8,121.7,79.4,70.6,17.4,13.4,13.2,11.7$; IR (Neat): $v_{\max } 3376,3054,2968,2920$, 2856, 1632, 1601, 1508, 1452, 1439, 1375, 1269, 1157, 1119, 1056, 1015, 858, 820, 789, 757; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{15}(\mathrm{M}-\mathrm{OH})^{+} 195.1175$, found 195.1170.

2-Methyl-1-(thiophen-2-yl)but-2-en-1-ol (s1o):

Yield: 2.83 g , (94\%); yellow oil; $\mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathbf{H}$
NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19(\mathrm{~m}, 0.6 \mathrm{H}), 7.01-6.82(\mathrm{~m}, 2.4 \mathrm{H}), 5.89$
$(\mathrm{d}, J=3.7 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.69(\mathrm{q}, J=1.2 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.43(\mathrm{~m}, 0.8 \mathrm{H}), 5.30$
(s, 0.2H), $2.54(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.50(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.2 \mathrm{H}) 1.80-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.65(\mathrm{~m}$, $0.5 \mathrm{H}), 1.58(\mathrm{~m}, 0.5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.0,146.8,137.0,136.0,126.6,126.5$, $124.5,124.2,123.9,123.1,122.4,121.4,75.6,68.1,17.4,13.0,11.6$; IR (Neat): $v_{\max } 3420,2973$, 2929, 2871, 1659, 1441, 1365, 1314, 1269, 1245, 1172, 1071, 1047, 965, 853, 819, 691; HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{OS}(\mathrm{M}-\mathrm{H})^{+} 167.0524$, found 167.0525.

3b. Synthesis of dienyl ketones from dienyl alcohols

General procedure for the synthesis of dienyl ketones s2 from s1: ${ }^{[2]}$

To the dienyl alcohol (\boldsymbol{E})-1-(3,5-Dimethoxyphenyl)-2-methylpent-2-en-1-ol (s1d) (1.40 g, 4.861 mmol , 1.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added $\mathrm{BaMnO}_{4}(2.50 \mathrm{~g}, 9.722 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred at rt . The reaction was monitored by TLC and after completion of the starting material, the reaction mixture was filtered through celite. The solvent was evaporated under reduced pressure, and the residue was purified by using silica gel column chromatography to afford dienone s2d.

(E)-1-(3,5-Dimethoxyphenyl)-2-methylpent-2-en-1-one (s2d):

Yield: 2.8 g , (95\%); colorless oil; $\mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} /$ hexanes);
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{tq}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.31-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.1,160.0,147.8,140.4,135.4,106.8,103.2,55.1,22.1,12.7$, 11.9; IR (Neat): $v_{\max } 2964,2925,1646,1588,1454,1423,1343,1321,1203,1152,1061,1038$, 926, 842, 746; HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$235.13285, found 235.13287.
(E)-1-(3,5-Dimethoxyphenyl)-2-methyl-3-phenylprop-2-en-1-one (s2e):

Yield: $1.62 \mathrm{~g},(91 \%)$; white solid; m.p. $65-67{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.6(10 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.45-7.30 (m, $5 \mathrm{H}), 7.23(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.9,160.4,142.1,140.3,136.5,135.6,129.6,128.5,128.3,107.2,103.8$,
55.4, 14.3; IR (Neat): $v_{\max }$ 2922, 2851, 1644, 1588, 1453, 1423, 1321, 1203, 1152, 1062, 1022, 925, 837, 761, 691; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$283.1329, found 283.31328 .
(E)-1-(3,5-Dimethoxyphenyl)-4-methyl-2-phenylpent-2-en-1-one (s2f):

Yield: $1.1 \mathrm{~g},(90 \%)$; colorless oil; $\mathrm{R}_{f}=0.6(10 \% \mathrm{EtOAc} /$ hexanes $)$;
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}) 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 196.7,160.3,151.2,140.1,138.9,136.2,129.2,128.1,127.3,107.4,104.4$, 55.4, 28.6, 22.3; IR (Neat): $v_{\max } 2960,2933,1657,1590,1455,1424,1347,1294,1204,1154$, 1063, 1042, 843, 763, 707; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$311.1638, found 311.1641.

Cyclohexenyl(3,5-dimethoxyphenyl)methanone (s2h):

Yield: 3.2 g , (92%); colorless oil; $\mathrm{R}_{f}=0.5$ ($10 \% \mathrm{EtOAc} /$ hexanes);
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~m}$,
$1 \mathrm{H}), 6.56(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 2 \mathrm{H})$, 2.28-2.22 (m, 2H), 1.75-1.68 (m, 2H), 1.68-1.62 (m, 2H); ${ }^{13} \mathbf{C}$

NMR (125 MHz, CDCl_{3}): $\delta 197.5,160.2,144.0,140.5,138.3,106.8,103.1,55.3,25.9,23.7$, 21.8, 21.5; IR (Neat): $v_{\max }$ 2932, 2857, 2839, 1643, 1587, 1453, 1422, 1294, 1202, 1152, 1061, 988, 916, 785, 745, 704, 683; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$247.1322, found 247.1328.

(3,5-Dimethoxyphenyl)(2,6,6-trimethylcyclohex-1enyl)methanone (s 2 i):

Yield: 1.6 g , (92%); white solid; m.p. $97-99^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5\left(10 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) 1.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 200.7,160.6,139.9,139.0,131.3,106.5,104.8,55.2,38.5,33.6,30.9,28.6,21.4$, 18.7; IR (Neat): $v_{\max } 2955,2930,2866,1662,1590,1457,1426,1349,1295,1204,1154,1064$, 956, 845, 761, 727; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$289.1792, found 289.1798.

(3,5-Dimethoxyphenyl)((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methanone ($\mathbf{s} 2 \mathrm{j}$):

Yield: $1.3 \mathrm{~g}, \quad(93 \%) ;$ colorless oil; $\mathrm{R}_{f}=0.5(10 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$, $2.96(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) 2.60-2.40(\mathrm{~m}, 3 \mathrm{H}) 2.18(\mathrm{brs}, 1 \mathrm{H}) 1.37(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 195.0,160.3,148.3$, $140.1,140.0,107.1,103.5,55.4,41.4,40.2,37.6,32.6,31.2,25.8,20.8$; IR (Neat): $v_{\max } 2933$, $2885,2838,1642,1590,1454,1423,1363,1314,1295,1204,1155,1064,1042,926,841,791$, 754, 722; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$287.1656, found 287.1641.

Scheme s3: Synthesis of s2g

Step 1: $\mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12.5 \mathrm{~mL}, 12.37 \mathrm{mmol}, 1.2$ equiv) and diisopropylethylamine (DIPEA) ($2.5 \mathrm{~mL}, 14.42 \mathrm{mmol}, 1.4$ equiv) were successively added to a stirred solution of $\mathbf{1 - (3 ,}$

5-dimethoxyphenyl) propan-1-one (sg) ${ }^{[3]}\left(2.0 \mathrm{~g}, 10.30 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ under an argon atm. After 30 min , acetone ($1.15 \mathrm{~mL}, 15.45 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL) was added to the reaction mixture, and stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ and extracted twice with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The obtained crude oil was purified by using silica gel column chromatography to give ($\mathbf{s} \mathbf{1 g}, 2.2 \mathrm{~g}, 85 \%$) as a yellow oil.

1-(3,5-Dimethoxyphenyl)-3-hydroxy-2,3-dimethylbutan-1-one (s1g):

$\mathrm{R}_{f}=0.4(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.08$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.42(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}) 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~S}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.9,160.9,138.7,106.1,105.5,71.6$,
55.5, 48.0, 29.4, 26.9, 13.3; IR (Neat): $v_{\max } 3491,2972,2937,2840,1666,1590,1456,1425$, 1356, 1292, 1204, 1154, 1062, 1007, 948, 925, 843, 780, 715, 675; HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$275.1251, found 275.1253.

Step 2: A round-bottomed flask was charged with alcohol $\mathbf{s 1 g}(1.0 \mathrm{~g}, 3.968 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resulting solution was stirred and cooled to $0{ }^{\circ} \mathrm{C}$. Then, sequentially $\mathrm{Et}_{3} \mathrm{~N}(5.5 \mathrm{~mL}, 39.68 \mathrm{mmol}, 10.0$ equiv) and methane sulfonyl chloride ($1.25 \mathrm{~mL}, 15.872 \mathrm{mmol}$, 4.0 equiv) were added. The resulting solution was stirred at rt until TLC showed complete consumption of starting material. The resulting suspension was diluted with EtOAc (200 mL), quenched with saturated aq NaHCO_{3}, extracted with EtOAc and washed with saturated aq NaCl solution. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in
vacuo. We proceeded to the next step without column purification. To the crude compound (1.1 $\mathrm{g}, 4.7 \mathrm{mmol}, 1.0$ equiv) in dry THF (25 mL), DBU ($1.40 \mathrm{~mL}, 9.40 \mathrm{mmol}, 2.0$ equiv) was added at rt and stirred $65{ }^{\circ} \mathrm{C}$ for 8 h . After completion of the starting material, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with EtOAc and washed with aq NaCl solution. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The obtained crude oil was purified by using silica gel column chromatography to give $\mathbf{~} \mathbf{2 g}(800 \mathrm{mg}, 86 \%)$ as a white solid, m.p. $68-70{ }^{\circ} \mathrm{C}$.

1-(3,5-Dimethoxyphenyl)-2,3-dimethylbut-2-en-1-one (s2g):

$\mathbf{R}_{f}=0.6(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.02$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 1.86(\mathrm{~s}$, $3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) 1.61(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 201.2,160.8,138.7,133.4,129.5,106.9,105.1,55.5,22.3$, 20.0, 16.5; IR (Neat): $v_{\max }$ 2999, 2931, 2857, 2839, 1664, 1589, 1455, 1425, 1375, 1347, 1317, $1300,1154,1063,1013,925,845,773,755,679$; HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{H})^{+}$ 257.1144, found 257.1148.

Modified procedure for Synthesis of ketone (s2n):

To an dienyl alcohol (E)-2-methyl-1-(pyridin-2-yl)but-2-en-1-ol (s1n) ${ }^{[4]}(1.5 \mathrm{~g}, 9.202 \mathrm{mmol}$, 1.0 equiv) solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Then Dess-Martin periodinane (DMP)
($4.3 \mathrm{~g}, 10.12 \mathrm{mmol}, 1.2$ equiv) was added portionwise. The reaction mixture was slowly warmed to rt . The reaction was monitored by TLC, and after completion of starting material, the reaction mixture was filtered through Celite. The organic solution was washed with aq NaHCO_{3} solution, brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by using silica gel column chromatography to afford pure dienone.

(E)-2-Methyl-1-(pyridin-2-yl)but-2-en-1-one (s2n):

Yield: 1.25 g , (84%); yellow oil; $\mathrm{R}_{f}=0.5$ ($15 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.73(\mathrm{dq}, J=1.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dt}, J$ $=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{tq}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=5.9$, $4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{qq}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{dq}$, $J=3.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.5,153.6,148.6,136.4,135.7,129.0$, 126.0, 122.3, 20.3, 14.8; IR (Neat): $v_{\max } 3052,2921,1652,1581,1567,1458,1434,1351,1271$, 1235, 955, 886, 747, 706; HRMS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ON}(\mathrm{M}+\mathrm{H})^{+}$162.0921, found 162.0913 .

3c. Synthesis of Dienyl Donor-Acceptor Cyclopropanes from Dienyl ketones

Step 1
Step 2
Step 3
S.No.
1.

2.

3.

4.

5.

6.

7.

8.

S.No.
9.

10.

11.

12.

13.

14.
:15.

Cyclopropane Diesters

General procedure for synthesis of 1:

Compound 1 was synthesized from Step 1, Step 2 and Step 3 following reported procedures. ${ }^{[5,6]}$

Step 1: To a stirred solution of (\boldsymbol{E})-1-(3,5-dimethoxyphenyl)-2-methylbut-2-en-1-one (s2a) (synthesized from the reported procedure $)^{[2]}(3.60 \mathrm{~g}, 16.36 \mathrm{mmol}, 1.0$ equiv) in THF (82 mL) under argon at $-78{ }^{\circ} \mathrm{C}$ was added (trimethylsilyl)methyllithium solution $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{Li}\right)(1 \mathrm{M}$ in pentane, $25.0 \mathrm{~mL}, 24.54 \mathrm{mmol}, 1.5$ equiv) drop wise. The reaction mixture turned to yellow color, and the reaction was monitored by using TLC. When the starting material completed, the reaction mixture was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, followed by the addition of water $(10 \mathrm{~mL})$ and hexanes $(20 \mathrm{~mL})$. The separated aqueous phase was extracted with hexanes (300 mL), and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The yellow color oil residue was enough to keep next reaction without further purification.

Step 2: To a stirred solution of alcohol s2a' $(4.50 \mathrm{~g}, 14.61 \mathrm{mmol}, 1$ equiv) in THF (73 mL) under argon at $0{ }^{\circ} \mathrm{C}$ was added KHMDS (0.5 M in toluene, $58.5 \mathrm{~mL}, 29.22 \mathrm{mmol}, 2.0$ equiv) drop wise. The reaction mixture turned to dark color, and when the starting material was consumed completely (monitored by using TLC), it was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (30 mL), and hexanes $(50 \mathrm{~mL})$. The separated aqueous phase was extracted with hexanes (300 mL) and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The dark color residue was purified by flash column chromatography by using basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, hexanes as an eluent (500 mL) to give olefin $\mathbf{s 2} \mathbf{a}^{\prime \prime}$ as a pale yellow oil. This purity is enough to proceed the next step.

Step 3: A solution of dimethyl 2-diazomalonate ($2.93 \mathrm{~g}, 18.57 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) was added drop wise over 15-20 minutes to a green color solution of olefin s2a" (2.70 g , $12.38 \mathrm{mmol}, 1.0$ equiv) and bis[rhodium ($\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl-1,3-benzenedipropionic acid)] (19 $\mathrm{mg}, 24.7 \mu \mathrm{~mol}, 0.2 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred up to $2-3 \mathrm{~h}$ at same temperature and monitored by TLC, when the starting material was completed the solution was concentrated under the reduced pressure. The residue was purified by using silica gel column chromatography to afford dienyl cyclopropane-1,1-dicarboxylate 1a as a yellow oil.
(E)-Dimethyl2-(but-2-en-2-yl)-2-(3,5-dimethoxyphenyl)cyclopropane-1,1-dicarboxylate(1a):

Yield: 3.7 g , (85%); yellow oil; $\mathrm{R}_{f}=0.4\left(20 \%\right.$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.7,167.5,160.3,141.0,132.5,125.0,106.7,99.1,55.2,52.5,52.2,44.7$, 41.3, 25.2, 22.6, 14.9; IR (Neat): $v_{\max }$ 2998, 2950, 2840, 1735, 1597, 1456, 1433, 1318, 1236, 1156, 1120, 1097, 1068, 830, 698; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$371.1472, found 371.1465 .
(E)-Diethyl 2-(but-2-en-2-yl)-2-(3,5-dimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1b):

Compound 1b was synthesized from the ketone $\mathbf{s} 2 \mathbf{a}^{[2]}$ by following the standard procedure. Yield: 450 mg , (86%); greenish oil; $\mathrm{R}_{f}=0.4$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{qq}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.82(\mathrm{dq}, J=7.0,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H}) 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}): $\delta 168.3,167.0,160.3,141.1,132.6,124.9,106.9,99.1$, 61.4, 61.1, 55.2, 44.3, 41.5, 24.8, 22.7, 14.9, 13.9, 13.6; IR (Neat): $v_{\max } 2980,2936,1832,1729$, 1593, 1456, 1424, 1369, 1312, 1204, 1153, 1122, 1095, 1066, 1032, 832, 772; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$377.1981, found 377.1958.
(E)-Dibenzyl

2-(but-2-en-2-yl)-2-(3,5-dimethoxyphenyl)cyclopropane-1,1dicarboxylate(1c): Compound 1c was synthesized from the ketone $\mathbf{s 2 a}{ }^{[2]}$ by following the standard procedure. Yield: 320 mg , (70\%); yellow oil; $\mathrm{R}_{f}=0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.28-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.96(\mathrm{~m}$, $2 \mathrm{H}), 6.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=$
6.7 Hz, 1H), $5.08(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) 1.50(\mathrm{~s}, 3 \mathrm{H})$, $1.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,167.1,160.2,135.3,133.8$, $128.4,128.3,128.2,128.1,128.0,127.9,123.4,107.4,99.1,67.2,67.1,55.2,50.5,41.0,23.7$, 15.1, 13.5; IR (Neat): $v_{\max } 2954,2923,2852,1731,1593,1455,1424,1377,1307,1205,1154$, 1116, 1037, 966, 845, 750, 697; HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 523.2111$, found 523.2091.
(\boldsymbol{E})-Dimethyl 2-(3,5-dimethoxyphenyl)-2-(pent-2-en-2-yl)cyclopropane-1,1-dicarboxylate

(1d): Compound 1d was synthesized from the ketone s2d by following the standard procedure. Yield: 260 mg , (83%); colorless oil; $\mathrm{R}_{f}=0.4\left(20 \%\right.$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{tq}, J=7.0$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}) 2.02-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 167.8,167.7,160.1,141.7,132.5,130.7,107.3,99.1,55.2,52.3,52.2,50.0,41.1,23.2,21.2$, 15.1, 13.7; IR (Neat): $v_{\max }$ 2953, 2923, 2852, 1732, 1593, 1456, 1432, 1323, 1223, 1203, 1153, 1109, 1066, 844, 701; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 363.1795$, found 363.1802.
(E)-Dimethyl 2-(3,5-dimethoxyphenyl)-2-(1-phenylprop-1-en-2-yl)cyclopropane-1,1-
 dicarboxylate (1e): Compound $\mathbf{1 e}$ was synthesized from the ketone s2e by following the standard procedure. Yield: 260 mg , (85%); colorless oil; $\mathrm{R}_{f}=0.4$ ($20 \% \mathrm{EtOAc} /$ hexanes) $;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.65$ $(\mathrm{s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) 1.90(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 167.7,167.5,160.2,141.1,137.2,136.2,128.7,128.4$, $127.9,126.5,107.4,99.2,55.2,52.4,52.3,50.4,41.1,23.6,16.9$; IR (Neat): $v_{\max } 3021,2950$, 2839, 1731, 1592, 1433, 1324, 1225, 1203, 1154, 1115, 748, 697; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$411.17905, found 411.1802.
(E)-Dimethyl 2-(3,5-dimethoxyphenyl)-2-(3-methyl-1-phenylbut-1-enyl)cyclopropane-1,1-

dicarboxylate (1f): Compound $\mathbf{1 f}$ was synthesized from the
ketone s2f by following the standard procedure. Yield: 350 mg , (90%); colorless oil; $\mathrm{R}_{f}=0.4$ ($20 \% \mathrm{EtOAc} / \mathrm{hexanes);}{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H})$, $6.43(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, $6 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=$ 6.7 Hz, 3H), $0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.7,166.9,159.9$, $141.3,140.1,139.6,135.7,128.5,127.7,126.6,107.3,99.5,55.1,52.3,52.1,48.2,43.5,28.2$, 22.6, 22.4, 22.1; IR (Neat): $v_{\max } 2953,2926,2864,1736,1595,1458,1433,1327,1223,1204$, 1155, 1103, 1070, 1039, 837, 703; HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$461.1928, found 461.1934.

Dimethyl
2-(3,5-dimethoxyphenyl)-2-(3-methylbut-2-en-2-yl)cyclopropane-1,1dicarboxylate (1g): Compound $\mathbf{1 g}$ was synthesized from the ketone $\mathbf{~} \mathbf{2} \mathbf{g}$ by following the standard procedure. Yield: 300 mg , (74%); colorless oil; $\mathrm{R}_{f}=0.5$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{brs}, 1 \mathrm{H}), 2.07$ (brs, 1H), $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ 168.7, 167.6, $160.2,141.6,130.8,125.0,106.3,98.8,55.1,52.4,52.1,47.5,43.5,21.7,21.0,18.8$; IR (Neat): $v_{\max } 2999,2949,2923,2854,1731,1594,1455,1433,1331,1267,1227,1205,1156,1117$, 1068, 1040, 843, 769, 695; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$363.1819, found 363.1815.

Dimethyl 2-cyclohexenyl-2-(3,5-dimethoxyphenyl)cyclopropane-1,1-dicarboxylate (1h):
 Compound 1h was synthesized from the ketone s2h by following
the standard procedure. Yield: 385 mg , (80%); colorless oil; $\mathrm{R}_{f}=0.4$ (20% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.41(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 5.76$ (brs, 1H), 3.73 (s, 6H), 3.69 (s, $3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}$, 3H) $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.8,167.8$, $160.1,141.7,135.5,125.4,107.4,99.0,55.2,52.4,52.2,49.1,40.8,27.2,25.4,22.7,22.6,22.0$; IR (Neat): $v_{\max } 2925,2853,1730,1592,1432,1320,1220,1202,1153,1110,1065,1034,892$, 839, 701; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 375.1795$, found 375.1802 .

Modified Procedure for Synthesis of (1i):

Step 1: Compound $\mathbf{s 2 i}$ " was prepared following a reported procedure. ${ }^{[7]}$ To a stirred solution of dienone s2i ($1.0 \mathrm{~g}, 3.4722 \mathrm{mmol}$, 1 equiv) in dry THF $(17 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(3.25$ $\mathrm{mL}, 1.6 \mathrm{M}$ in hexanes, 1.5 equiv) drop wise and the reaction mixture was stirred for $1-2 \mathrm{~h}$ at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was monitored by using TLC, and it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and extracted with EtOAc (100 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The obtained crude oil was purified by using silica gel column chromatography to give alcohol s2i' as a white solid (980 mg , 93\%).

1-(3,5-Dimethoxyphenyl)-1-(2,6,6-trimethylcyclohex-1-enyl)ethanol (s2i'):

$\mathrm{R}_{f}=0.4$ ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$); m.p. $102-104{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 0.7 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.0-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$, $1.70-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 160.7,153.3,142.5,129.2,104.1,97.8,79.2,55.2,44.8,35.9,34.9$, 29.9, 29.3, 28.3, 23.3, 19.2; IR (Neat): $v_{\max } 3515,2998,2928,2864,1596,1457,1423,1206$, 1154, 1058, 1047, 850, 718; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2}(\mathrm{M}-\mathrm{OH})^{+}$287.2003, found 287.2005.

Step 2: The resulting alcohol s2i' ($1.0 \mathrm{~g}, 3.289 \mathrm{mmol}, 1$ equiv) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(16.5 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ with an ice/water bath. To this stirred solution was added $\mathrm{Et}_{3} \mathrm{~N}(2.3$ $\mathrm{mL}, 16.4 \mathrm{mmol}, 5$ equiv) and methane sulfonyl chloride ($0.65 \mathrm{~mL}, 8.223 \mathrm{mmol}, 2.5$ equiv) sequentially. The reaction mixture was monitored by using TLC, and it was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with hexanes and washed with saturated aq NaCl solution. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude oil was purified by using basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ flash column chromatography (hexanes as an eluent) to give olefin $\mathbf{s} \mathbf{2} \mathbf{i}^{\prime \prime}$ as a colorless oil. This purity was good enough to proceed next step.

Step 3: Synthesis of cyclopropane-1,1-dicarboxylate $\mathbf{1 i}$ was achieved from olefin s2i" following the standard procedure. ${ }^{[6]}$

Dimethyl 2-(3,5-dimethoxyphenyl)-2-(2,6,6-trimethylcyclohex-1-enyl)cyclopropane-1,1-

 dicarboxylate (1i):

Yield: 285 mg , (78\%); colorless oil; $\mathrm{R}_{f}=0.4(20 \%$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.35$ (d, $J=2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.29(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.35$ $(\mathrm{s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.7$, $167.7,160.2,141.9,134.6,132.1,105.6,98.5,55.1,52.3,52.1,44.7,42.3,41.9,35.6,32.4,29.4$, 28.9, 22.9, 21.9, 18.6; IR (Neat): $v_{\max }$ 2928, 2866, 1736, 1596, 1458, 1434, 1320, 1299, 1204, 1155, 1042, 828; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$439.2083, found 439.2091.

Dimethyl 2-(3,5-dimethoxyphenyl)-2-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-
 yl)cyclopropane-1,1-dicarboxylate (1j): Major (Bottom) Compound $\mathbf{1} \mathbf{j}$ was synthesized from the ketone $\mathbf{~} \mathbf{2} \mathbf{j}$ by following the standard procedure. Yield: 196 mg , (66%); colorless oil; R_{f} $=0.5(20 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;[\boldsymbol{\alpha}]^{\mathbf{D}}{ }_{\mathbf{3 1}}=\mathbf{- 1 2 . 0 0}(c=0.03550$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, 2H), $6.29(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H})$, 2.23-2.10 (m, 3H), $2.10(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, $0.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.8,167.6,160.1$, $145.4,141.2,121.7,107.4,99.1,55.3,52.4,52.3,47.8,45.5,41.4,40.3,37.7,31.5,31.3,26.1$, 21.7, 20.6; IR (Neat): $v_{\max }$ 2948, 2921, 2853, 1735, 1593, 1457, 1431, 1323, 1299, 1203, 1153, 1110, 1065, 1037, 836, 752, 700; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 437.1926$, found 437.1934.

Minor (top) Yield: 28 mg , (10%); colorless oil; $\mathrm{R}_{f}=0.5$ ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$); $[\boldsymbol{\alpha}]^{\mathbf{D}}{ }_{\mathbf{3 1}}=\mathbf{+ 5 1 . 2 5}$ $\left(c=0.0040, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.21(\mathrm{~m}, 2 \mathrm{H})$, $2.16(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,167.9,160.1$, $145.6,140.5,121.1,107.3,99.3,55.3,52.6,52.3,48.8,45.2,40.1,40.0,37.6,32.0,31.5,25.8$, 23.0, 20.2; IR (Neat): $v_{\max } 2952,2925,2857,1735,1596,1450,1424,1328,1290,1208,1156$, 1116, 1067, 1035, 839, 754, 703; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 415.2120$, found 415.2126.

Compound 1k was synthesized from the (E)-2-Methyl-1-phenylbut-2-en-1-one (s2k) (synthesized from the reported procedure) ${ }^{[8]}$ by following the standard procedure.

(\boldsymbol{E})-Dimethyl 2-(but-2-en-2-yl)-2-phenylcyclopropane-1,1-dicarboxylate (1k):

Yield: 325 mg , (85%); white solid; m.p. $62-64{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5(10 \%$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.27-7.22 (m, 2H), $7.20(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{qq}, J=6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=5.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.64(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.0,167.7,139.3$, $134.0,129.0,127.8,126.9,122.9,52.3,52.1,50.1,40.7,23.3,14.8,13.5$; IR (Neat): $v_{\max } 2950$,

2922, 1733, 1434, 1329, 1310, 1236, 1167, 1118, 1099, 1064, 754, 702; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 311.12528$, found 311.12779.

Compound 11 was synthesized from 1-(3-fluorophenyl)-2-methylbut-2-en-1-one (s2l) (synthesized from the reported procedure) ${ }^{[9]}$ by following the standard procedure.

Dimethyl 2-(but-2-en-2-yl)-2-(3-fluorophenyl)cyclopropane-1,1-dicarboxylate (11): (E+Z)

Yield: 220 mg , (90\%); colorless oil; $\mathrm{R}_{f}=0.5$ (10% EtOAc/hexanes);
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.92(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{q}, J=6.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.46(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.6 \mathrm{H})$, $3.74(\mathrm{~s}, 1.8 \mathrm{H}), 3.72(\mathrm{~s}, 1.2 \mathrm{H}), 3.45(\mathrm{~s}, 1.2 \mathrm{H}), 3.41(\mathrm{~s}, 1.8 \mathrm{H}), 2.34(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.13(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.09(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $0.6 \mathrm{H}), 1.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1.8 \mathrm{H}), 1.75(\mathrm{~s}, 1.8 \mathrm{H}), 1.63(\mathrm{~s}, 1.2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.45,167.7,167.6,167.2,163.3(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 161.3(\mathrm{~d}, J=$ $20.8 \mathrm{~Hz}), 141.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 141.2(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 135.0,132.0,129.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 129.2$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}), 125.4,124.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 123.6,116.1(\mathrm{~d}, J=21.8 \mathrm{~Hz})$, $115.5(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 52.5,52.4,52.3,52.2$, 49.4, 43.7, 41.6, 40.9, 24.7, 23.3, 22.4, 14.8, 13.5; IR (Neat): $v_{\max } 2951,2858,1733,1613,1486$, 1435, 1321, 1202, 1153, 1116, 884, 827, 700; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})^{+}$ 329.1155, found 329.1159.

Compound 1m was synthesized from 2-methyl-1-(naphthalen-2-yl)but-2-en-1-one (s2m) (synthesized from the reported procedure) ${ }^{[10]}$ by following the standard procedure.

Dimethyl 2-(but-2-en-2-yl)-2-(naphthalen-2-yl)cyclopropane-1,1-dicarboxylate (1m): (E+Z)

Yield: $670 \mathrm{mg},(90 \%)$; colorless oil; $\mathrm{R}_{f}=0.5(10 \% \mathrm{EtOAc} / \mathrm{hexanes})$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.40(\mathrm{~m}$, $3 \mathrm{H}), 5.75(\mathrm{qq}, J=6.8,1.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.45(\mathrm{qq}, J=7.0,1.3 \mathrm{~Hz}$, 0.8 H), 3.76 ($\mathrm{s}, 2.4 \mathrm{H}$), 3.75 ($\mathrm{s}, 0.6 \mathrm{H}$), 3.35 ($\mathrm{s}, 0.6 \mathrm{H}$), 3.29 ($\mathrm{s}, 2.4 \mathrm{H}$), $2.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.29(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.27(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.17(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 0.8 \mathrm{H}), 1.88(\mathrm{dq}, J=7.0,1.3 \mathrm{~Hz}, 2.4 \mathrm{H}), 1.80(\mathrm{~m}, 2.4 \mathrm{H}), 1.67(\mathrm{~m}, 0.6 \mathrm{H}), 1.56(\mathrm{dq}, J=6.8,1.3$ $\mathrm{Hz}, 0.6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}): $\delta 168.6,168.0,167.7,167.4,136.8,136.2,134.0$, $132.9,132.5,132.4,127.8,127.7,127.6,127.4,127.3,127.2,126.4,126.0,125.9,125.8,124.9$, 123.1, 52.5, 52.4, 52.1, 50.1, 44.6, 41.5, 40.9, 24.9, 23.4, 22.5, 14.9, 14.8, 13.5; IR (Neat): $v_{\max }$ 3054, 2933, 2949, 2920, 2860, 1731, 1504, 1434, 1318, 1232, 1193, 1114, 893, 859, 821, 802, 747; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$361.1407, found 361.1410.

Compound $\mathbf{1 n}$ was synthesized from the ketone $\mathbf{s} 2 \mathbf{n}$ by following the standard procedure.

(E)-Dimethyl 2-(but-2-en-2-yl)-2-(pyridin-2-yl)cyclopropane-1,1-dicarboxylate (1n):

Yield: $45 \mathrm{mg},\left(32 \%\right.$, brsm); yellow oil; $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{dt}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{ddd}, J=7.7,4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{qq}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.63$ $(\mathrm{qd}, J=6.7,1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (500 MHz, CDCl_{3}): $\delta 168.1,168.0,158.5,148.4,136.0$, $132.0,125.7,123.4,121.5,52.5,52.2,49.2,42.3,24.3,15.3,13.6$; IR (Neat): $v_{\max } 2950,2921$, $2853,1735,1586,1568,1467,1434,1347,1308,1236,1192,1107,1057,992,895,767,749$;

HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{NNa}(\mathrm{M}+\mathrm{Na})^{+} 312.1219$, found 312.1206.

Compound 10 was synthesized from 2-Methyl-1-(thiophen-2-yl)but-2-en-1-one (s2o) (synthesized from the reported procedure) ${ }^{[10]}$ by following the standard procedure.

Dimethyl 2-(but-2-en-2-yl)-2-(thiophen-2-yl)cyclopropane-1,1-dicarboxylate (10): (E+Z)

Yield: $235 \mathrm{mg},(75 \%)$; yellow oil; $\mathrm{R}_{f}=0.5\left(15 \%\right.$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 1 \mathrm{H})$, $6.79(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{dq}, J=6.8,1.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.50(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $0.8 \mathrm{H}), 3.71(\mathrm{~s}, 2.4 \mathrm{H}), 3.70(\mathrm{~s}, 0.6 \mathrm{H}), 3.46(\mathrm{~s}, 2.4 \mathrm{H}), 3.45(\mathrm{~s}, 0.6 \mathrm{H})$, $2.28(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.25(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.21(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.10(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 0.8 \mathrm{H}), 1.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2.4 \mathrm{H}), 1.79(\mathrm{~s}, 2.4 \mathrm{H}), 1.72(\mathrm{~s}, 0.6 \mathrm{H}), 1.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.6 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): δ 168.1, 167.6, 167.1, 166.9, 143.6, 143.3, 133.4, 132.7, 126.3, $126.2,125.7,125.6,125.1,125.0,124.6,52.5,52.3,44.3,43.2,39.3,25.4,24.3,22.3,15.1,14.8$, 13.5; IR (Neat): $v_{\max } 2950,2922,2853,1733,1434,1316,1298,1239,1217,1158,1115,894$, 855, 828, 772, 702; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})^{+}$317.0814, found 317.0818.

Compound 1p was synthesized from (1E,4E)-2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one ($\mathbf{s} 2 \mathbf{p}$) (which was synthesized from the reported procedure) ${ }^{[11]}$ by following the standard procedure.

Dimethyl 2,2-bis((E)-1-phenylprop-1-en-2-yl)cyclopropane-1,1-dicarboxylate (1p):

Yield: 8.95 g , (92%); green solid; recrystallization from EtOH yielded in a crystalline form m.p. $74-76{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5(10 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.31(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.20 (m, 6H), $6.59(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J$ $=1.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.9,137.4,134.2,129.6,128.7,128.0,126.5$, 53.3, 52.4, 41.8, 23.1, 16.7; IR (Neat): $v_{\max } 3023,2951,2923,2853,1735,1599,1492,1435$, $1378,1322,1235,1149,1115,1067,770,748,699$; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$ 391.1905, found 391.1904
4. Nazarov Cyclization of dienyl Donor-Acceptor Cyclopropanes (DACs)

Standard procedure for Nazarov cyclization:

Dienyl donor-acceptor cyclopropane 1,1-dicarboxylates 1a ($400 \mathrm{mg}, 1.149 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ under argon and cooled to $-78^{\circ} \mathrm{C}$. To this, boron trifluoride diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)(0.12 \mathrm{~mL}, 0.1149 \mathrm{mmol}, 0.1$ equiv) was added drop wise. The orange color reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 mins and brought to $0{ }^{\circ} \mathrm{C}$ over 1 h . The reaction mixture was quenched with the saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The aqueous phase was extracted with EtOAc, and the combined organic layers were washed with brine solution (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by using silica gel column chromatography to afford the desired product as colorless oil (2a).

Dimethyl 2-((5,7-dimethoxy-1,2-dimethyl-1H-inden-3-yl)methyl)malonate (2a):

Yield: 397 mg , (99\%); colorless oil; $\mathrm{R}_{f}=0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.43$ (d, $J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, 3H), 3.69 (s, 3H), 3.69 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}$), 3.23 $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=17.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}$, $J=17.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $169.5,169.4,160.6,155.6,148.6,46.3,130.5,126.8,96.1,94.7,55.5,55.1,52.4,52.3,50.4$, 45.5, 24.8, 14.5, 12.0; IR (Neat): $v_{\max }$ 2955, 2849, 1737, 1591, 1484, 1435, 1341, 1290, 1230, 1204, 1140, 1092, 1038, 825; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$349.1655, found 349.1645.

Diethyl 2-((5,7-dimethoxy-1,2-dimethyl-1H-inden-3-yl)methyl)malonate (2b): Compound 2b

was synthesized from the $\mathbf{1 b}$ by following the standard procedure. Yield: $82 \mathrm{mg},(96 \%)$; colorless oil; $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.45$ (d, $J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.14(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65$
$(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.18(\mathrm{~m}$, 9H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1,160.5,155.6,148.3,146.5,130.8,126.8,96.2,94.7$, $61.3,55.5,55.1,50.8,45.5,24.7,14.5,14.0,13.9,12.1$; IR (Neat): $v_{\max } 2979,2961,2930,2853$, 1733, 1592, 1484, 1464, 1368, 1333, 1270, 1226, 1141, 1094, 1039, 934, 830, 772; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 377.1983$, found 377.1958.

Dibenzyl2-((5,7-dimethoxy-1,2-dimethyl-1H-inden-3-yl)methyl)malonate (2c): Compound 2c
 was synthesized from 1c by following the standard procedure. Yield: $99 \mathrm{mg}, \quad(93 \%) ;$ colorless oil; $\mathrm{R}_{f}=0.6$ (15\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.26$ (m, $6 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}): $\delta 168.9,168.8,160.6,155.7,148.6,146.4,135.2,130.6$, $128.4,128.3,128.2,128.2,128.1,128.0,126.8,96.0,94.9,67.1,55.5,55.1,50.8,45.6,24.8$, 14.4, 12.1; IR (Neat): $v_{\max } 2958,2925,2853,1785,1735,1591,1483,1455,1205,1142,1037$, 772, 750, 697; HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$501.2292, found 501.2271.

Compound 2d was synthesized from 1d by following the standard procedure. Yield: $58 \mathrm{mg},(98 \%)$; colorless oil; $\mathrm{R}_{f}=$ 0.5 (20% EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.42(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dd}, J=8.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67$ (s, 3H), $3.36(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 0.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $169.4,160.4,155.6,147.4,146.1,132.2,124.1,95.9,94.5,55.4,55.0,52.4,52.3,50.9,50.4$, 24.9, 20.1, 12.1, 6.9; IR (Neat): $v_{\max } 2956,2923,2852,1734,1589,1454,1433,1359,1204$, 1138, 1037, 933, 823; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 363.1798$, found 363.1802.

Dimethyl 2-((5,7-dimethoxy-2-methyl-1-phenyl-1H-inden-3-yl)methyl)malonate
(2e):

Compound $\mathbf{2 e}$ was synthesized from $\mathbf{1 e}$ by following the standard procedure. Yield: 120 mg , (96%); colorless oil; $\mathrm{R}_{f}=$ 0.5 (20% EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.23-7.13 (m, 3H), 6.98-6.93 (m, 2H), $6.49(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J$ $=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=14.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $(\mathrm{dd}, J=14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.4,161.6,155.6$, $147.8,147.1,139.6,132.0,128.1,127.9,126.5,126.1,96.4,95.5,56.9,55.5,55.4,52.6,52.5$, 50.4, 25.0, 12.5; IR (Neat): $v_{\max }$ 2922, 2851, 1735, 1591, 1434, 1271, 1204, 1151, 1037, 827, 755, 700; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 411.1794$, found 411.1802 .

Dimethyl 2-((1-isopropyl-5,7-dimethoxy-2-phenyl-1H-inden-3-yl)methyl)malonate (2f):

Compound 2 f was synthesized from $\mathbf{1 f}$ by following the standard procedure. Yield: 142 mg ,
 (94%); colorless oil; $\mathrm{R}_{f}=0.5$ (20% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{t}, ~, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}$, $3 \mathrm{H}), 6.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=8.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=14.3,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.51(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl_{3}): $\delta 169.4,169.1,160.5,155.8,149.5,146.9,137.7,134.2$, $128.9,128.2,126.9,125.1,96.8,95.8,56.8,55.5,55.0,52.4,52.3,50.7,28.5,24.8,20.0,18.2$; IR (Neat): $v_{\max }$ 2953, 2925, 2853, 1736, 1601, 1586, 1462, 1436, 1334, 1206, 1151, 1046, 827, 703; HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 439.2130$, found 439.2115 .

Dimethyl 2-((5,7-dimethoxy-1,1,2-trimethyl-1H-inden-3-yl)methyl)malonate (2g):
 Compound $\mathbf{2 g}$ was synthesized from $\mathbf{1 g}$ by following the standard procedure. Yield: 132 mg , (97%); colorless oil; $\mathrm{R}_{f}=$ 0.5 (20% EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H})$, $3.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$,
$1.83(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,160.4,155.6,153.1,144.8$, $131.0,128.5,96.0,94.8,55.5,55.0,52.3,52.3,50.3,49.9,24.8,21.3,21.3,9.4 ;$ IR (Neat): $v_{\max }$ 2955, 2929, 2840, 1736, 1590, 1484, 1433, 1353, 1341, 1283, 1228, 1205, 1150, 1091, 1038, 933, 825, 677; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 385.1622$, found 385.1621.

Compound $\mathbf{2 h}$ was synthesized from $\mathbf{1 h}$ by following the standard procedure. Yield: 118 mg , (96%); colorless oil; $\mathrm{R}_{f}=$ $0.5(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.47$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82$ (s, 3H), $3.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.11$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $(\mathrm{td}, J=13.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{qt}, J=$ $13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{qt}, J=13.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{qd}, J=12.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}): $\delta 169.4,160.5,155.9,150.7,146.7,127.5,125.8,96.3,94.6,55.5,55.1$, 52.4, 52.3, 50.8, 48.4, 31.8, 28.1, 26.6, 25.4, 24.4; IR (Neat): $v_{\max } 2925,2852,1734,1603,1588$, 1481, 1433, 1327, 1272, 1202, 1139, 1036, 933, 827; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 375.1797, found 375.1802.

Dimethyl2-((5,7-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1H-fluoren-9-

$\mathbf{y l}$)methyl)malonate (2i): Compound $\mathbf{2 i}$ was synthesized from
 1i by following the standard procedure. Yield: 109 mg , (97%); colorless oil; $\mathrm{R}_{f}=0.5$ ($20 \% \mathrm{EtOAc} /$ hexanes) ${ }^{1} \mathbf{H} \mathbf{N M R}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.44(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=14.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.52$ $(\mathrm{m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{td}, J=13.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,169.5,160.0,159.7$, 155.0, 145.1, 132.5, 127.9, 96.1, $95.4,55.5,55.1,52.5,52.2,52.0,51.8,43.9,36.9,34.2,33.0,26.3,26.1,22.3,18.9$; IR (Neat):
$v_{\max } 2923,2851,1753,1737,1601,1484,1463,1436,1346,1251,1201,1150,826 ;$ HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 439.2078$, found 439.2091.

Compound $\mathbf{2 j}$: Compound $\mathbf{2} \mathbf{j}$ was synthesized from $\mathbf{1 j}$ by following the standard procedure.

Yield: 165 mg , (95\%); colorless oil; $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes $) ;[\boldsymbol{\alpha}]^{\mathbf{D}}{ }_{\mathbf{3 2}}=+30.17\left(c=0.0175, \mathrm{CHCl}_{3}\right)$; $($ The data of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR is also given in Table S1) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.47(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.79-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.64(\mathrm{~d}, \mathrm{~J}=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,160.4,158.0,155.5,147.9,126.0,125.6$, $96.0,94.4,55.6,55.2,52.4,52.3,50.9,46.2,44.3,42.4,39.9,39.6,29.9,28.3,24.7,23.7$; IR (Neat): $v_{\max } 2934,2839,1736,1603,1587,1459,1435,1323,1277,1203,1147,1044,932,827$;

HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$437.1933, found 437.1934.

Dimethyl 2-((1,2-dimethyl-1H-inden-3-yl)methyl)malonate (2k): Compounds $\mathbf{2 k} \boldsymbol{\&} \mathbf{2 k}^{\mathbf{\prime}}$ were
 synthesized from the $\mathbf{1 k}$ under the standard procedure. Yield: 78 mg , (78\%); colorless oil; $\mathrm{R}_{f}=0.5$ (10% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18$ (m, 2H), $7.14(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.24$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,169.4,148.2,146.7,144.0,131.0$, $126.3,124.0,122.3,117.8,52.5,52.4,50.3,47.1,24.8,15.8,12.0$; IR (Neat): $v_{\max } 2954,2923$, 2852, 1736, 1604, 1590, 1481, 1456, 1435, 1339, 1273, 1236, 1143, 1121, 1063; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$289.1432, found 289.1434.

Dimethyl 2,3-dimethyl-4-phenylcyclopent-3-ene-1,1-dicarboxylate ($\mathbf{2 k}^{\prime}$):

Yield: $16 \mathrm{mg},(16 \%) ;$ colorless oil; $\mathrm{R}_{f}=0.6(10 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.12$ (m , $5 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97$ (dqd, $J=16.1,1.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.6,170.9,137.1,136.8,130.7,128.0,127.6$, 126.5, 62.4, 52.7, 52.2, 49.9, 42.2, 13.8, 13.5; IR (Neat): $v_{\max }$ 2952, 2922, 2852, 1733, 1599, $1494,1459,1434,1377,1250,1198,1161,1059,763,700$; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}$289.1449, found 289.1445 .

Dimethyl 2-((5-fluoro-1,2-dimethyl-1H-inden-3-yl)methyl)malonate (21): Compounds $21 \boldsymbol{\&}$

21' were synthesized from $1 \mathbf{1}$ by following the standard procedure. Yield: 152 mg , (76%); colorless oil; $\mathrm{R}_{f}=0.5(10 \%$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23$ (dd, $J=$ $8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=9.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{ddd}, J=$ 9.4, 8.0, 2.3 Hz, 1H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.4,169.3,162.4(\mathrm{~d}, J=241.5 \mathrm{~Hz}), 149.3,146.0(\mathrm{~d}, J=8.1$ $\mathrm{Hz}), 143.4,130.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 110.3(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 110.2(\mathrm{~d}, J=23.6$ Hz), 52.6, 52.5, 50.3, 46.6, 24.7, 15.8, 12.3; IR (Neat): $v_{\max }$ 2956, 2922, 2850, 1736, 1612, 1475, 1450, 1277, 1041, 888, 858, 618; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})^{+}$329.11748, found 329.11596 .

Dimethyl 4-(3-fluorophenyl)-2,3-dimethylcyclopent-3-ene-1,1-dicarboxylate (21'):

Yield: $24 \mathrm{mg}, \quad(12 \%) ;$ colorless oil; $\mathrm{R}_{f}=0.6(10 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29$ (dd, $J=$ $6.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=10.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dqd}, J=16.1,1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$, $1.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,170.7,162.6(\mathrm{~d}, J=245.0 \mathrm{~Hz})$, $139.3(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 138.1,129.8,129.5(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 123.3(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 113.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 62.3,52.7,52.3,49.9,42.2,13.8,13.6$; IR (Neat): $v_{\max } 2953$, 2919, 2850, 1732, 1611, 1580, 1486, 1434, 1247, 1201, 1160, 1099, 1057, 869, 828, 784, 696; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})^{+}$329.11745, found 329.11596.

Compound $\mathbf{2 m}$ was synthesized from $\mathbf{1 m}$ by following the standard procedure. Yield: $144 \mathrm{mg},(96 \%)$; colorless oil; $\mathrm{R}_{f}=0.5$ (10% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=14.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): δ 169.5, 169.4, 147.5, 143.6, 141.2, 131.5, 131.2, 129.2, 129.1, $127.3,125.9,123.9,123.2,117.9,52.5,52.4,50.6,46.8,24.9,17.4,12.2$; IR (Neat): $v_{\max } 3052$, 2929, 2852, 1745, 1586, 1516, 1492, 1331, 1275, 1231, 1201, 1037, 1022, 969, 921, 862, 852, 749; HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 361.1407$, found 361.1410 .

Modified procedure for the synthesis of 2n from 1n: Dienyl donor-acceptor cyclopropane 1,1dicarboxylates (1n) (20 mg, 0.069 mmol , 1 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ under argon and cooled to $-78{ }^{\circ} \mathrm{C}$. To this, triflic acid ($0.03 \mathrm{~mL}, 0.346 \mathrm{mmol}, 5.0$ equiv.) was added drop wise. The dark color reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ further $2-3 \mathrm{~h}$ and brought to $0{ }^{\circ} \mathrm{C}$ over $1-2$ hours. The reaction mixture was quenched with the saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The aqueous phase was extracted with EtOAc $(10 \mathrm{~mL})$ and the combined organic layers were washed with brine solution (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The
residue was purified by using flash column chromatography to afford the desired product as yellow oil.

Dimethyl 2-((5,6-dimethyl-5H-cyclopenta[b]pyridin-7-yl)methyl)malonate (2n): Yield: (crude-15 mg, 78\%); yellow oil; $\mathrm{R}_{f}=0.4\left(20 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$

$8.38(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{dd}, J=7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{q}, J=7.7 \mathrm{~Hz}$, 1H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.5,169.4,149.1,135.2,128.3,128.3,119.8,118.8$, 114.0, 52.5, 52.4, 49.3, 44.7, 24.3, 18.8, 14.1; IR (Neat): $v_{\max }$ 2953, 2923, 2852, 1736, 1584, 1434, 1340, 1277, 1236, 1201, 1153, 1042, 910, 792, 753; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}$ $(\mathrm{M}+\mathrm{H})^{+} 290.1400$, found 290.1386 .

Dimethyl 2-((4,5-dimethyl-4H-cyclopenta[b]thiophen-6-yl)methyl)malonate (2o): Compound

2 o was synthesized from $\mathbf{1 0}$ by following the standard procedure. Yield: 116 mg , (89\%); colorless oil; $\mathrm{R}_{f}=0.5$ ($15 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.08$ (q, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.3,169.2,150.8,147.0,144.5,128.5,123.4$, $121.3,52.6,52.5,50.5,44.8,26.2,15.3,12.2$; IR (Neat): $v_{\max } 2955,2923,2852,1736,1606$, $1500,1435,1265,1231,1199,1152,1030,960,836,812 ;$ HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}$295.1016, found 295.0998 .

Compound $\mathbf{2 p}$ was synthesized from $\mathbf{1 p}$ by following the standard procedure. Yield: 112 mg , (94%); greenish oil; $\mathrm{R}_{f}=0.5(10 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=9.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=14.1$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.3,144.9,143.4,138.8,137.6,136.4,135.8,128.3,128.2,128.0,127.8$, 126.1, 125.6, 62.8, 52.6, 52.5, 51.2, 25.3, 12.8, 12.3; IR (Neat): $v_{\max } 2953,2921,2851,1735$, 1599, 1493, 1436, 1244, 1221, 1155, 1075, 1028, 771, 700; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 413.1715$, found 413.1723 .

5. Interrupted Nazarov cyclization of dienyl Donor -Acceptor Cyclopropanes

Standard Procedure for interrupted Nazarov cyclization: ${ }^{[12]}$

Dimethyl 2,2-bis((E)-1-phenylprop-1-en-2-yl)cyclopropane-1,1-dicarboxylate (1p) (1.025 mmol, 1 equiv) and nucleophile (Nu) (2.051 mmol , 2 equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) under argon. Then, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ (acetone/dry ice bath) and added $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ (1.127 mmol, 1.1 equiv) drop wise. The orange color reaction mixture was stirred at the same temperature for $2-3 \mathrm{~h}$ and was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The
aqueous layer was extracted with $\operatorname{EtOAc}(50 \mathrm{~mL})$, the combined organic layers were washed with brine solution (8 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed by rotary evaporation providing a crude residue that was purified by using silica gel column chromatography to provide the desired product.
(\pm)-Dimethyl 2-(((3S,4S,5R)-2,5-dimethyl-3,4-diphenylcyclopent-1-enyl)methyl)malonate (3a): (dr 9:1)

Yield: 80 mg , (80%); colorless oil; $\mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ $(\mathrm{dd}, J=13.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=13.9,6.3 \mathrm{~Hz}$, 1H), $2.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1}} \mathbf{C} \mathbf{~ N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 169.6,169.4,144.4,144.1,136.0,135.4,128.3,128.2,128.0,127.6,126.2,126.1$, 64.4, 63.0, 52.6, 52.4, 50.0, 48.8, 26.2, 18.8, 12.8; IR (Neat): $v_{\max } 3371,2956,2927,2866,1754$, 1737, 1493, 1461, 1441, 1361, 1119, 1073, 1053, 1029, 971, 945, 884, 771, 701; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 415.1871$, found 415.1880.

(\pm)-Dimethyl

2-(((3S,4S,5S)-5-allyl-2,5-dimethyl-3,4-diphenylcyclopent-1enyl)methyl)malonate (3b): Compound 3b was synthesized from 1p by following the standard procedure. Yield: 255 mg , (76%); colorless oil; $\mathrm{R}_{f}=0.6$ (10% EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.02(\mathrm{~m}, 10 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 4.92-4.80(\mathrm{~m}$, $2 \mathrm{H}), 4.07(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68$ (dd, $J=10.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J$
$=14.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, 1.20 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,169.5,143.3,138.3,138.1,137.9,135.6$, $129.5,128.3,128.1,127.8,126.4,126.1,116.7,66.4,57.1,53.0,52.5,52.4,51.6,41.4,26.1$, 24.8, 13.4; IR (Neat): $v_{\max } 2953,2923,2853,1736,1495,1452,1435,1288,1239,1198,1152$, 1042, 913, 767, 701, 615; HRMS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$455.2184, found 455.2193.
(\pm)-Dimethyl $\quad 2-(((3 S, 4 S)-2,5,5-t r i m e t h y l-3,4-d i p h e n y l c y c l o p e n t-1-e n y l) m e t h y l) m a l o n a t e ~$

(3c): Compound $\mathbf{3 c}$ was synthesized from $\mathbf{1 p}$ by following the standard procedure. Yield: 81 mg , (78%); colorless oil; $\mathrm{R}_{f}=0.6$ (10% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.22-6.93 $(\mathrm{m}, 10 \mathrm{H}), 3.93(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.62$ $(\mathrm{dd}, J=9.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=$ $14.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7$, $169.5,143.3,139.3,139.0,136.4,129.4,128.2,128.1,127.7,126.3,126.1,66.2,57.6,52.5,52.4$, 51.5, 49.5, 26.5, 25.3, 23.1, 13.3; IR (Neat): $v_{\max } 3026,2953,2922,2852,1735,1494,1435$, 1344, 1239, 1226, 1152, 1071, 1051, 768, 701, 601; HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 429.2024$, found 429.2036.

Compounds $\mathbf{3 d} \boldsymbol{\&} \mathbf{3 d} \mathbf{d}^{\prime}$ were synthesized from $\mathbf{1 p}$ by following the standard procedure.
(\pm)-Dimethyl 2-(((3S,4S,5S)-2,5-dimethyl-5-(1-methyl-1H-indol-3-yl)-3,4-diphenylcyclopent-

1-enyl)methyl)malonate (3d): Bottom (Major)- Yield: 74 mg ,
(56%); colorless oil; $\mathrm{R}_{f}=0.5$ (20% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.09(\mathrm{~m}$,
$8 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dt}, J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.4$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.7,169.6,142.8,139.0,138.5,138.0,137.4,128.9,128.6,128.3,127.7,127.2$, $126.5,126.2,126.0,121.3,120.8,119.2,118.7,109.4,63.9,55.6,53.1,52.3,50.6,32.7,26.4$, 20.8, 13.5; IR (Neat): $v_{\max } 2956,2920,2851,1736,1462,1370,1221,1156,1040,772,743$, 701; HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{NNa}(\mathrm{M}+\mathrm{Na})^{+} 544.2449$, found 544.2458.

(\pm)-Dimethyl

2-(((3S,4S,5R)-2,5-dimethyl-5-(1-methyl-1H-indol-3-yl)-3,4-

 diphenylcyclopent-1-enyl)methyl)malonate (3d'): Top (minor)

Yield: 55 mg , (41\%); colorless oil; $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.07$ (m, $6 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.28$ (brs, 1H), $4.01(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=14.1$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.8,169.4,143.4$, $139.1,138.9,138.0,137.3,129.2,128.2,128.1,127.8,127.6,126.9,126.0,125.8,120.7,1205$, 118.7, 116.7, 108.8, 68.5, 59.5, 55.0, 52.4, 52.3, 51.0, 32.5, 26.5, 13.5; IR (Neat): $v_{\max } 2954$, 2923, 2852, 1735, 1491, 1452, 1435, 1360, 1330, 1273, 1241, 1221, 1155, 740, 663; HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{NNa}(\mathrm{M}+\mathrm{Na})^{+} 544.2455$, found 544.2458 .

Compounds $\mathbf{3 e} \boldsymbol{\&} \mathbf{3} \mathbf{e}^{\prime}$ were synthesized from $\mathbf{1 p}$ by following the standard procedure. enyl)methyl)malonate (3e): Bottom (Major)

Yield: 63 mg , (49\%); brownish oil; $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); (The data of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR has been given in Table S2); IR (Neat): $v_{\max } 3389$, 2953, 2923, $2852,1735,1494,1452,1435,1344,1275,1218,1153,1044$, 772, 744, 700; HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NNa}$ $(\mathrm{M}+\mathrm{Na})^{+} 530.2294$, found 530.2302.
(\pm)-Dimethyl
2-(((3S,4S,5R)-5-(1H-indol-3-yl)-2,5-dimethyl-3,4-diphenylcyclopent-1enyl)methyl)malonate (3e'): Top (Minor)

Yield: 51 mg , (40\%); brownish oil; $\mathrm{R}_{f}=0.5$ (20\% EtOAc/hexanes); (The data of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR has been given in Table S3); IR (Neat): $v_{\max }$ 3410, 3026, 2953, 2923, 2852, 1734, 1452, 1435, 1335, 1275, 1239, 1218, 1153, 1042, 770, 700; HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NNa}$ $(\mathrm{M}+\mathrm{Na})^{+} 530.2298$, found 530.2302.
6. Nazarov Cyclization Followed by [4+2]-Cycloaddition from dienyl Donor-Acceptor Cyclopropanes (DACs)

Standard procedure for Nazarov cyclization followed by [4+2]-cycloaddition:

Dimethyl 2,2-bis((E)-1-phenylprop-1-en-2-yl)cyclopropane-1,1-dicarboxylate (1p) (500 mg, $1.282 \mathrm{mmol}, 1$ equiv) and benzaldehyde ($0.52 \mathrm{~mL}, 5.128 \mathrm{mmol}, 4$ equiv) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ under argon and cooled to $-78{ }^{\circ} \mathrm{C}$ (acetone/dry ice bath). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.24 \mathrm{~mL}$, 1.923 mmol, 1.5 equiv) was added dropwise. The reaction mixture was stirred at the same temperature for $1-2 \mathrm{~h}$, and the progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (60 mL), the combined organic layers were washed with brine solution (8 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed by rotary evaporation to provide a crude residue that was purified by using silica gel column chromatography to furnish the separable isomers $\mathbf{4 a} \& \mathbf{4 a}^{\prime}$.

Bottom (major) 4a: Yield: 540 mg , (86%); white foam; $\mathrm{R}_{f}=0.5$ (10% EtOAc/hexanes); (The data of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR has been given in Table S4); IR (Neat): $v_{\max } 3332,3266,2953,2928$, 2856, 1727, 1462, 1374, 1308, 1253, 1140, 1045, 990, 834, 773; HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 519.2140$, found 519.2142.
tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4a'):

Top (minor): 4a' Yield: 76 mg , (12\%); white foam; $\mathrm{R}_{f}=0.6(10 \%$ EtOAc/hexanes); (The data of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR has been given in Table S6); IR (Neat): $v_{\max } 3027,2951,2923,2852,1727$, 1494, 1453, 1433, 1264, 1199, 1175, 1082, 1042, 772, 752, 699;

HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 514.2603$, found 514.2601.

Compounds $\mathbf{4 b} \boldsymbol{\&} \mathbf{4} \mathbf{b}^{\mathbf{\prime}}$ were synthesized from $\mathbf{~} \mathbf{p}$ by following standard procedure.

(\pm)- (2R,6S,7S,7aR)-dimethyl 2 -(4-methoxyphenyl)-5,7a-dimethyl-6,7-diphenyl-4,6,7,7a-

 tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4b):

Bottom (major): Yield: 276 mg , (82%); colorless oil; $\mathrm{R}_{f}=0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.08(\mathrm{~m}, 10 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}$, $1 \mathrm{H}), 4.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.8,168.4,158.8$, $141.9,138.1,134.5,132.6,131.2,129.3,128.9,128.6,128.3,127.8,126.4,126.3,112.5,86.3$, $76.5,65.1,61.5,55.1,54.8,52.5,51.6,31.4,17.1,11.8$; IR (Neat): $v_{\max } 3026,2951,2922,2852$, 1727, 1513, 1456, 1435, 1249, 1175, 1068, 1040, 753, 700, 606; HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 549.2235$, found 549.2248 .
(\pm)- (2S,6S,7S,7aR)-dimethyl 2-(4-methoxyphenyl)-5,7a-dimethyl-6,7-diphenyl-4,6,7,7a-tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4b'):

Top (minor): Yield: 49 mg , (14\%); colorless oil; $\mathrm{R}_{f}=0.6(20 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46$ (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33-7.27$ (m, 4H), 7.23-7.08 (m, 6H), 6.85 (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 3H), $3.77(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dq}, J=14.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 172.0,169.9,158.8,141.8,138.2,134.9,134.5,131.2,128.7,128.6,128.5,128.4,127.8,126.5$, $126.2,112.8,88.2,73.4,63.9,60.2,55.2,54.5,52.6,52.1,28.3,20.4,12.2 ;$ IR (Neat): $v_{\max } 2952$, 2920, 2851, 1736, 1460, 1256, 1220, 1158, 1075, 772, 699, 672; HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 544.2699$, found 544.2695.

Compounds $\mathbf{4 c \&} \mathbf{4} \mathbf{c}^{\prime}$ were synthesized from $\mathbf{1 p}$ by following the standard procedure.
(\pm)- (2R,6S,7S,7aR)-dimethyl 5,7a-dimethyl-2-(naphthalen-2-yl)-6,7-diphenyl-4,6,7,7a-tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4c):

Bottom (major): Yield: 225 mg , (80%); colorless oil; $\mathrm{R}_{f}=$ 0.5 (10% EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.25-$ $7.00(\mathrm{~m}, 9 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.8,168.3,141.9,138.1,136.7,134.7,132.9,132.6,132.5,128.8,128.6,128.4$,
$128.0,127.9,127.5,126.6,126.5,126.4,126.3,126.1,125.7,125.6,86.4,65.1,61.7,54.8,52.5$, 51.6, 31.4, 17.2, 11.9; IR (Neat): $v_{\max } 2951,2853,1728,1601,1451,1434,1372,1254,1069$, $769,751,700$; HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 569.2290$, found 569.2298 .
(\pm)- (2S,6S,7S,7aR)-dimethyl 5,7a-dimethyl-2-(naphthalen-2-yl)-6,7-diphenyl-4,6,7,7a-tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4c'):

Top (minor): Yield: 45 mg , (16%); colorless oil; $\mathrm{R}_{f}=0.6$ ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400

$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{dd}, J=$ $8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.22-7.06 (m, 6H), $6.03(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$
$(\mathrm{d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 171.9,141.8,138.1,136.6,134.9,134.8,132.9,128.7,128.6,128.5,128.2,127.8,127.5,126.8$, $126.5,126.3,126.2,125.8,125.7,125.5,125.5,88.3,73.9,63.9,60.3,54.5,52.6,51.9,28.5$, 20.4, 12.2; IR (Neat): $v_{\max }$ 2950, 2924, 2853, 1726, 1615, 1495, 1451, 1433, 1267, 1220, 1195, 1080, 1042, 905, 773, 750, 700; HRMS (ESI): calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 569.2286$, found 569.2298

Compounds $\mathbf{4 d} \& \mathbf{4 d}^{\prime}$ were synthesized from $\mathbf{1 p}$ by following standard procedure.
(\pm)- (2R,6S,7S,7aR)-dimethyl 2-(4-bromophenyl)-5,7a-dimethyl-6,7-diphenyl-4,6,7,7a-
 tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4d):

Bottom (major): Yield: 237 mg , (80%); colorless oil; $\mathrm{R}_{f}=0.5$ (15% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.32(\mathrm{~m}, 4 \mathrm{H})$,
$7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{qd}, J=13.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $170.6,168.2,141.7,138.2,137.9,134.8,132.2,130.2,129.5,128.8,128.5,128.4,127.9,126.5$, $126.4,121.5,86.4,76.2,65.1,61.3,54.8,52.5,51.6,31.3,17.1,11.8$; IR (Neat): $v_{\max } 3027$, 2950, 2923, 2853, 1729, 1488, 1452, 1433, 1255, 1222, 1069, 1044, 1010, 795, 758, 700; HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{BrNa}(\mathrm{M}+\mathrm{Na})^{+}$597.1240, found 597.1247.
(\pm)- (2S,6S,7S,7aR)-Dimethyl 2-(4-bromophenyl)-5,7a-dimethyl-6,7-diphenyl-4,6,7,7a-
 tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4d'):

Top (minor): Yield: 44 mg , (14\%); colorless oil; $\mathrm{R}_{f}=0.6$ (15\% EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.48-7.40 (m, $4 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.06(\mathrm{~m}, 5 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H})$, $3.01(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.8$, $169.6,141.7,138.1,138.0,135.0,134.5,130.6,129.1,128.5,127.8,126.6,126.3,121.5,88.3$, 73.1, 63.7, 60.3, 54.2, 52.7, 52.1, 28.4, 20.3, 12.2; IR (Neat): $v_{\max }$ 2950, 2924, 2853, 1727, 1488, 1451, 1433, 1270, 1237, 1221, 1198, 1072, 1011, 925, 840, 754, 699; HRMS (ESI): calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{BrNa}(\mathrm{M}+\mathrm{Na})^{+} 597.1240$, found 597.1243.
(\pm)- (2R,6S,7S,7aR)-Dimethyl \quad 5,7a-dimethyl-2-(4-nitrophenyl)-6,7-diphenyl-4,6,7,7a-
 tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4e): Compound $\mathbf{4 e}$ was synthesized from $\mathbf{1 p}$ by following standard procedure. Yield: 255 mg , (92%); Recrystallization from EtOH
yielded in a crystalline form; m.p. $180-182{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.5\left(15 \%\right.$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32-7.08(\mathrm{~m}, 8 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{qd}, J=13.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.5,168.0,147.2,146.7,141.6,137.7,135.4,131.7,128.8$, 128.7, 128.5, 128.4, 128.0, 126.6, 126.5, 122.3, 86.7, 75.9, 65.2, 61.4, 54.9, 52.8, 51.8, 31.3, 17.1, 11.9; IR (Neat): $v_{\max }$ 2952, 2923, 2853, 1729, 1602, 1519, 1494, 1452, 1433, 1346, 1255, 1222, 1068, 1045, 855, 757, 697, 606; calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NO}_{7}(\mathrm{M}+\mathrm{H})^{+} 542.2181$, found 542.2176 .
(\pm)- (2R,6S,7S,7aS)-dimethyl $\quad 2-(1 H$-indol-3-yl)-5,7a-dimethyl-6,7-diphenyl-4,6,7,7a-

tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate

(4f): Compound $\mathbf{4 f}$ was synthesized from $1 \mathbf{p}$ by following standard procedure. Yield: $240 \mathrm{mg},(88 \%) ; \mathrm{R}_{f}=0.4(20 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07$ (s, $1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-$ $7.16(\mathrm{~m}, 7 \mathrm{H}), 7.13-6.98(\mathrm{~m}, 6 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{qd}, J=9.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{qd}, J=14.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, 3H), $1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,168.8,142.1,138.2,135.4,134.4$, $132.8,128.9,128.6,128.4,127.8,126.8,126.4,126.2,124.6,121.5,120.0,119.4,113.8,110.9$, 86.3, 72.2, 65.1, 60.8, 54.9, 52.5, 51.7, 31.5, 17.2, 11.8; IR (Neat): $v_{\max } 3391,3026,2951,2924$, 2853, 1727, 1601, 1495, 1454, 1433, 1258, 1222, 1067, 1037, 757, 701; HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$558.2256, found 558.2262. tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate
(4g):
 Compound $\mathbf{4 g}$ was synthesized from $\mathbf{1 p}$ by following standard procedure. Yield: $115 \mathrm{mg},(94 \%)$; colorless oil; $\mathrm{R}_{f}=0.5(10 \%$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36$ (d, $J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.04$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 172.2,171.3,142.4,138.6,134.5,134.2,128.8,128.5,128.4,127.8,126.4,126.2,88.8,80.0$, 61.1, 59.2, 55.8, 52.3, 52.2, 35.1, 31.4, 27.1, 20.9, 12.0; IR (Neat): $v_{\max } 3027,2951,2921,2852$, 1733, 1494, 1434, 1370, 1257, 1194, 1164, 1076, 1015, 903, 759, 700; HRMS (ESI): calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 499.2454$, found 499.2455 .

(\pm)- (2R,6S,7S,7aR)-Dimethyl 2-isopropyl-5,7a-dimethyl-6,7-diphenyl-4,6,7,7a-

 tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4h):

Compound $\mathbf{4 h}$ was synthesized from $\mathbf{1 p}$ by following standard procedure. Yield: $113 \mathrm{mg},(95 \%) ; \mathrm{R}_{f}=0.5$ ($10 \% \mathrm{EtOAc} /$ hexanes); (The data of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR has been given in Table S7); IR (Neat): $v_{\max }$ 2965, 2928, 2871, 1730, 1434, 1370, 1246, 1200, 1069, 1040, 1016, 771, 730, 700; HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 485.2293$, found 485.2298 .

General procedure for Nazarov Cyclization followed by Diels-Alder Reaction: Dimethyl 2,2-bis((\boldsymbol{E})-1-phenylprop-1-en-2-yl)cyclopropane-1,1-dicarboxylate (1p) (500 mg, 1.282 mmol, 1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ under argon. Then, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ (acetone/dry ice bath), and $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.24 \mathrm{~mL}, 1.923 \mathrm{mmol}, 1.5$ equiv) was added dropwise, and stirred at the same temperature for 1-2 h . The reaction mixture was brought into $0{ }^{\circ} \mathrm{C}$ over additional $1-2 \mathrm{~h}$. At $0{ }^{\circ} \mathrm{C}$, maleic anhydride ($503 \mathrm{mg}, 5.128 \mathrm{mmol}, 4.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise. The reaction mixture was monitored by TLC and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ solution at $0{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with EtOAc (80 mL), the combined organic layers were washed with brine solution (6 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed by rotary evaporation to provide a crude residue that was purified by using silica gel column chromatography to furnish the desired compound (5a).

Compound 5a: Yield: 600 mg , (96%); white foam; $\mathrm{R}_{f}=0.5$ ($20 \% \mathrm{EtOAc} /$ hexanes); (The data of

${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR has been given in Table S8); IR (Neat): $v_{\max } 2955,2923,2852,1856,1775,1734,1496,1435,1282$, 1229, 1153, 1078, 920, 752, 699, 665; HRMS (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{7}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 506.2179$, found 506.2178.

Compound $\mathbf{5 b}$ was synthesized from $\mathbf{1 p}$ by following standard procedure.
(\pm)- dimethyl 5-(3-methoxy-2-(methoxycarbonyl)-3-oxopropyl)-4,6-dimethyl-1,7-
diphenylbicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (5b):

Yield: 112 mg , (82%); colorless oil; $\mathrm{R}_{f}=0.5(20 \%$ EtOAc/hexanes); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.11$ $(\mathrm{m}, 6 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=11.3,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.0,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=14.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.6,169.2,167.4,163.8,163.1,147.8,145.4,142.6,136.5$, $135.0,130.3,128.9,127.8,127.7,127.0,126.9,89.8,72.0,61.8,52.7,52.6,51.8,51.7,48.7$, 26.2, 13.7, 12.8; IR (Neat): $v_{\max }$ 2951, 2923, 2852, 1735, 1732, 1618, 1435, 1284, 1236, 1195, 1145, 1080, 1047, 1034, 960, 772, 756, 704; HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ 555.1977, found 555.1989.

Dimethyl 2-((2-methyl-5-methylene-3,4-diphenylcyclopent-1-enyl)methyl)malonate (s2p):

Yield: 92 mg , (92%); greenish oil; $\mathrm{R}_{f}=0.6\left(10 \%\right.$ EtOAc/hexanes); ${ }^{\mathbf{1}} \mathbf{H}$

NMR (400 MHz, CDCl_{3}): $\delta 7.36-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 4 \mathrm{H})$, $4.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77$ (s, 3H), 3.73 (s, 3H), 3.71 (dd, $J=3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{qd}, J=8.0,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.5,156.9,147.5,145.2,143.7,134.4,128.5,128.4,127.6,127.4$, $126.5,126.1,101.8,64.4,58.3,52.5,52.5,50.0,24.7,13.7$; IR (Neat): $v_{\max } 2952,2923,2852$, $1735,1599,1493,1450,1435,1332,1272,1235,1153,1073,1047,1028,963,912,755,699$; HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$391.1919, found 391.1915.

8. 2D NMR of $2 \mathrm{j}, 3 \mathrm{e}, 3 \mathrm{e}^{\prime}, 4 \mathrm{a}, \mathrm{s} 4 \mathrm{a}, 4 \mathrm{a}^{\prime}, 4 \mathrm{~h}$ and 5 a

The compounds $\mathbf{3 e}$ and $\mathbf{3 e}{ }^{\prime}$ are the separable diastereomers with change in configuration only at C-9 chiral carbon. The notable change in the upfield or downfield shift of chemical shifts of protons in two compounds is attributed to the anisotropic magnetic shielding effect of aryl substituents.

Figure S1: Schematic representation of the chemical structure and observed characteristic NOE correlations (blue arrows) of compound- $\mathbf{2 j}$.

The chemical shift assignment of compound- $\mathbf{2 j}$ was carried out using 2D-DQFCOSY, HSQC, and HMBC analysis. The relative stereochemistry at C-2, C-4, and C-6 chiral centres of compound-2j was unequivocally established using 2D NOESY and J-coupling (Table S1) analysis. The observed strong NOE correlation between H-2 and Me-20 clearly suggest that the protons are in spatial proximity. Further, the characteristic NOE cross-peaks between H-16/H-6, $\mathrm{H}-6 / \mathrm{Me}-21$, and $\mathrm{H}-4 / \mathrm{Me}-21$ protons strongly support the relative stereochemistry at C-4 and C-6 chiral carbons as depicted in Figure S1.

Table S1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound- $\mathbf{2 j}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1}} \mathbf{H}$		\mathbf{C} chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	(1H,
10	$6.47(1 \mathrm{H}, \mathrm{d})$	2.0	94.4
12	$6.30(1 \mathrm{H}, \mathrm{d})$	2.0	44.3
2	$4.01(1 \mathrm{H}, \mathrm{dd})$	$10.6,8.5$	55.6
15	$3.85(3 \mathrm{H}, \mathrm{s})$	-	55.2
14	$3.83(3 \mathrm{H}, \mathrm{s})$	-	52.5
18	$3.71(3 \mathrm{H}, \mathrm{s})$	-	52.3
19	$3.66(3 \mathrm{H}, \mathrm{s})$	-	50.9
17	$3.66(1 \mathrm{H}, \mathrm{t})$	7.4	46.2
6	$3.19(1 \mathrm{H}, \mathrm{t})$	5.6	24.7
16	$3.07(1 \mathrm{H}, \mathrm{m})$	-	-
3,22	$2.81-2.66(2 \mathrm{H}, \mathrm{m})$	-	42.4
4	$2.11(1 \mathrm{H}, \mathrm{m})$	-	30.0
$3 '$	$1.85(1 \mathrm{H}, \mathrm{ddd})$	$13.4,8.5,1.5$	28.3
21	$1.41(3 \mathrm{H}, \mathrm{s})$	-	23.7
20	$1.20(3 \mathrm{H}, \mathrm{s})$	-	39.6
22^{\prime}	$0.64(1 \mathrm{H}, \mathrm{d})$	9.4	

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound$\mathbf{2 j}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-2j (CDCl_{3}, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-2j$\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-2j (CDCl_{3}, 298 K) enyl)methyl)malonate (3e): Bottom (Major)

Figure S2: Schematic representation of the chemical structure and observed characteristic NOE correlations of compound-3e.

The complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of compound-3e is given in Table S1. In ${ }^{1} \mathrm{H}$ NMR spectrum of compound-3e, $\mathrm{N}-\mathrm{H}$ and $\mathrm{H}-1$ protons appeared as doublets at 7.93 and 6.66 ppm , respectively. The observed COSY and NOE cross peaks between N-H and $\mathrm{H}-1$ protons support the position of H-1 as shown in Fig.S2. The observed strong NOE cross peak between $\mathrm{Me}-21 / \mathrm{H}-12$ protons indicate that $\mathrm{Me}-21$ and $\mathrm{H}-12$ are in syn relationship as shown in Fig.S2. The β-orientation of the $\mathrm{H}-13$ proton is assigned from the observed NOE correlation between H-13 and H-4 (Ar-ortho) proton and the strong scalar coupling ${ }^{3} J_{\mathrm{H}-13 / \mathrm{H}-12}=10.9 \mathrm{~Hz}$. Further, the NOE correlation between $\mathrm{Me}-21 / \mathrm{H}-1$ protons clearly support that they are in spatial proximity.

Table S2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound-3e $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1}} \mathbf{H}$		$\mathbf{3 3} \mathbf{C}$ chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	(NH- $7.93(1 \mathrm{H}, \mathrm{d})$
4	$7.89(1 \mathrm{H}, \mathrm{dd})$	$7.5,1.2$	120.8
Aromatic	$7.36-6.92(11 \mathrm{H}, \mathrm{m})$	-	-
Aromatic	$6.72-6.67(2 \mathrm{H}, \mathrm{m})$	-	-
1	$6.66(1 \mathrm{H}, \mathrm{d})$	2.3	122.9
12	$4.22(1 \mathrm{H}, \mathrm{m})$	-	55.6
13	$4.00(1 \mathrm{H}, \mathrm{d})$	11.0	63.7
19	$3.54(3 \mathrm{H}, \mathrm{s})$	-	52.4
17	$3.52(3 \mathrm{H}, \mathrm{s})$	-	52.4
15	$3.29(1 \mathrm{H}, \mathrm{dd})$	$7.96,7.26$	50.6
14	$2.74(1 \mathrm{H}, \mathrm{m})$	-	26.5
14	$2.44(1 \mathrm{H}, \mathrm{m})$	-	26.5
20	$1.57(3 \mathrm{H}, \mathrm{m})$	-	13.6
21	$0.99(3 \mathrm{H}, \mathrm{s})$	-	20.8
2	-	-	120.8
9	-	-	53.1
10	-	-	139.0
11	-	-	137.6
16	-	-	169.6
18	-	-	169.6

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound$\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-3e (CDCl_{3}, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-3e $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-3e $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

(\pm)-Dimethyl enyl)methyl)malonate (3e'): Top (Minor)

Figure S3: Schematic representation of the chemical structure and observed characteristic NOE correlations of compound-3e'.

The complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of compound- $3 \mathrm{e}^{\prime}$ is given in Table S2. In ${ }^{1} \mathrm{H}$ NMR spectrum of compound-3e', N-H and $\mathrm{H}-1$ protons appeared as doublets at 7.77 and 6.38 ppm , respectively. The observed COSY and NOE cross peaks between N-H and $\mathrm{H}-1$ protons suggest that these are directly coupled protons. The observed strong NOE cross peak between $\mathrm{Me}-21 / \mathrm{H}-13$ protons indicate that $\mathrm{Me}-21$ and $\mathrm{H}-13$ are in β-orientation and are in syn relationship as shown in Fig.S3. Further, the NOE correlation between Me-21/H-1 protons clearly support that they are in spatial proximity.

Table S3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound-3e' $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1}} \mathbf{H}$		$\mathbf{1 3}_{\mathbf{C}}$ chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	(NH- $7.77(1 \mathrm{H}, \mathrm{d})$
Aromatic	$7.20-6.70(12 \mathrm{H}, \mathrm{m})$	-	-
Aromatic	$6.55-6.49(2 \mathrm{H}, \mathrm{m})$	-	129.2
1	$6.38(1 \mathrm{H}, \mathrm{d})$	1.7	122.8
12	$4.00(1 \mathrm{H}, \mathrm{m})$	-	59.8
19	$3.65(3 \mathrm{H}, \mathrm{s})$	-	52.5
15	$3.63(1 \mathrm{H}, \mathrm{dd})$	$8.9,6.7$	50.9
17	$3.52(3 \mathrm{H}, \mathrm{s})$	-	52.4
13	$3.16(1 \mathrm{H}, \mathrm{d})$	10.4	68.5
14	$2.95(1 \mathrm{H}, \mathrm{m})$	-	26.5
14	$2.61(1 \mathrm{H}, \mathrm{m})$	-	26.5
21	$1.65(3 \mathrm{H}, \mathrm{s})$	-	26.5
20	$1.64(3 \mathrm{H}, \mathrm{m})$	-	13.5
2	-	-	118.7
9	-	-	55.0
10	-	-	138.0
11	-	-	139.0
16	-	-	169.5
18	-	-	170.0

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound3e' $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }_{-}^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-3e' $\left(\mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K})$

${ }^{13} \mathrm{C}_{-}{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-3e' $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-3e' $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

The complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of compound-4a major and $\mathbf{4} \mathbf{a}^{\prime}$ minor isomers is given in Table $\mathrm{S} 4 \& \mathrm{~S} 6 .{ }^{1} \mathrm{H}$ NMR spectrum of compound-4a shows the presence of two isomers 4a \& s4a with 90:10 ratio. Structure and relative stereochemistry of the major and minor isomers were unambiguously assigned as shown in Fig.S4 and Fig. S5, respectively.

tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4a):

Figure S4: Schematic representation of the chemical structure and observed characteristic NOE correlations and energy minimized 3D molecular structure and observed characteristic NOE correlations (blue arrows) of compound-4a (major isomer, bottom).

In major isomer, $\mathrm{H}-1$ proton is appeared as a singlet at 5.36 ppm . The observed strong NOE cross peaks between $\mathrm{Me}-13 / \mathrm{H}-1, \mathrm{Me}-13 / \mathrm{H}-3_{\mathrm{ax}}$, and $\mathrm{H}-3_{\mathrm{ax}} / \mathrm{H}-1$ clearly suggest that these protons are in 1,3-diaxial relationship in a chair conformation of 6-membered ring as shown in Fig.S4. The characteristic NOE correlation between Me-13 and H-6 protons and strong scalar coupling ${ }^{3} J_{\mathrm{H}-6 / \mathrm{H}-7}=9.9 \mathrm{~Hz}$ indicate that $\mathrm{H}-6$ and $\mathrm{H}-7$ protons are in anti orientation.

Figure S5: Schematic representation of the chemical structure and observed characteristic NOE correlations and energy minimized 3D molecular structure and observed characteristic NOE correlations (blue arrows) of compound-s4a (minor isomer).

In minor isomer, the observed strong NOE cross peaks between $\mathrm{Me}-13 / \mathrm{H}-1, \mathrm{Me}-13 / \mathrm{H}-$ 3_{ax}, and $\mathrm{H}-3_{\mathrm{ax}} / \mathrm{H}-1$ protons clearly suggest that these are in 1,3-diaxial relationship in a chair conformation of 6-membered ring as shown in Fig.S5. The characteristic NOE correlation between $\mathrm{Me}-13 / \mathrm{H}-7$ and $\mathrm{Me}-14 / \mathrm{H}-6$ protons support the relative stereochemistry of the minor isomer at C-6 and C-7 is as shown in Fig.S5.

Table S4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound-4a -major $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1} H}$		\mathbf{C}chemicalshift}{}
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	
Aromatic	$7.70-6.68(15 \mathrm{H}, \mathrm{m})$	-	-
1	$5.36(1 \mathrm{H}, \mathrm{s})$	-	76.7
6	$4.12(1 \mathrm{H}, \mathrm{m})$	-	54.8
7	$3.82(1 \mathrm{H}, \mathrm{d})$	9.9	65.1
12	$3.69(1 \mathrm{H}, \mathrm{s})$	-	51.5
14	$3.68(1 \mathrm{H}, \mathrm{s})$	-	52.4
3_{eq}	$3.35(1 \mathrm{H}, \mathrm{d})$	13.9	31.5
3_{ax}	$3.00(1 \mathrm{H}, \mathrm{m})$	-	31.5
10	$1.47(1 \mathrm{H}, \mathrm{t})$	1.4	11.8
9	$1.06(1 \mathrm{H}, \mathrm{s})$	-	17.1
2	-	-	61.5
4	-	-	132.6
5	-	-	134.6
8	-	--	86.3
11	-	-	170.8
13	-	-	168.3

Table S5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound-s4a-minor ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{1} \mathrm{H}$		${ }^{13} \mathrm{C}$ chemical shift δ (ppm)
	Chemical shift $\delta(\mathrm{ppm})$	Scalar coupling $J(H z)$	
Aromatic	-	-	-
1	5.41 (1H, s)	-	75.9
6	4.08 (1H, m)	-	63.5
7	3.26 (1H, d)	3.1	65.1
12	-	-	-
14	$3.52(1 \mathrm{H}, \mathrm{s})$	-	51.4
3 eq	3.46 (1H, d)	13.5	30.8
3 ax	3.00 (1H, m)	-	30.8

10	$1.80(1 \mathrm{H}, \mathrm{bs})$	-	12.7
9	$1.60(1 \mathrm{H}, \mathrm{s})$	-	23.7
2	-	-	-
4	-	-	132.8
5	-	-	136.0
8	-	--	-
11	-	-	171.0
13	-	-	168.5

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound4a ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-4a $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-4a $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-4a $\left(\mathrm{CDCl}_{3}\right.$, 298 K)
tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4a'): (Top, minor):

Figure S6: Schematic representation of the chemical structure and observed characteristic NOE correlations of compound-4a'.

The observed strong NOE cross peaks between $\mathrm{Me}-13 / \mathrm{H}-3_{\mathrm{ax}}$ and $\mathrm{Me}-13 / \mathrm{Ar}-\mathrm{H}$ (ortho) protons indicate that these groups are in 1,3-diaxial relationship in a chair conformation of 6membered ring as shown in Fig S6. The characteristic NOE correlation between Me-13 and H-6 protons and strong scalar coupling ${ }^{3} J_{\mathrm{H}-6 / \mathrm{H}-7}=9.6 \mathrm{~Hz}$ indicate that $\mathrm{H}-6$ and $\mathrm{H}-7$ protons are in anti orientation.

Table S6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound-4a' $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1}} \mathbf{H}$		$\mathbf{1 3} \mathbf{C}$ chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	(15H, m)
Aromatic	$7.40-7.00(15$	73.7	
1	$5.8(1 \mathrm{H}, \mathrm{s})$	-	54.6
6	$4.01(1 \mathrm{H}, \mathrm{m})$	-	52.6
10	$3.72(3 \mathrm{H}, \mathrm{s})$	-	60.2
7	$3.72(1 \mathrm{H}, \mathrm{d})$	9.6	28.5
3_{ax}	$3.29(1 \mathrm{H}, \mathrm{m})$	-	52.0
12	$3.06(3 \mathrm{H}, \mathrm{s})$	-	28.5
3_{eq}	$2.93(1 \mathrm{H}, \mathrm{d})$	13.9	12.2
14	$1.35(3 \mathrm{H}, \mathrm{m})$	-	20.4
13	$0.92(3 \mathrm{H}, \mathrm{s})$	-	64.1
2	-	-	134.9
4	-	-	134.7
5	-	-	172.0
9	-	-	169.8
11	-	-	

${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound-
$\mathbf{4 a}^{\mathbf{a}}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-4a' $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-4a' $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-4a' $\left(\mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K})$

tetrahydrocyclopenta[b]pyran-3,3(2H)-dicarboxylate (4h):

Figure S7: Schematic representation of the chemical structure and observed characteristic NOE correlations of compound- $\mathbf{4 h}$.

The complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of compound- $\mathbf{4 h}$ is given in Table S6. ${ }^{1} \mathrm{H}$ NMR spectrum of compound-4h shows the presence of two isomers with $90: 10$ ratio. Structure and relative stereochemistry of the major isomer was unambiguously assigned as shown in Fig.S7.

In major isomer, the multiplet at 2.35 ppm is assigned as $\mathrm{H}-9$ from the observed COSY cross peaks between $\mathrm{Me}-10 / \mathrm{H}-9$ and $\mathrm{Me}-11 / \mathrm{H}-9$ protons. $\mathrm{H}-1$ proton is appeared as a doublet at 3.81 ppm . The observed strong NOE cross peaks between $\mathrm{Me}-16 / \mathrm{H}-1$, Me- $16 / \mathrm{H}-3_{\mathrm{ax}}$, and $\mathrm{H}-$ $3_{\mathrm{ax}} / \mathrm{H}-1$ clearly suggest that these protons are in 1,3-diaxial relationship in a chair conformation of 6-membered ring as shown in Fig.S7. The characteristic NOE correlation between Me-16 and $\mathrm{H}-6$ protons and strong scalar coupling ${ }^{3} J_{\mathrm{H}-6 / \mathrm{H}-7}=10.0 \mathrm{~Hz}$ indicate that $\mathrm{H}-6$ and $\mathrm{H}-7$ protons are in anti relationship.

Table S7: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound- $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1} H}$		\mathbf{C}chemicalshift}{}
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	
Aromatic	$7.33-7.00(10 \mathrm{H}, \mathrm{m})$	-	54.3
6	$3.96(1 \mathrm{H}, \mathrm{m})$	-	80.0
1	$3.81(1 \mathrm{H}, \mathrm{d})$	7.7	52.0
13	$3.76(3 \mathrm{H}, \mathrm{s})$	-	52.5
15	$3.67(3 \mathrm{H}, \mathrm{s})$	-	65.0
7	$3.46(1 \mathrm{H}, \mathrm{d})$	10.0	32.0
3_{eq}	$3.14(1 \mathrm{H}, \mathrm{d})$	13.8	32.0
3_{ax}	$2.53(1 \mathrm{H}, \mathrm{m})$	-	31.7
9	$2.35(1 \mathrm{H}, \mathrm{m})$	-	11.8
17	$1.34(3 \mathrm{H}, \mathrm{m})$	-	20.6
11	$0.93(3 \mathrm{H}, \mathrm{d})$	6.6	19.7
10	$0.84(3 \mathrm{H}, \mathrm{d})$	5.9	17.0
16	$0.83(3 \mathrm{H}, \mathrm{s})$	-	59.0
2	-	-	133.0
4	-	-	133.3
5	-	-	85.3
8	-	-	169.3
12	-	-	172.0
14	-	-	

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound4h $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-4h $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-4h $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-4h $\left(\mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K})$

Compound 5a:

Figure S8: Schematic representation of the chemical structure and observed characteristic NOE correlations of compound-5a.

The complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of compound-5a is given in Table S7. In compound-1453, H-9 proton appeared as a singlet at 2.98 ppm . The protons $\mathrm{H}-2$ and $\mathrm{H}-7$ appeared as doublets at 4.00 and 3.43 ppm , respectively. The observed characteristic NOE correlations between $\mathrm{H}-2 / \mathrm{H}-9, \mathrm{H}-7 / \mathrm{H}-9, \mathrm{H}-9 / \mathrm{Me}-10$, and $\mathrm{H}-7 / \mathrm{Me}-10$ strongly support that the compound-1453 exist as an endo isomer as shown in Fig.S8.

Table S8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound-1453 ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Position	${ }^{\mathbf{1}} \mathbf{H}$		$\mathbf{1 3} \mathbf{C}$ chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$
	Chemical shift $\boldsymbol{\delta}(\mathbf{p p m})$	Scalar coupling $\boldsymbol{J}(\mathbf{H z})$	(8H, m) $\boldsymbol{\delta}$
Aromatic	$6.76-6.70(2 \mathrm{H}, \mathrm{m})$	-	-
2	$4.00(1 \mathrm{H}, \mathrm{d})$	8.0	-
15	$3.65(3 \mathrm{H}, \mathrm{s})$	-	52.5
17	$3.62(3 \mathrm{H}, \mathrm{s})$	-	52.7
7	$3.43(1 \mathrm{H}, \mathrm{d})$	8.0	52.8
13	$3.33(1 \mathrm{H}, \mathrm{dd})$	$8.5,5.6$	54.6
9	$2.98(1 \mathrm{H}, \mathrm{s})$	-	50.1
12	$2.90(1 \mathrm{H}, \mathrm{dd})$	$14.7,8.5$	76.5
12^{\prime}	$2.52(1 \mathrm{H}, \mathrm{dd})$	$14.7,5.6$	25.5
11	$1.71(3 \mathrm{H}, \mathrm{s})$	-	25.5
10	$1.44(3 \mathrm{H}, \mathrm{s})$	-	13.5
1	-	-	15.4
3	-	-	170.0
4	-	-	67.9
5	-	-	141.2
6	-	-	135.1
8	-	-	60.0
14	-	-	170.6
16	-	-	169.0
			168.9

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of compound-
$\mathbf{5 a}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound-5a $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HSQC (Heteronuclear Single Quantum Correlation) spectrum of compound-5a $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ HMBC (Heteronuclear Multiple Bond Correlation) spectrum of compound-5a $\left(\mathrm{CDCl}_{3}\right.$, 298 K)

9. X-ray Crystallography Information

Figure caption: The molecular structure of $\mathbf{1 p}$ with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for 1p: $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4}, M=390.46$, crystal size $0.42 \times 0.40 \times 0.35 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=10.9916(1), b=16.6891(15), c=12.3742(11) \AA, \alpha=90, \beta=$ 108.465(2), $\gamma=90^{\circ}, V=2153.1(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.204 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=832, \mathrm{CCD}$ area detector, $\operatorname{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, T=293(2) \mathrm{K}, 2 \theta_{\max }=55^{\circ}, 24372$ reflections collected, 4931 unique $\left(\mathrm{R}_{\mathrm{int}}=0.031\right)$, Final GooF $=1.05, R 1=0.0606, w R 2=0.1584, R$ indices based on 3666 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), 266 parameters, $\mu=0.081 \mathrm{~mm}^{-1}$, Min. and Max. Resd. Dens. $=-0.28,0.49 \mathrm{e} / \AA^{3}$. CCDC 1550328 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Data collection and structure solution of 1p: X-ray data for the compound was collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated $\operatorname{MoK} \alpha$ radiation $(\lambda=0.71073 \AA)$ with ω-scan method. ${ }^{13}$ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Unit cell dimensions were determined using 5560 reflections for BE39 data. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{13}$ The structures were solved by Direct Methods using SHELXS 97^{14} and refinement was carried out by full-matrix least-squares technique using SHELXL 2014/7. ${ }^{14-15}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of $0.93--0.97 \AA$, and with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}$ for methyl atoms.

Figure caption: The molecular structure of $\mathbf{4 a}$ with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for 4a: $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{5}, M=496.51$, crystal size $0.34 \times 0.28 \times 0.22 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=11.262(4), b=16.508(6), c=15.548(5) \AA, \alpha=90, \beta=$ 107.246(7), $\gamma=90^{\circ}, V=2760.6(17) \AA^{3}, Z=4, D_{\mathrm{c}}=1.195 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1056$, PHOTON 100 area detector, $\mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, T=293(2) \mathrm{K}, 2 \theta_{\max }=52^{\circ}, 22077$ reflections collected, 5404 unique ($\mathrm{R}_{\mathrm{int}}=0.034$), Final GooF $=1.03, R 1=0.0491, w R 2=0.1384, R$ indices based on 5404 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), 338 parameters, $\mu=0.080 \mathrm{~mm}^{-1}$, Min. and Max. Resd. Dens. $=-0.18,0.16 \mathrm{e}^{2} \AA^{3}$. CCDC 1567507 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Figure caption: The molecular structure of $\mathbf{4} \mathbf{a}^{\prime}$ with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for 4a': $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{7}, M=496.5$, crystal size $0.43 \times 0.40 \times 0.29 \mathrm{~mm}^{3}$, orthorhombic, space group $P c a 2_{1}$ (No. 29), $a=16.045(3), b=16.266(4), c=20.695(5) \AA, \alpha=\beta=\gamma=90^{\circ}, V=$ $5401(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.221 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=2112$, PHOTON 100 detector, MoK α radiation, $\lambda=$ $0.71073 \AA, T=293(2) \mathrm{K}, 2 \theta_{\max }=52^{\circ}, 27490$ reflections collected, 10271 unique $\left(\mathrm{R}_{\mathrm{int}}=0.040\right)$, Final $G o o F=1.04, R 1=0.0505, w R 2=0.1275, R$ indices based on 7394 reflections with I $>2 \sigma(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right), 675$ parameters, $\mu=0.082 \mathrm{~mm}^{-1}$, Min. and Max. Resd. Dens. $=-0.19$, $0.34 \mathrm{e} / \AA^{3}$. CCDC $\mathbf{1 5 6 7 5 0 8}$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Data collection and structure solution of 4a and 4a': Single crystal X-ray data for two compounds were collected at room temperature on a Bruker D8 QUEST equipped with a four circle kappa diffractometer and Photon 100 detector. An $\mathrm{I} \mu \mathrm{s}$ microfocus Mo source $(\lambda=0.71073 \AA)$ supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Unit cell dimensions were determined using 8269 reflections for $\mathbf{4 a}$ and 9981 reflection for $\mathbf{4 a}^{\prime}$ data sets. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{13}$ The structures were solved by Direct Methods using SHELXS 97^{2} and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7. ${ }^{14-15}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms with C-H distances of $0.93--0.97 \AA$, and with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}$ for methyl atoms.

Figure caption: The molecular structure of $\mathbf{4 e}$ with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for 4e: $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{7}, M=541.58$, crystal size $0.40 \times 0.30 \times 0.12 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=11.548(3), b=19.304(5), c=13.589(3) \AA, \alpha=90, \beta=$ 115.034(6), $\gamma=90^{\circ}, V=2744.7(12) \AA^{3}, Z=4, D_{\mathrm{c}}=1.311 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1144$, PHOTON 100 detector, $\mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=55^{\circ}, 44764$ reflections collected, 6298 unique ($\mathrm{R}_{\mathrm{int}}=0.034$), Final GooF $=1.07, R 1=0.0397, w R 2=0.0985, R$ indices based on 6298 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), 365 parameters, $\mu=0.092 \mathrm{~mm}^{-1}$, Min. and Max. Resd. Dens. $=-0.26,0.31 \mathrm{e} / \AA^{3} . \operatorname{CCDC} \mathbf{1 5 5 0 3 2 9}$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Data collection and structure solution of $4 \mathbf{e}$: Single crystal X-ray data for the compound was collected at low temperature $(100 \mathrm{~K})$ on a Bruker D8 QUEST equipped with a four circle kappa diffractometer and Photon 100 detector. An I μ s microfocus Mo source $(\lambda=0.71073 \AA$) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Unit cell dimensions were determined using 9867 reflections. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{13}$ The structures were solved by Direct Methods using SHELXS97 ${ }^{14}$ and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7. ${ }^{14-15}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms with C-H distances of 0.93--0.97 \AA, and with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}$ for methyl atoms.

10. References:

1. Soldi. Cristian, Lamb. Kellan N, Squitieri. Richard. A, Gonzlez-Lpez. Marcos, Di Maso. Michael J, Shaw. Jared T, J. Am. Chem. Soc, 2014, vol. 136, \# 43 p. 15142 - 15145.
2. Sudhakar. Gangarajula, Satish. Kovela, Chem. Eur. J, 2015, vol.21, \# 17 p. 6475-6480.
3. Compton. Prescott Jr, Martin. Siegel, Gordon. Razdan, J.Med.Chem, 1991, vol. 34, \# 11 p. 3310 - 3316.
4. Kim. Ikyon, Won. Hye Kyoung, Choi. Jihyun, Lee. Ge Hyeong, Tetrahedron, 2007, vol. 63, \# 52 p. 12954 -12960 .
5. Wu. Dimao, Forsyth. J.C, Org.Lett, 2013, vol. 15, p. 1178-1181.
6. González-Bobes. Francisco, Fenster. Michaël D. B, Kiau. Susanne, Kolla. Laxma, Kolotuchin. Sergei, Soumeillant. Maxime, Adv.Synth.Catal, 2008, vol. 350, \# 6, 813-816.
7. Chen. Huiyu, Zhang. Jing, Zhigang Wang. David, Org.Lett, 2015, vol. 17, \# 9, p. 2098-9101.
8. Goodwin. Thomas E, Ratcliff. David G, Crowder. C.Michael, Seitzinger. Newton.K, J.Med.Chem, 1982, vol. 47, \# 5 p. 815-820.
9. Patman. Ryan, Chaulagain. Mani Raj, Williams. Vanessa. M, Krische. Michael. J, J.Am.Chem.Soc, 2009, vol. 131, p. 2066-2067.
10. Hatanaka. Shintaro, Obora. Yasushi, Ishii. Yasutaka, Chem. Eur. J, 2010, vol. 16 \# 6 p. 1883-1888.
11. Arnold. Aline, Markert. Morris, Mahrwald. Rainer, Synthesis, 2006, \# 7 p. 1099-1102.
12. Yen- ku Wu, Christine R. Dunbar, Robert. McDonald, Michael J. Ferguson, F.G. West, J. Am. Chem. Soc, 2014, vol. 136, 14903-14911.
13. SMART \& SAINT. Software Reference manuals. Versions 6.28a \& 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
14. Sheldrick, G. M. SHELXS97 and SHELXL Version 2014/7, http://shelx.uni-ac.gwdg.de/SHELX/index.php
15. Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57-91.

11. Spectral Data of All New Compounds

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 n}, \mathrm{CDCl}_{3}, 500 \mathrm{M} \mathrm{Hz}$ (Crude)

1111				T			T			1	T			1		1	
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

