Pd-catalyzed Regioselective Asymmetric Addition Reaction of Unprotected Pyrimidines to Alkoxyallene

Supporting Information

Soyeong Kang, Seok Hyeon Jang, Juyeol Lee, Dong-gil Kim, Mijin Kim, Wook Jeong and Young Ho Rhee*

Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, Kyungbuk 37673, Republic of Korea

Table of Contents

1. General Information S3
2. Optimization Table S4
3. Substrate Synthesis for alkoxyallene ; general procedure \mathbf{A} S5
4. Synthesis N-glycosides; general procedure B and C S9
5. Determination of the Structure of 2a-T S37
6. Structure determination of $N^{\boldsymbol{y}} / N^{\boldsymbol{7}}$ substituted adenine S39
7. References S42
8. ${ }^{1}$ H NMR and ${ }^{13}$ C Spectra S43

1. General information

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of nitrogen. Similarly all solvents were dried and distilled according to the standard methods before use, then were transferred via syringe. Reactions were stirred using Teflon-coated magnetic stir bars. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ the Grubbs' catalysts were purchased form a Aldrich Chemical, Strem Chemical Inc. Chiral Trost ligands were purchased from Strem Chemical Inc. and stored in glove box. Reactions were monitored by thinlayer chromatography carried out on 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) using UV light as a visualizing agent and acidic p-anisaldehyde, and heat as developing agent. Flash chromatography was carried out on Merck 60 silica gel (230-400 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker ($300 \mathrm{MHz}, 500 \mathrm{MHz}$ and $600 \mathrm{MHz})$ spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$, and reported as follows; chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad). Chemical shifts of the ${ }^{13} \mathrm{C}$ NMR spectra were measured relative to $\mathrm{CDCl}_{3}(77.23 \mathrm{ppm})$. Infrared spectra were recorded on a Bruker Vertex 70 spectrometer. Specific rotation data were measured on Rudolph Research Autopol IV polarimeter. HPLC was performed with an Agilent Technologies 1220 infinity LC system. Mass spectral datas were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer (FAB, EI) and Organic Chemistry Research Center in Sogang University on a Bruker ultra High Resolution ESI Q-TOF MS / MS Compact System (ESI).

2. Optimization Table

Table. Optimization Table

Entry	solvent	Additive (eq)	Time (h)	$\begin{gathered} \text { Yield } \\ (2 \mathrm{a}, \%)^{[\mathrm{ax}]} \end{gathered}$		ee ($2 \mathrm{a}, \%$)
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	1	9	41	58
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$ (1.0)	1	36	-	85
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\xrightarrow[(0.25)]{\mathrm{K}_{3} \mathrm{PO}_{4}}$	1	8	71	N.D. ${ }^{[c]}$
4	THF	-	4	35	25	81
5	Acetone	-	2.5	56	19	98
6	Acetone	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5)	24	21	33	97
7	Acetone	$\begin{gathered} \mathrm{K}_{3} \mathrm{PO}_{4} \\ (0.25) \end{gathered}$	2	25	38	99
8	DMF	-	4	96	<5	71
9	DMF	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5)	5	80	15	99
10	DMF	$\begin{aligned} & \mathrm{K}_{3} \mathrm{PO}_{4} \\ & (0.25) \end{aligned}$	4	59	15	98
11	Pyridine	-	20	38	2	91
12	Pyridine	$\underset{(0.25)}{\mathrm{K}_{3} \mathrm{PO}_{4}}$	1	94	Trace	96

[a] Isolated yield. [b] NMR yield. [c] not determined.

3. Substrate Synthesis for alkoxyallene

Compound $1 a^{1}, 1 b^{2}$ have been prepared according to the literature procedure.

General procedure A: allene synthesis

To a suspension of $\mathrm{NaH}(810.0 \mathrm{mg}, 20.3 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in THF was added 1,3-Dibenzyloxy-2-propanol ($5 \mathrm{~g}, 18.4 \mathrm{mmol}$) in THF (total concentration, 0.5 M) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 5 min at room temperature. The solution of propargyl bromide ($2.3 \mathrm{~mL}, 20.6$ $\mathrm{mmol}, 80 \% \mathrm{wt} \%$ in Toluene) was added to a reaction mixture at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature until TLC indicated complete conversion of starting material. The reaction was quenched with distilled water followed by extraction with Ethyl acetate. The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The crude propargyl ether was filtered through a pad of celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic mixture was concentrated and diluted in THF (1.0 M), t - $\mathrm{BuOK}(1.0 \mathrm{~g}$, 9.2 mmol) was added. The resulting mixture was stirred at room temperature until TLC indicated complete conversion of propargyl ether. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a celite pad, washing with $\mathrm{Et}_{2} \mathrm{O}$. The solution was then concentrated and purified by flash column chromatography (Hexane:EtOAc = 95:5) afforded $\mathbf{1 c}(3.7 \mathrm{~g}, 12.4 \mathrm{mmol}, 67.3 \%$ yield over two steps) as a colorless oil.

(2-(propa-1,2-dienyloxy)propane-1,3-diyl)bis(oxy)bis(methylene)dibenzene (1c) :
$\mathrm{R}_{f} 0.14$ (Hexane:EtOAc $\left.=95: 5\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.36(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{t}, J=6.04 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.41(\mathrm{~d}, J=6.02 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=12.03,16.57 \mathrm{~Hz}, 4 \mathrm{H}), 4.07-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.71(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 201.0,138.3,128.5,127.8,127.7,121.1,91.1,76.5,73.6,68.8 . ; \operatorname{IR}(\mathrm{KBr}) v 3031,2903$, 2860, 1952, 1453, 1196, 1090, $1023 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 310.1569$, found 310.1570 .

3
(E)-1-(propa-1,2-dienyloxy)hex-2-ene (3) : Using the general procedure A and purified by Kugelrohor distillation under diminished pressure to afford $\mathbf{3}(3.4 \mathrm{~g}, 24.9 \mathrm{mmol}, 50.0 \%$ yield over two steps) as a colorless liquid.
$\mathrm{R}_{f} 0.53$ (Hexane:EtOAc $\left.=95: 5\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.65-$ $5.55(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.6,135.9,125.4,121.4,90.8,69.7,34.6,22.4,13.9 . ; \mathrm{IR}(\mathrm{NaCl})$ v 2960, 2931, 2874, 1954, 1730, 1673, 1445, 1379, 1350, $1195 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}(\mathrm{M}+)$ 138.1045, found 138.1044.

6
(S)-((2-(propa-1,2-dienyloxy)but-3-enyloxy)methyl)benzene (6) : Based on a modified general procedure A, compound $\mathbf{6}$ was obtained from (S)-1-(benzyloxy)but-3-en-2-ol ${ }^{3}$. To a solution of propargyl ether (1.00 g, 4.62 $\mathrm{mmol})$ in THF $(4.6 \mathrm{~mL}, 1.0 \mathrm{M})$, t-BuOK ($54.4 \mathrm{mg}, 0.46 \mathrm{mmol}$) was added. The resulting reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. The reaction mixture was passed through a pad of celite and concentrated under reduced pressure. The crude product was isolated by flash column chromatography (Hexane:Diehtyl ether $=97: 3$) to afford $6(346.3 \mathrm{mg}, 1.60 \mathrm{mmol}, 34.6 \%)$ as colorless liquid, and recovered the starting material ($556.1 \mathrm{mg}, 2.57 \mathrm{mmol}$, $55.6 \%)$.
$\mathrm{R}_{f} 0.25$ (Hexane:EtOAc $\left.=95: 5\right) ;[\alpha]^{22}{ }_{\mathrm{D}}+1.25\left(\mathrm{c} 1.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.35(\mathrm{~m}, 5 \mathrm{H})$, $6.70(\mathrm{t}, J=5.95 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=12.22,13.88 \mathrm{~Hz}$, $2 \mathrm{H}), 4.34-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.63(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7,138.2,134.9,128.5,127.81$, 127.76, 120.6, 118.3, 90.8, 78.4, 73.5, 72.0.; IR (KBr) v 3032, 2977, 2860, 1953, 1445, $1195 \mathrm{~cm}^{-1} ;$ HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$205.1229, found 205.1235.

(R)-((2-(propa-1,2-dienyloxy)but-3-enyloxy)methyl)benzene (ent-6): Based on a modified general procedure A, compound ent-6 was obtained from (S)-1-(benzyloxy)but-3-en-2-ol.

All spectral data matched a compound $\mathbf{6}$ except for the sign of specific rotation:
$[\alpha]^{28}{ }_{\mathrm{D}}-0.77\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right)$

13
(S)-((2-(propa-1,2-dienyloxy)pent-4-enyloxy)methyl)benzene (13) : Based on a modified general procedure A, compound $\mathbf{1 3}$ was obtained from (S)-1-(benzyloxy)pent-4-en-2-ol ${ }^{4}$ and purified by flash column chromatography (Hexane: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=85: 15\right)$ to afford $\mathbf{1 3}(2.5 \mathrm{~g}, 10.9 \mathrm{mmol}, 39.0 \%$ yield over two steps) as a colorless liquid. $\mathrm{R}_{f} 0.28$ (Hexane:EtOAc $=95: 5$); $[\alpha]^{22}{ }_{\mathrm{D}}-11.86\left(\mathrm{c} 0.59, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.37(\mathrm{~m}, 5 \mathrm{H})$, $6.71(\mathrm{t}, J=5.95 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.06-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=12.12,18.60 \mathrm{~Hz}$, $2 \mathrm{H}), 3.92-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=4.84 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.44(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.4$, $138.3,133.9,128.5,127.8,127.7,120.9,117.7,90.7,76.9,73.5,70.6,35.4 . ; \operatorname{IR}(\mathrm{KBr}) v 3032,2977,2860,1952$, 1445, $1195 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$219.1385, found 219.1388.

15
((2R,3S)-3-(benzyloxy)-2-(propa-1,2-dienyloxy)hex-5-enyloxy)(tert-butyl)dimethylsilane (15) : Based on a modified general procedure A , compound 15 was obtained from 3-(benzyloxy)-1-(tert-butyldimethylsilyloxy)hex-5-en-2-ol ${ }^{5}$ and purified by flash column chromatography ($\operatorname{Hexane} \mathrm{Et}_{2} \mathrm{O}=98: 2$) afforded 15 ($1.46 \mathrm{~g}, 3.89 \mathrm{mmol}, 19.0 \%$ yield over two steps) as a colorless oil. $\mathrm{R}_{f} 0.51\left(\right.$ Hexane: $\left.\mathrm{Et}_{2} \mathrm{O}=95: 5\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+5.20\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.37(\mathrm{~m}, 1 \mathrm{H})$, $6.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddt}, J=17.2,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.03-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.89(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.48(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.5,138.8,135.2,128.5,128.1,127.7,121.5,117.4,90.9,80.4,77.4,72.8,61.4,35.5$, 26.1, 18.5, -5.1.; IR (KBr) v 3071, 2929, 2857, 1954, 1647, 1463, 1254, 1200, 1099, $836 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 397.2169$, found 397.2169.

4. Synthesis N-glycosides

General procedure B : Pd-catalyzed hydroamination

(S,E)-5-fluoro-1-(1-(hex-2-enyloxy)allyl)pyrimidine-2,4(1H,3H)-dione (12-1) : A solution of $\mathbf{3}$ (276 mg, 2.0 $\mathrm{mmol})$ in distilled pyridine was added to a suspension of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(45.8 \mathrm{mg}, 50.0 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 3(98.6 \mathrm{mg}$, $0.125 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(106.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 5 -fluoro uracil ($390.2 \mathrm{mg}, 3.0 \mathrm{mmol}$) in distilled pyridine (total concentration of solvent, 0.1 M) under nitrogen atmosphere. The reaction mixture was stirred at rt for 12 h . The reaction mixture was filtered through a celite pad and washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was then concentrated and purified by flash column chromatography on silicagel (Hexane:EtOAc $=90: 10$) to afford $\mathbf{1 2 - 1}$ as a white solid ($416.0 \mathrm{mg}, 1.55 \mathrm{mmol}, 77.6 \%$ yield).. Silica gel was deactivated with few drops of $\mathrm{Et}_{3} \mathrm{~N}$ and CDCl_{3} was deactivated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before use.
$\mathrm{R}_{f} 0.27$ (Hexane:EtOAc $\left.=90: 10\right) ;[\alpha]^{21}{ }_{\mathrm{D}}=-68.5\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;$ m.p.: $49-51{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 10.0(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=3.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=19.5,7.1,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H})$, $1.38(\mathrm{q}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.35 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,157.2,150.0,142.0$, $140.1,137.1,133.0,124.34,124.28,124.1,120.2,83.0,70.2,34.5,22.2,13.8 . ; \operatorname{IR}(\mathrm{NaCl}) \vee 3435,2961,3435$, 2961, 2091, 1660, 1465, 1383, 1341, $1245 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$269.1301, found 269.1301 .

General procedure C: Ring Closing Metathesis

12
(S)-1-(2,5-dihydrofuran-2-yl)-5-fluoropyrimidine-2,4(1H,3H)-dione (12) : To a solution of 12-1 (416.0.0 mg, 1.55 mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added the Hoveyda Grubbs ${ }^{2 \mathrm{nd}}$ catalyst ($48.6 \mathrm{mg}, 0.08 \mathrm{mmol}$) at room temperature. The resulting reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 min . The solvent was removed under reduced pressure and purified by flash column chromatography on silicagel ($\mathrm{Hexane}: \mathrm{EtOAc}=80: 20$) to afford $\mathbf{1 2}$ as a white solid ($246.0 \mathrm{mg}, 1.24 \mathrm{mmol}, 80.1 \%$). The enantiomeric excess (91.2% ee) was determined by HPLC on a chiral column (Chiralpak ID, Hexane: $\mathrm{EtOAc}=60: 40$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=23.56$ (minor), 31.82 (major)).
$\mathrm{R}_{f} 0.21$ (Hexane:EtOAc $\left.=50: 50\right) ;[\alpha]^{29}{ }_{\mathrm{D}}=-137.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; M.p. $<260^{\circ} \mathrm{C}$ decomp.; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.75(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,156.9,149.3,141.9,140.0,134.2,124.6,123.9$, 123.6, 91.5, 76.2.; IR (NaCl) v 3171, 3051, 2923, 2831, 3171, 3051, 2923, 2831, 1801, $1658 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$198.0441, found 198.0443.

| | ARea Feseent Repost |
| :--- | :--- | :--- | :--- | :--- |

(-)-Tegafur
(S)-5-fluoro-1-(tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione ((-)-Tegafur) : $\mathrm{Pd} / \mathrm{C}(2 \mathrm{mg}, 10 \mathrm{w} \%)$ was added to a solution of $\mathbf{1 2}(20.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$. The resulting reaction mixture was stirred at rt under a hydrogen atmosphere (balloon) for 10 min. The mixture was passed through a pad of celite and the filtrate was concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silicagel(Hexane:EtOAc $=10: 90)$ to afford $(-)$-Tegafur as a white solid $(16.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 78.0 \%)$. The enantiomeric excess (89.8% ee) was determined by HPLC on a chiral column (Chiralpak IB, Hexane: EtOAc $=$ 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=25.34($ major $), 28.85($ minor $)$).
$\mathrm{R}_{f} 0.21$ (Hexane: $\left.\mathrm{EtOAc}=50: 50\right) ;[\alpha]^{28}{ }_{\mathrm{D}}=-68.1\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. $[\alpha]^{23} \mathrm{D}=-70.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)^{6} ;$ m.p.: 170$171{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, J=6.1,3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=$ $7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{MeOD}) \delta 159.9,159.7,150.8,142.8,140.9,126.2,125.9,88.9,71.3,33.4,25.0 . ; \mathrm{IR}(\mathrm{NaCl}) \vee 3419,3179$, 3049, 2824, 1707, 1427, 1406, 1181, 1107, $1073 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$200.0597, found 200.0601.

S1gnal 1: VWD1 A, Wavelength-254 nm

	$\underset{\substack{w_{1} \tan \mathrm{n}}}{ }$		$\begin{gathered} \text { Hoight } \\ {\left[\begin{array}{c} \text { mavil } \end{array}\right.} \end{gathered}$	$\stackrel{\text { area }}{ }$
	0.6608 0.7879	5639.78711 304.06500	125.37016 6.43210	54.8844

2a-T
(S)-1-(1-(cyclohexyloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (2a-T) : Using the general procedure B, the mixture of $\mathbf{1 a}(27.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ and Thymine $(25.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $5.0 \mu \mathrm{~mol}),(R, R)$-L1 $(7.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at room temperature for 1 h . Flash column chromatography on silica gel (Hexane:EtOAc $=60: 40$) afforded 2a-T as a white solid $(49.8 \mathrm{mg}, 0.19$ $\mathrm{mmol}, 94.2 \%$ yield). The enantiomeric excess (96.8% ee) was determined by HPLC on a chiral column (Chiralpak ID, Hexane: $\mathrm{iPrOH}=70: 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=8.04$ (major), 9.02 (minor)). $\mathrm{R}_{f} 0.23$ (Hexane:EtOAc $=70: 30$); M.p. $128.6-129.3{ }^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}=-85.5\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=1.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.33(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=1.44$, $17.07 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=1.75,10.29 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.48(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=1.20 \mathrm{~Hz}, 3 \mathrm{H})$, $1.70-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.39(\mathrm{~m}, 5 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,151.1,136.1$, $134.2,119.2,111.5,80.8,76.5,33.0,31.5,25.6,24.0,23.8,12.7 . ; \mathrm{IR}(\mathrm{NaCl})$ v 3180, 3050, 2931, 2857, 1708, $1684,1464 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$264.1474, found 264.1477.

Area Farcent Raport				
Sosted B_{Y}	:	S1gnal		
Mutipplies:			1.0000	
Dae Moltipliez =	11ution	Factor mith	${ }^{1.0000}$ ISTD	
Stgnal 1: vwil a,	waveleng	th-254 nm		
$\underset{\#}{\text { Peak }} \underset{[\min]}{\text { Retime }} \mathrm{T}_{\mathrm{yP}}$		$\begin{gathered} \text { Area } \\ {\left[\operatorname{mavivan}^{2}\right]} \end{gathered}$		Area
$\begin{array}{lll}1 \\ { }_{2} & 8.252 \\ 9.161\end{array}$	$\begin{aligned} & 0.2242 \\ & 0.4164 \end{aligned}$	${ }_{6}^{3.89581294} 6$	$\begin{array}{r} 2639.41748 \\ 20.45090 \end{array}$	$\begin{aligned} & 98.4217 \\ & 1.5783 \end{aligned}$
Totale :		3.95829e4	2659.86339	

2b-T

(S)-5-methyl-1-(1-(pentyloxy)allyl)pyrimidine-2,4(1H,3H)-dione (2b-T) : Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 b}(31.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and Thymine $(47.4 \mathrm{mg}, 0.38 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.7 \mathrm{mg}, 6.3$ $\mu \mathrm{mol}),(R, R)-\mathrm{L} 1(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at room temperature for 3 h . Flash column chromatography on silica gel $($ Hexane $: E t O A c=80: 20)$ afforded $\mathbf{2 b - T}$ as a colorless oil $(51.1 \mathrm{mg}, 0.20 \mathrm{mmol}$, 81.0%). The enantiomeric excess (96.1% ee) was determined by HPLC on a chiral column (Chiralpak IA, Hexane: $\mathrm{iPrOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=8.79$ (major), 10.56 (minor)). $\mathrm{R}_{f} 0.49$ (Hexane: $\left.\mathrm{EtOAc}=60: 40\right) ;[\alpha]^{28}=-59.5\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48-8.62(\mathrm{br}$, $1 \mathrm{H}), 7.07-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.19(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=3.71,10.62,17.20 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{td}, J=1.52,17.20$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40(\mathrm{td}, J=1.35,10.62 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.54(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=1.10 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.89$ (t, $J=6.74 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,151.7,135.7,133.6,119.5,111.8,83.1,77.7,77.2$, $76.8,69.2,29.1,28.3,22.5,14.1,12.7 . ;$ IR $(\mathrm{NaCl}) v 3185,3049,2931,1694,1466,1377,1251,1220,1098 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$252.1474, found 252.1478.

Aese Fercent Repost

Area Percent Rapost				
Sorted B_{y}	:	s1gnal		
Moltip118=\%			${ }_{1}^{1.0000}$	
Dilution Uae Moltipliez :	11ation	Factor ${ }_{\text {\% }}$ 1t	1.0000 IsTD	
signal 1: vwol a	waveleng	th-254 nm		
	$\underset{\substack{x_{1 a t h} \\[\min]}}{ }$		$\begin{gathered} \begin{array}{c} \text { Hosight } \\ {[\operatorname{mavN}]} \end{array} \end{gathered}$	$\stackrel{\text { a } 23}{ }$
9.104 Vs	0.2215	1.2143004	${ }^{335.93679}$	50.1214
210.99238	0.2722	1.2084204	633.87360	49.8786
Totals :		2.42271 e4	1519.9303a	

Aesa Fescent Rapost				
Sortec B_{Y}	:	stgnal		
Matepiper:			1.0000	
Dilution:		*		
Wae \%atiplias :	1ut10n	Factos m1	IsTDa	
S1gnal 1: vwol a	Waveleng	$\mathrm{n}-254 \mathrm{~nm}$		
	wratn [min]		$\begin{gathered} \text { Hoignt } \\ { }_{\text {[mavid }} \end{gathered}$	A=ea
1 2 2	0.2013 0.2797	1597.57178 32.04029	123.16422 1.70132	98.0339 1.9661
Totals :		1629.61207	124.86554	

2c-T

(S)-1-(1-(1,3-bis(benzyloxy)propan-2-yloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (2c-T): Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 c}(31.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and Thymine $(47.4 \mathrm{mg}, 0.38 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.7 \mathrm{mg}, 6.3 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 1(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at room temperature for 4 h . Flash column chromatography on silica gel (Hexane:EtOAc $=70: 30$) afforded $2 \mathrm{c}-\mathbf{T}$ as a colorless oil ($86.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 78.4 \%$). The enantiomeric excess (87.9% ee) was determined by HPLC on a chiral column (Chiralpak ID, Hexane: $\mathrm{iPrOH}=70: 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=$ 16.93 (major), 19.61 (minor)).
$\mathrm{R}_{f} 0.33$ (Hexane: $\left.\mathrm{EtOAc}=60: 40\right) ;[\alpha]^{28}=-41.5\left(\mathrm{c}=0.59, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}^{2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.22-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.12-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.43-6.45(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{ddd}, J=3.75,10.54,17.18 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=$ $17.18 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.54 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=4.29 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.94-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.63$ $(\mathrm{m}, 2 \mathrm{H}), 3.48-3.54(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, J=0.83 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,151.5,138.0,137.9$, $136.5,133.7,128.5,127.8,127.76,127.69,127.6,119.6,111.2,82.6,77.6,77.2,76.84,76.80,73.43,73.38,70.1$, 69.5.; IR $(\mathrm{NaCl}) ~ v ~ 3185,3031,2926,2861,1690,1495,1371,1251,1075,1028 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 436.1998$, found 436.2000.

A=e2 Pascent Repost					
Sozted B_{Y}	:	signal			
Moitip11ez:			1.0000		
Dilution:		\%	1.0000		
Uae Moltiplie= :	11ution	Factos mit	- 19tDa		
Stgnal 1: vwdi a,	wavelen	$\mathrm{th}^{254} \mathrm{~nm}$			
	${ }^{w 1 a t n}$	$\begin{gathered} \text { Area } \\ {\left[\operatorname{mal} \\|^{+},\right.} \end{gathered}$	Hoignt [mav]	A=02	
1 2	$\begin{aligned} & 0.2365 \\ & 0.2799 \end{aligned}$	2.8823594	$\begin{aligned} & 1862.02666 \\ & 1605.38245 \end{aligned}$	49.7155 30.2845	
Totale :		5.7976804	3668.20912		

2a-U
(S)-1-(1-(cyclohexyloxy)allyl)pyrimidine-2,4(1H,3H)-dione (2a-U): Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 a}(34.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and uracil $(42.1 \mathrm{mg}, 0.38 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.7 \mathrm{mg}, 6.3$ $\mu \mathrm{mol}),(R, R)$-L1 $(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at room temperature for 1.5 h . Flash column chromatography on silica gel (Hexane:EtOAc $=70: 30$) afforded $\mathbf{2 a} \mathbf{- U}$ as a white solid $(55.0 \mathrm{mg}, 0.22$ $\mathrm{mmol}, 88.0 \%$). The enantiomeric excess (94.0% ee) was determined by HPLC on a chiral column (Chiralpak IA, Hexane: $\mathrm{iPrOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=15.89$ (major), 17.66 (minor)). $\mathrm{R}_{f} 0.53$ (Hexane:EtOAc $=60: 40$); M.p. $99.6-100.0^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-57.4\left(\mathrm{c}=0.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.89-9.01(\mathrm{br}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.33(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=17.11$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=10.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.48(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.54(\mathrm{~m}, 1 \mathrm{H})$, 1.19-1.42 (m, 5H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,151.1,140.5,134.1,119.4,103.1,81.3,77.5,77.2,77.0$, $35.0,31.6,25.7,24.0,23.8 . ; \mathrm{IR}(\mathrm{NaCl}) \vee 3185,3057,2934,2858,1693,1454,1381,1248,1124,1061,1026 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$250.1317, found 250.1317.

2b-U
(S)-1-(1-(pentyloxy)allyl)pyrimidine- $\mathbf{2 , 4 (1 H , 3 H) - d i o n e ~ (2 b - U) : ~ U s i n g ~ t h e ~ g e n e r a l ~ p r o c e d u r e ~} \mathbf{B}$, the mixture of $\mathbf{1 b}(25.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and uracil $(22.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol}),(R, R)-$ $\mathrm{L} 1(7.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at room temperature for 6 h . Flash column chromatography on silica gel (Hexane:EtOAc $=70: 30$) afforded $\mathbf{2 b - U}$ as a colorless oil $(39.8 \mathrm{mg}, 0.17 \mathrm{mmol}$, 83.5%). The enantiomeric excess (96.2% ee) was determined by HPLC on a chiral column (Chiralpak IA, Hexane: $\mathrm{iPrOH}=95: 5$, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=13.70$ (major), 16.54 (minor)). $\mathrm{R}_{f} 0.52(\mathrm{Hexane}: \mathrm{EtOAc}=40: 60) ;[\alpha]^{23} \mathrm{D}=-65.7\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.04 \mathrm{~Hz}), 6.18-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{dt}, J=1.32,17.25 \mathrm{~Hz}), 5.41(\mathrm{dt}, J=1.44,10.51$ $\mathrm{Hz}), 3.45-3.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.86-0.91(\mathrm{~m}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,151.3,140.1,133.4,119.7,103.3,83.4,69.4,29.1,28.3,22.5,14.1 . ; \mathrm{IR}(\mathrm{NaCl})$ v $3194,3058,2957,2933$, 2872, 1692, 1457, 1381, $1250 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$238.1317, found 238.1316.

2c-U

(S)-1-(1-(1,3-bis(benzyloxy)propan-2-yloxy)allyl)pyrimidine-2,4(1H,3H)-dione (2c-U): Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 c}(62.1 \mathrm{mg}, 0.20 \mathrm{mmol})$ and uracil $(22.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 1(7.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at room temperature for 24 h . Flash column chromatography on silica gel (Hexane:EtOAc =70:30) afforded $\mathbf{2 c} \mathbf{c} \mathbf{U}$ as a colorless oil (69.3 mg , $0.16 \mathrm{mmol}, 82.0 \%$). The enantiomeric excess (95.8% ee) was determined by HPLC on a chiral column (Chiralpak IB, Hexane: $\mathrm{iPrOH}=70: 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=8.31$ (minor), 9.81 (major)). $\mathrm{R}_{f} 0.41$ (Hexane:EtOAc $\left.=40: 60\right) ;[\alpha]^{23} \mathrm{D}=-36.2\left(\mathrm{c}=0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 11 \mathrm{H}), 6.44-6.45(\mathrm{~m}, 1 \mathrm{H}), 5.76-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}$, $\mathrm{J}=12.29,16.54 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.94-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.50(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2,151.1,140.9,138.0,137.8,133.5,128.6,128.0,127.9,127.7,119.7,102.6,83.2,77.3,73.5$, 70.1, 69.7.; $\mathrm{IR}(\mathrm{KBr})$ v 3191, 3059, 2921, 2864, 1685, 1454, 1381, 1249, $1076 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 423.1920$, found 423.1918 .

Area Percent Rapost				
Sozted B_{Y}	:	s1gnal		
hoitipilez:			1.0000	
	alution	Factor mith	${ }^{1.0000}$ ISTD	
signal 1: vwol a	waveleng	mh-254 nm		
	$\underset{\substack{\left.m_{1} \mathrm{minn}\right]}}{ }$	$\begin{gathered} \mathrm{A}=e \mathrm{ez} \\ {\left[\mathrm{mav}^{+} \mathrm{A}\right]} \end{gathered}$	$\underset{\substack{\text { Helight } \\ \text { [mavy }}}{ }$	$\underset{\Delta}{\text { Areaz }}$
$\begin{array}{ccc} 1 & 8.310 \\ 2 & 9.809 \mathrm{Ba} \\ \hline \end{array}$	$\begin{aligned} & 0.2251 \\ & 0.3016 \end{aligned}$	720.06657 3.3303184	$\begin{array}{r} 48.51842 \\ 1662.96423 \end{array}$	27.11839
Totals		3.40232 c	1711.48265	

2a-HmU
(S)-1-(1-(cyclohexyloxy)allyl)-5-(hydroxymethyl)pyrimidine-2,4(1H,3H)-dione (2a-HmU): Using the general procedure B, the mixture of 1a ($34.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 5-hydroxy(methyl)uracil ($53.3 \mathrm{mg}, 0.375 \mathrm{mmol}$) was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 1(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 7 h . Flash column chromatography on silica gel (Hexane:EtOAc $=60: 40$) afforded $\mathbf{2 a} \mathbf{- H m U}$ as a colorless oil ($55.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 79.6 \%$). The enantiomeric excess (98.2% ee) was determined by HPLC on a chiral column (Chiralpak IB, Hexane: $\mathrm{iPrOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV $=254 \mathrm{~nm}$, retention time $=$ 10.31 (minor), 11.38 (major)).
$\mathrm{R}_{f} 0.38$ (Hexane:EtOAc $\left.=40: 60\right) ;[\alpha]^{27}{ }_{\mathrm{D}}=-53.8\left(\mathrm{c}=0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.97(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~s}, 1 \mathrm{H}), 6.32-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$ $4.40(\mathrm{q}, ~ J=13.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.48(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.21-$ $1.42(\mathrm{~m}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,151.0,137.9,134.0,119.5,114.6,81.3,76.7,58.9,33.0,31.5$, $25.6,24.0,23.8 ;$ IR (NaCl) v 3433, 3065, 2934, 2858, 1685, 1468, 1252, 1137, 1094, $940 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} 4\left(\mathrm{M}^{+}\right) 280.1423$, found 280.1426 .

2b-HmU

(S)-5-(hydroxymethyl)-1-(1-(pentyloxy)allyl)pyrimidine-2,4(1H,3H)-dione (2b-HmU): Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 b}(32.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ and 5-hydroxy(methyl)uracil ($53.3 \mathrm{mg}, 0.375 \mathrm{mmol}$) was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 1(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 8 h . Flash column chromatography on silica gel (Hexane:EtOAc $=40: 60$) afforded $\mathbf{2 b} \mathbf{- H m U}$ as a white solid ($48.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 71.5 \%$). The enantiomeric excess ($95.2 \% \mathrm{ee}$) was determined by HPLC on a chiral column (Chiralpak IA, Hexane: $\mathrm{iPrOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\mathrm{UV}=254 \mathrm{~nm}$, retention time $=12.29$ (major), 16.00 (minor)).
$\mathrm{R}_{f} 0.50$ (Hexane:EtOAc $\left.=40: 60\right)$; M.p. $60.3-60.6{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-65.6\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 6.19-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=16.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ $(\mathrm{dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.36-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.6 \mathrm{~Hz} 2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.33(\mathrm{~m}$, 4H), 0.86-0.91(m, 3H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,151.2,137.5,133.4,120.0,114.8,83.7,69.6,58.8$, 29.1, 28.3, 22.6, 14.2; $\operatorname{IR}(\mathrm{NaCl}) ~ v ~ 3432,3067,2932,2873,1674,1468,1344,1253,1097,763 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$268.1423, found 268.1424.

2c-HmU
(S)-1-(1-(1,3-bis(benzyloxy)propan-2-yloxy)allyl)-5-(hydroxymethyl)pyrimidine-2,4(1H,3H)-dione
$\mathbf{H m U}$) : Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 c}(77.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and 5 -hydroxy (methyl)uracil ($53.3 \mathrm{mg}, 0.375 \mathrm{mmol}$) was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 3(9.8 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ $(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at rt for 1 h . Flash column chromatography on silica gel $($ Hexane $: \mathrm{EtOAc}=40: 60)$ afforded $\mathbf{2 c - H m U}$ as a colorless oil ($79.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 70.0 \%$). The enantiomeric excess ($91.7 \% \mathrm{ee}$) was determined by HPLC on a chiral column (Chiralpak IB, Hexane: $\mathrm{EtOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=14.37$ (minor), 15.55 (major)).
$\mathrm{R}_{f} 0.44$ (Hexane:EtOAc $\left.=40: 60\right) ;[\alpha]^{27}{ }_{\mathrm{D}}=-49.3\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.50(\mathrm{~s}, 1 \mathrm{H})$, 7.22-7.38 (m, 11H), 6.45-6.48(m, 1H), 5.74-5.85 (m, 1H), $5.53(\mathrm{dt}, J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=10.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}) 4.54(\mathrm{q}, J=12.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.08-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.95-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.63(\mathrm{~m}, 2 \mathrm{H})$, 3.48-3.54(m, 2H), 2.78(s, 1H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,151.1,138.2,138.0,137.9,133.5,128.64$, $128.60,128.0,127.9,127.8,119.9,114.3,83.3,77.3,73.6,73.5,70.3,69.7,58.6$; IR $(\mathrm{NaCl}) \vee 3440,3064,2926$, 2866, 1679, 1496, 1252, 1074, 1028, $739 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right) 453.2026$, found 453.2027

2a-C

(S)-4-amino-1-(1-(cyclohexyloxy)allyl)pyrimidin-2(1H)-one (2a-C): Using the general procedure B, the mixture of $\mathbf{1 a}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ and cytosine $(22.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 5.0$ $\mu \mathrm{mol}),(R, R)-\mathrm{L} 2(6.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at rt for 24 h . Flash column chromatography on silica gel (EtOAc: $\mathrm{MeOH}=90: 10$) afforded $\mathbf{2 a - C}$ as a white solid ($49.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 98.5 \%$). The enantiomeric excess (99.9% ee) was determined by HPLC on a chiral column (Chiralpak ID, Hexane: $\mathrm{iPrOH}=$ 80:20, flow rate $=1.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=266 \mathrm{~nm}$, retention time $=5.43$ (major), 6.90 (minor)).
$\mathrm{R}_{f} 0.27(\mathrm{EtOAc}: \mathrm{MeOH}=90: 10) ;[\alpha]{ }^{17} \mathrm{D}^{2}=-79.4\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) ;$ M.p. $148.5-149.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{dt}, J=1.49,17.08 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ $(\mathrm{dt}, J=1.37,10.44 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.48(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.15-$ $1.40(\mathrm{~m}, 5 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,156.4,141.8,135.1,118.2,95.2,81.7,76.4,33.1,31.6,25.6$, 24.1, 23.9.; IR $(\mathrm{NaCl}) v 3331,3184,2933,2857,2242,1642,1519,1488 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right)$249.1477, found 249.1475.

2b-C
(S)-4-amino-1-(1-(pentyloxy)allyl)pyrimidin-2(1H)-one (2b-C) : Using the general procedure \mathbf{B}, the mixture of 1b $(25.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and cytosine $(22.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, $(R, R)-\mathrm{L} 3(7.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at rt for 24 h . Flash column chromatography on silica gel (EtOAc: $\mathrm{MeOH}=90: 10$) afforded $\mathbf{2 b}-\mathbf{C}$ as a colorless oil $(46.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 97.8 \%)$. The enantiomeric excess (89.5% ee) was determined by HPLC on a chiral column (Chiralpak IA, Hexane: EtOH $=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=6.55$ (major), 7.91 (minor) $)$.
$\mathrm{R}_{f} 0.27(\mathrm{EtOAc}: \mathrm{MeOH}=90: 10) ;[\alpha]{ }^{17}{ }_{\mathrm{D}}=-60.9\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, \mathrm{~J}=$ $7.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.35(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{dt}, \mathrm{J}=1.50,17.30 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt}, \mathrm{J}=1.39,10.65$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45-3.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.86-0.89(\mathrm{~m}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,157.0,140.7,134.6,118.4,96.1,83.7,69.0,29.1,28.3,22.5,14.1 . ; \mathrm{IR}(\mathrm{NaCl}) \vee 3329,3190,2956$, 2933, 2872, 1627, 1489, $1391 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+}\left(\mathrm{M}^{+} \mathrm{Na}^{+}\right)$260.1369, found 260.1370.

Ares Percent Repos

Area Percent repost				
S1gnal 1: VW01 A, Wavelength-254 nm				
Peak RetTime Type	waten [min]		$\begin{gathered} \text { Hoight } \\ {[\operatorname{maviv]}} \end{gathered}$	$\stackrel{\text { a } 202}{ }$
	0.1924 0.355		1205.90430 41.15801	${ }_{\substack{\text { S4.7270 } \\ 5.2730}}$
Totale		1.6634394	1247.06231	

(S)-4-amino-1-(1-(1,3-bis(benzyloxy)propan-2-yloxy)allyl)pyrimidin-2(1H)-one (2c-C): Using the general procedure B, the mixture of $\mathbf{1 c}(77.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and cytosine ($27.8 \mathrm{mg}, 0.25 \mathrm{mmol}$) was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(11.4 \mathrm{mg}, 12.5 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 3(19.7 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 24 h .

Flash column chromatography on silica gel (EtOAc:MeOH = 90:10) afforded $\mathbf{2 c} \mathbf{c} \mathbf{C}$ as a colorless oil (76.8 mg, $0.18 \mathrm{mmol}, 70.4 \%)$. The enantiomeric excess (95.1% ee) was determined by HPLC on a chiral column (Chiralpak IA, Hexane: $\mathrm{EtOH}=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=16.33$ (major), $25.20($ minor $)$). $\mathrm{R}_{f} 0.56(\mathrm{EtOAc}: \mathrm{MeOH}=90: 10) ;[\alpha]^{28}{ }_{\mathrm{D}}=-27.8\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.45$ $(\mathrm{m}, 11 \mathrm{H}), 6.56-6.58(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{ddd}, J=3.65,10.65,17.45 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.49(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.33(\mathrm{~m}, 1 \mathrm{H})$, $4.53(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.94$ (pent, $J=4.69 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-4.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1$, $156.8,141.7,138.24,138.18,134.7,128.5,128.4,127.76,127.72,127.70,127.68,118.6,95.5,83.1,77.5,77.2$, $77.0,76.4,73.5,73.3,70.1,69.6 . ;$ IR $(\mathrm{NaCl}) v 3328,3088,3030,2920,2862,1625,1487,1367,1277,1073 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 422.2080$, found 422.2080 .

(S,E)-1-(1-(hex-2-enyloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (4-1) : Using the general procedure B, the mixture of $\mathbf{3}(34.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and thymine $(47.3 \mathrm{mg}, 0.38 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.7 \mathrm{mg}$, $6.3 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 1(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at rt for 2 h . Flash column chromatography on silica gel (Hexane:EtOAc $=70: 30$) afforded $\mathbf{4 - 1}$ as a colorless oil $(52.0 \mathrm{mg}, 0.20 \mathrm{mmol}$, 79.0\%).
$\mathrm{R}_{f} 0.50$ (Hexane:EtOAc $\left.=60: 40\right) ;[\alpha]^{28}{ }_{\mathrm{D}}=-58.6\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53-9.70(\mathrm{br}$, $1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{td} . J=1.61,3.70 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.55(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.41(\mathrm{~m}, 1 \mathrm{H}), 3.97-$ $4.04(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}, J=7.14,14.66 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.91(\mathrm{~m}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.3,151.4,136.7,136.0,133.6,124.6,119.7,111.8,82.3,77.7,77.2,76.8,70.0,34.5,22.2,13.8$, 12.7. ; IR (NaCl) v 3185, 3049, 2959, 2930, 2872, 1694, 1465, 1377, 1251, $1136 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$264.1476, found 264.1474

4
(S)-1-(2,5-dihydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (4) : Using the general procedure \mathbf{C}, the solution of 4-1 ($52.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at $40^{\circ} \mathrm{C}$ for 4 h . Flash column chromatography on silica gel (Hexane:EtOAc $=20: 80)$ afforded 4 as a white solid ($37.1 \mathrm{mg}, 0.191 \mathrm{mmol}, 97.0 \%$). The enantiomeric excess (93.5% ee) was determined by HPLC on a chiral column (Chiralpak IB, Hexane: iPrOH $=70: 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=10.24($ major $), 12.86($ minor $)$). $\mathrm{R}_{f} 0.63$ (Hexane:EtOAc $\left.=40: 60\right) ;$ M.p. $164.8-165.2^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=-122.1\left(\mathrm{c}=0.51, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8 9.17-9.29 (br, 1H), 7.01-7.03 (m, 1H), $6.86(\mathrm{~s}, 1 \mathrm{H}), ~ 6.42-6.44(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.83(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.86(\mathrm{~m}$, $1 \mathrm{H}), 4.70-4.74(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,151.1,135.4,133.4,125.0,111.5,90.7$,
$77.6,77.2,76.8,75.9,12.8 . ;$ IR (NaCl) v 3185, 3049, 2927, 2868, 2825, 1690, 1468, 1223, $1067 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$194.0691, found 194.0689.

(S,E)-1-(1-(hex-2-enyloxy)allyl)pyrimidine-2,4(1H,3H)-dione (5-1): Using the general procedure \mathbf{B}, the mixture of $3(34.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and uracil $(42.1 \mathrm{mg}, 0.38 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.7 \mathrm{mg}, 6.3$ $\mu \mathrm{mol}),(R, R)-\mathrm{L} 1(9.9 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at rt for 2 h . Flash column chromatography on silica gel $($ Hexane $: E t O A c=50: 50)$ afforded $\mathbf{5 - 1}$ as a colorless oil $(48.3 \mathrm{mg}, 0.19 \mathrm{mmol}$, 77.2\%).
$\mathrm{R}_{f} 0.29($ Hexane: $\mathrm{EtOAc}=60: 40) ;[\alpha]^{28}=-49.6\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76-9.97(\mathrm{br}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{td}, J=1.50,3.46 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.83(\mathrm{~m}, 3 \mathrm{H}), 5.43-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J$ $=10.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.43 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{dd}, J=7.35,14.08 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ (sexet, $J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 0.87$ (t, $J=7.35 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 163.7,151.3,140.4,136.9,133.4,124.5,119.8,103.3,82.6$, $77.6,77.2,76.8,70.1,34.5,22.2,13.8 . ; \operatorname{IR}(\mathrm{NaCl}) \vee 3196,3057,2959,2930,2872,1680,1456,1380,1249,1120$, 1093, $1048 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$251.1396, found 251.1393.

5
(S)-1-(2,5-dihydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (5): Using the general procedure \mathbf{C}, the solution of $\mathbf{5 - 1}(45.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at $40^{\circ} \mathrm{C}$ for 4 h . Flash column chromatography on silica gel (Hexane: $\mathrm{EtOAc}=20: 80)$ afforded 5 as a white solid $(30.3 \mathrm{mg}, 0.17 \mathrm{mmol}, 95.0 \%)$. The enantiomeric excess (93.3% ee) was determined by HPLC on a chiral column (Chiralpak IC, Hexane: iPrOH $=70: 30$, flow rate $=1.2 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=44.71$ (minor), 55.71 (major) $)$. $\mathrm{R}_{f} 0.17$ (Hexane:EtOAc $\left.=20: 80\right)$; M.p. $140.8-141.2^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=-114.7\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 9.71-9.79 (br, 1H), $7.08(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 1 \mathrm{H}) 6.43(\mathrm{qd}, J=1.64,8.11 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-$ $5.85(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.75(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.8,150.9,139.8,133.6,124.8,103.1,91.0,77.7,77.2,76.8,76.0 . ; \mathrm{IR}(\mathrm{NaCl})$ v 3185. 3094. 3057. 2926. 2872. 1686. 1459. 1388. 1116. $1014 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$180.0535, found 180.0533 .

7-1

1-((R)-1-((S)-1-(benzyloxy)but-3-en-2-yloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (7-1): Using the general procedure B, the mixture of $\mathbf{6}(563.7 \mathrm{mg}, 2.61 \mathrm{mmol})$ and thymine $(493.0 \mathrm{mg}, 3.91 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(59.8 \mathrm{mg}, 65.3 \mu \mathrm{~mol}),(S, S)-\mathrm{L} 3(102.9 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(138.5 \mathrm{mg}, 0.65 \mathrm{mmol})$ at rt for 8 h . Flash column chromatography on silica gel (Hexane: $\mathrm{EtOAc}=70: 30$) afforded $\mathbf{7 - 1}$ as a colorless oil (842.0 $\mathrm{mg}, 2.46 \mathrm{mmol}, 94.2 \%$, d.r. $=1:>25)$.
$\mathrm{R}_{f} 0.61$ (Hexane:EtOAc $\left.=50: 50\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+51.3\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.34-5.55(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, 4.05-4.12 (m, 1H), 3.44-3.57 (m, 2H), $1.74(\mathrm{~d}, J=1.18 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,151.3$, 138.0, 136.4, 133.6, 133.0, 128.6, 127.9, 127.6, 120.6, 119.4, 111.4, 80.8, 78.2, 73.4, 72.4, 12.4.; IR (NaCl) v 3186, 3033, 2927, 2860, 1693, 1497, 1252, $1096 \mathrm{~cm} . .^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 342.1580$, found 342.1579.

7

1-((2R,5S)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (7) : Using the general procedure \mathbf{C}, the solution of $\mathbf{7 - 1}(25.0 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at rt for 24 h . Flash column chromatography on silica gel (Hexane:EtOAc $=20: 80$) afforded 7 as a white solid (26.0 $\mathrm{mg}, 0.09 \mathrm{mmol}, 83.4 \%$, d.r. $=1:>25$)
$\mathrm{R}_{f} 0.50$ (Hexane:EtOAc $\left.=20: 80\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-33.8\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$; M.p. 144.9-146.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.51-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.83$ (m, 1H), 4.95-4.99 (m, 1H), $4.56(\mathrm{dd}, J=12.11,15.61 \mathrm{~Hz}), 3.74(\mathrm{ddd}, J=2.61,11.02,33.20 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J$ $=1.20 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,151.0,137.6,136.8,134.3,128.7,128.1,127.8,126.6$, $110.9,89.6,85.8,73.6,70.8,12.0 . ;$ IR $(\mathrm{NaCl}) ~ v 3181,3061,2925,2861,1690,1468,1253,1119 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 315.1345$, found 315.1347.

8-1
1-((R)-1-((S)-1-(benzyloxy)but-3-en-2-yloxy)allyl)pyrimidine-2,4(1H,3H)-dione (8-1): Using the general procedure B, the mixture of $\mathbf{6}(86.5 \mathrm{mg}, 0.40 \mathrm{mmol})$ and uracil ($67.3 \mathrm{mg}, 0.60 \mathrm{mmol}$) was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(9.2 \mathrm{mg}, 10.0 \mu \mathrm{~mol}),(S, S)-\mathrm{L} 3(15.8 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at rt for 8 h . Flash column chromatography on silica gel (Hexane $: E t O A c=60: 40)$ afforded $\mathbf{8 - 1}$ as a white solid $(117.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 89.3 \%$, d.r. $=1:>25$).
$\mathrm{R}_{f} 0.14$ (Hexane:EtOAc $\left.=70: 30\right) ;[\alpha]^{23} \mathrm{D}=+57.6\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$; M.p. 63.8-65.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.27-6.29(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.87(\mathrm{~m}, 2 \mathrm{H})$, $5.62(\mathrm{dd}, J=1.95,8.04 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.46(\mathrm{~m}, 3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.07-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.57$ (m, 2H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,151.3,140.8,137.9,133.4,132.9,128.5,127.9,127.6,120.5,119.5$, 102.8, 81.1, 78.4, 73.4, 72.2.; IR (NaCl) v 3191, 3061, 2923, 2861, 1690, 1497, 1381, $1250 \mathrm{~cm}^{-1} ;$ HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 329.1501$, found 329.1499.

8

1-((2R,5S)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (8) : Using the general procedure \mathbf{C}, the solution of $\mathbf{8 - 1}(34.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at rt for 12 h . Flash column chromatography on silica gel (Hexane:EtOAc $=20: 80$) afforded $\mathbf{8}$ as a white solid ($26.0 \mathrm{mg}, 0.09$ mmol, 83.4\%, d.r. $=1:>25)$
$\mathrm{R}_{f} 0.41$ (Hexane:EtOAc $\left.=20: 80\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=-39.7\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) ;$ M.p. $115.4-116.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.32(\mathrm{~m}, 1 \mathrm{H})$, 5.76-5.79 (m, 1H), $5.21(\mathrm{~d}, J=8.14 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=11.26,13.74 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{ddd}, J$
$=2.63,10.93,24.77 \mathrm{~Hz}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,151.0,141.5,137.4,134.4,128.7,128.3$, $128.1,126.3,102.2,89.7,86.0,73.8,70.8 . ;$ IR $(\mathrm{NaCl}) \vee 3192,3060,2865,1688,1625,1496,1381,1249 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 301.1188$, found 301.1190.

9-1
1-((R)-1-((S)-1-(benzyloxy)but-3-en-2-yloxy)allyl)-5-(hydroxymethyl)pyrimidine-2,4(1H,3H)-dione (9-1) : Using the general procedure B, the mixture of $\mathbf{6}(54.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ and 5-hydroxy(methyl)uracil (53.3 mg , $0.375 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.8 \mathrm{mg}, 0.0063 \mathrm{mmol}),(S, S)-\mathrm{L} 3(9.8 \mathrm{mg}, 0.013 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3$ $\mathrm{mg}, 0.063 \mathrm{mmol})$ at rt for 1.5 h . Flash column chromatography on silica gel $($ Hexane:EtOAc $=80: 20)$ afforded 9 1 as a colorless oil ($64.6 \mathrm{mg}, 0.18 \mathrm{mmol}, 72 \%$, d.r. $=1: 17$).
$\mathrm{R}_{f} 0.38$ (Hexane:EtOAc $\left.=40: 60\right) ;[\alpha]^{24}{ }_{\mathrm{D}}=+54.9\left(\mathrm{c}=0.77, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.08(\mathrm{~s}, 1 \mathrm{H})$, $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.25-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.32-5.55(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}) 4.08-4.28$ $(\mathrm{m}, 3 \mathrm{H}), 3.44-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,151.2,138.1,138.0,133.4,133.0$, $128.7,128.0,127.8,120.6,119.8,114.5,81.3,78.5,73.5,72.4,58.6 . ; \operatorname{IR}(\mathrm{NaCl}) v, 3186,3032,2925,2863,1716$, 1496, 1386, 1216, $991 \mathrm{~cm} . .^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$381.1421, found 381.1420.

9
1-((2R,5S)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)-5-(hydroxymethyl)pyrimidine-2,4(1H,3H)-dione
(9) : Using the general procedure \mathbf{C}, the solution of $\mathbf{9 - 1}(29.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at $40^{\circ} \mathrm{C}$ for 11 h . Flash column chromatography on silica gel (Hexane:EtOAc $=0: 100$) afforded 9 as a colorless oil ($17.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 64 \%$, d.r. $=1:>25$)
$\mathrm{R}_{f} 0.25$ (Hexane:EtOAc $\left.=20: 80\right) ;[\alpha]^{24}{ }_{\mathrm{D}}=-11.5\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=6.00,1.65 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.84(\mathrm{~m}, 1 \mathrm{H}), 4.95-5.00$ $(\mathrm{m}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=11.91,8.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-4.08(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8$, $150.8,138.6,137.6,134.6,128.8,128.3,128.0,126.4,113.9,89.9,86.1,73.7,70.7,58.7 . ;$ IR $(\mathrm{NaCl}) \vee 3448,3189$, 3061, 2925, 2859, 1684, 1469, 1251, 1088, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 353.1108$, found 353.1108 .

10-1

1-((S)-1-((S)-1-(benzyloxy)but-3-en-2-yloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (10-1): Using the general procedure B, the mixture of $\mathbf{6}(86.5 \mathrm{mg}, 0.4 \mathrm{mmol})$ and thymine $(75.7 \mathrm{mg}, 0.6 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.2 \mathrm{mg}, 10.0 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 3(15.8 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at rt for 8 h. Flash column chromatography on silica gel (Hexane:EtOAc $=60: 40)$ afforded $\mathbf{1 0 - 1}$ as a colorless oil $(131.7 \mathrm{mg}$, $0.38 \mathrm{mmol}, 96.2 \%$, d.r. $=15: 1$).
$\mathrm{R}_{f} 0.60$ (Hexane:EtOAc $\left.=50: 50\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=-26.8\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.42(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.85(\mathrm{~m}, 4 \mathrm{H}), 5.13-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~m}$, $2 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.59(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~d}, J=1.14 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,150.9$, $138.1,136.4,134.8,133.6,128.5,127.8,127.7,119.9,118.3,111.3,82.9,80.3,73.5,72.7,12.6 . ; \mathrm{IR}(\mathrm{NaCl}) ~ v 3188$, 3064, 2927, 1692, 1466, 1373, 1251, $1070 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 342.1580$, found 342.1578 .

10

1-((2S,5S)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (10): Using the general procedure \mathbf{C}, the solution of $\mathbf{1 0 - 1}(46.0 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at rt for 12 h . Flash column chromatography on silica gel (Hexane:EtOAc $=20: 80$) afforded $\mathbf{1 0}$ as a white solid $(38.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 93.0 \%$, d.r. $=19: 1)$
$\mathrm{R}_{f} 0.20$ (Hexane:EtOAc $\left.=50: 50\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=-190.2\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) ;$ M.p. 123.9-125.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.39(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.92$ $(\mathrm{m}, 1 \mathrm{H}), 5.19-5.25(\mathrm{~m} \mathrm{1H}), 4.59(\mathrm{dd}, J=12.17,14.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.62(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=1.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8,150.6,137.8,135.3,134.4,128.6,128.0,127.8,126.7,111.5,90.5,86.4,73.8$, 72.0, 12.7.; $\operatorname{IR}(\mathrm{NaCl}) \vee 3182,3035,2925,2856,1690,1467,1247,1074 \mathrm{~cm}^{-1} ;$ HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 315.1345$, found 315.1348 .

11-1

4-amino-1-((R)-1-((S)-1-(benzyloxy)but-3-en-2-yloxy)allyl)pyrimidin-2(1H)-one (11-1): Using the general procedure B, the mixture of $\mathbf{6}(43.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ and cytosine $(22.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol}),(S, S)-\mathrm{L} 3(7.9 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at rt for 24 h . Flash column chromatography on silica gel $(E t O A c: M e O H=90: 10)$ afforded $\mathbf{1 1}-1$ as a white solid $(54.1 \mathrm{mg}, 0.17 \mathrm{mmol}, 82.6 \%$, d.r. $=1: 10$).
$\mathrm{R}_{f} 0.63$ (EtOAc: $\mathrm{MeOH}=95: 5$); $[\alpha]^{22}{ }_{\mathrm{D}}=+47.4(\mathrm{c}=0.27, \mathrm{MeOH}) ;$ M.p. $72.8-74.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.40(\mathrm{~d}, \mathrm{~J}=7.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.37-6.38(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.85(\mathrm{~m}, 3 \mathrm{H}), 5.26-5.44(\mathrm{~m}, 4 \mathrm{H}), 4.47(\mathrm{~s}$, $2 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.53(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,156.6,142.2,138.2,134.5$, $133.3,128.5,127.73,127.67,120.2,118.5,95.0,81.6,77.8,73.2,72.4 . ;$ IR $(\mathrm{NaCl}) \vee 3343,3090,2925,2859$, 1625, $1521 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$328.1661, found 328.1659.

11
N, N-Di-tert-butoxycarbonyl-1-((2R,5S)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)-cytosine (11) : Using the general procedure \mathbf{C}, The solution of boc protected $\mathbf{1 1 - 1}(38.8 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at rt for 24 h . Flash column chromatography on silica gel (Hexane:EtOAc $=50: 50$) afforded $\mathbf{1 1}$ as a colorless oil ($32.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 87.1 \%$, d.r. $=1:>25$)
$\mathrm{R}_{f} 0.32$ (Hexane:EtOAc $\left.=50: 50\right) ;[\alpha]^{22} \mathrm{D}=+31.4\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=$ $7.63 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.02-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.95(\mathrm{~m}$, $1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.44,17.57 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=3.04,10.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=2.88,11.03$ $\mathrm{Hz}, 1 \mathrm{H}), 1.55$ (s, 18H).; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 162.6,154.9,149.7,144.9,137.5,132.8,128.7,128.2$, $128.1,127.5,96.4,91.8,86.5,84.8,73.7,70.7,27.8 . ; \operatorname{IR}(\mathrm{NaCl}) v 3162,3091,3033,2980,2931,2867,1778$, 1744, $1679 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 499.2319$, found 499.2316.

1-((S)-1-((R)-1-(benzyloxy)but-3-en-2-yloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (ent-7-1): Using the general procedure B, the mixture of ent-6 ($54.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) and thymine ($47.3 \mathrm{mg}, 0.38 \mathrm{mmol}$) was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.7 \mathrm{mg}, 6.2 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 3(9.9 \mathrm{mg}, 12.5 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at rt for 8 h . Flash column chromatography on silica gel (Hexane:EtOAc $=50: 50$) afforded $\boldsymbol{e n t - 7 - 1}$ as a colorless oil $(72.5 \mathrm{mg}, 0.21 \mathrm{mmol}, 84.7 \%$, d.r. $=1:>25)$.
$\mathrm{R}_{f} 0.69$ (Hexane:EtOAc $\left.=20: 80\right) ;[\alpha]^{28}{ }_{\mathrm{D}}=-65.2\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.13(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.34-5.55(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, 4.05-4.12 (m, 1H), 3.44-3.57(m, 2H), $1.74(\mathrm{~d}, J=1.07 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,151.3$, $3192,3065,2927,2857,1692,1497,1252 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 342.1580$, found 342.1581 .

ent-7
1-((2S,5R)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (ent-7) : Using the general procedure \mathbf{C}, the solution of ent-7-1 ($45.2 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at rt for 24 h . Flash column chromatography on silica gel (Hexane:EtOAc $=50: 50$) afforded ent-7 as a white solid ($35.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 87.4 \%$, d.r. $=>25: 1$)
$\mathrm{R}_{f} 0.50$ (Hexane:EtOAc $\left.=20: 80\right) ;[\alpha]^{21}{ }_{\mathrm{D}}=+35.8\left(\mathrm{c}=0.59, \mathrm{CHCl}_{3}\right)$; M.p. $142.3-146.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.51-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.82$ (m, 1H), 4.96-4.98 (m, 1H), $4.56(\mathrm{dd}, J=12.22,15.79 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=2.63,10.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $2.84,10.94 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=1.16 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8,150.9,137.6,136.9,134.3$, $128.7,128.2,127.8,126.5,110.9,89.6,85.9,73.6,70.8,12.0 . ;$ IR (NaCl) v 3173, 3039, 2891, 2858, 1695, 1497 cm^{-1}; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 314.1267$, found 314.1269.

14-1

1-((R)-1-((S)-1-(benzyloxy)pent-4-en-2-yloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (14-1) : Using the general procedure B, the mixture of $\mathbf{1 3}(57.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ and thymine $(47.3 \mathrm{mg}, 0.38 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol}),(S, S)-\mathrm{L} 3(9.8 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(13.3 \mathrm{mg}, 0.063 \mathrm{mmol})$ at rt for 2 h. Flash column chromatography on silica gel $(\mathrm{Hexane}: \mathrm{EtOAc}=55: 45)$ afforded $\mathbf{1 4 - 1}$ as a colorless oil $(84.7 \mathrm{mg}, 0.24$ mmol, 95.0%, d.r. $=1:>25)$.
$\mathrm{R}_{f} 0.58$ (Hexane:EtOAc $\left.=60: 40\right) ;[\alpha]^{27}{ }_{\mathrm{D}}=+46.4\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~s}, 1 \mathrm{H})$, $7.22-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.36(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{dt}, J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}) 5.38$ $(\mathrm{dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.38(\mathrm{~m}$, $2 \mathrm{H}), 1.74(\mathrm{~d}, J=1.1 \mathrm{~Hz} 3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,153.1,139.7,138.4,135.5,135.0,130.3,129.6$, $129.4,121.3,120.2,112.9,83.9,79.3,75.2,73.7,37.7,14.2 ; \mathrm{IR}(\mathrm{NaCl}) \vee 3190,3065,2927,2856,1694,1497$, 1252, 1076, 1029, $775 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 356.1736$, found 356.1733

14

1-((2R,6S)-6-(benzyloxymethyl)-5,6-dihydro-2H-pyran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (14) : Using the general procedure \mathbf{C}, the solution of $\mathbf{1 4 - 1}(59.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at $40^{\circ} \mathrm{C}$ for 20 h . Flash column chromatography on silica gel (Hexane:EtOAc $=20: 80$) afforded $\mathbf{1 4}$ as a colorless oil ($45.2 \mathrm{mg}, 0.137 \mathrm{mmol}, 82.4 \%$, d.r. $=>25: 1$). $\mathrm{R}_{f} 0.39$ (Hexane:EtOAc $\left.=60: 40\right) ;[\alpha]^{27}{ }_{\mathrm{D}}=+1.1\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01(\mathrm{~s}, 1 \mathrm{H})$, $7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.22-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.59(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{q}, J$ $=12.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=5.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=5.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.04-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,150.8,138.1,136.4,131.8$, 128.6, 127.9, 125.5, 111.5, 78.9, 73.64, 73.60, 72.2, 27.1, 12.6.; IR (NaCl) v 3188, 3043, 2925, 1689, 1496, 1374, 1253, 1118, 1078, $780 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$328.1423, found 328.1421 .

1-((R)-1-((2R,3S)-3-(benzyloxy)-1-(tert-butyldimethylsilyloxy)hex-5-en-2-yloxy)allyl)-5-methylpyrimidine-

$(16.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.2 \mathrm{mg}, 4.6 \mu \mathrm{~mol}),(S, S)-\mathrm{L} 1(7.3 \mathrm{mg}, 9.2 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(7.0$ $\mathrm{mg}, 0.033 \mathrm{mmol})$ at rt for 20 h . Flash column chromatography on silica gel $($ Hexane: $\mathrm{EtOAc}=70: 30)$ afforded 161 as a colorless oil ($55.9 \mathrm{mg}, 0.112 \mathrm{mmol}, 85.3 \%$, d.r. $=1: 13$).
$\mathrm{R}_{f} 0.55$ (Hexane: $\mathrm{EtOAc}=70: 30$, twice) $;[\alpha]^{27}{ }_{\mathrm{D}}=+9.8\left(\mathrm{c}=1.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~s}$, $1 \mathrm{H}), 7.21-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{dt}, J=3.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{dt}, J=17.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55-3.86(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}),-0.10-0.04(\mathrm{~m}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,151.1,138.4,136.6,135.0,133.8,128.5,128.1,127.8,119.8,117.5,111.4,82.7,80.6$, $78.3,72.5,62.6,35.1,26.0,18.5,12.9,-5.2,-5.3 . ; \operatorname{IR}(\mathrm{KBr}) \vee 3072,2929,2857,1699,1690,1559,1465,1252$, $1095 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 523.2599$, found 523.2598

16

1-((2R,6S,7R)-6-(benzyloxy)-7-((tert-butyldimethylsilyloxy)methyl)-2,5,6,7-tetrahydrooxepin-2-yl)-5-

methylpyrimidine-2,4(1H,3H)-dione (16) : Using the general procedure \mathbf{C}, the solution of $\mathbf{1 6 - 1}(25.0 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Hoveyda-Grubbs catalyst $2^{\text {nd }}$ generation ($1.6 \mathrm{mg}, 2.5 \mu \mathrm{~mol}$) at $40^{\circ} \mathrm{C}$ for 10 h . Flash column chromatography on silica gel (Hexane:EtOAc =70:30) afforded $\mathbf{1 6}$ as a sticky colorless oil (21.3 $\mathrm{mg}, 0.0453 \mathrm{mmol}, 90.6 \%$, d.r. $=1:>25)$.
$\mathrm{R}_{f} 0.41$ (Hexane:EtOAc $=70: 30$, twice); $[\alpha]^{20.2}{ }_{\mathrm{D}}=+13.3\left(\mathrm{c}=1.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72$ $(\mathrm{s}, 1 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.55(\mathrm{~m}, 1 \mathrm{H}), 5.87-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{ddd}, J=11.1,2.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54(\mathrm{~d}, J=10.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=16.4,7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.00-0.04(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,150.3,138.3,137.1,131.2,128.8,127.81$, $127.76,111.1,83.2,82.5,78.5,70.9,63.7,28.0,26.0,18.4,12.6,-5.18,-5.23 . . ; \mathrm{IR}(\mathrm{NaCl}) \vee 3033,2928,2856$, 1698, 1465, 1252, $1092 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$495.2286, found 495.2287.

17-1

9-((R)-1-((S)-1-(benzyloxy)but-3-en-2-yloxy)allyl)-9H-purin-6-amine (17-1) : Using the general procedure B, the mixture of $6(86.5 \mathrm{mg}, 0.40 \mathrm{mmol})$ and adenine $(54.1 \mathrm{mg}, 0.40 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.2 \mathrm{mg}$, $10.0 \mu \mathrm{~mol}),(S, S)-\mathrm{L} 3(15.8 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(21.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at rt for 8 h . Flash column chromatography on silica gel $(E t O A c: M e O H=90: 10)$ afforded $\mathbf{1 7 - 1}$ as a white solid $(112.1 \mathrm{mg}, 0.32 \mathrm{mmol}$, 79.8%, d.r. $=1:>25)$.
$\mathrm{R}_{f} 0.37$ (Hexane:EtOAc $\left.=50: 80\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=+43.2(\mathrm{c}=0.41, \mathrm{MeOH}) ;$ M.p. $79.2-80.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.33-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 6.04-6.15(\mathrm{~m}, 1 \mathrm{H})$, 5.72-5.83 (m, 1H), 5.36-5.49 (m, 4H), 4.42 (s, 2H), 3.97-4.03(m, 1H), 3.37-3.52 (m, 2H).; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.8,153.3,150.2,139.1,137.9,134.0,133.4,128.4,127.7,127.6,120.6,119.4,119.1,80.4,78.2$, 73.3, 72.2.; $\operatorname{IR}(\mathrm{KBr}) \vee 3315,3151,2904,2860,1647,1595 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 351.1695$, found 351.1693.

17
N, N-Di-tert-butoxycarbonyl-9-((2R,5S)-5-(benzyloxymethyl)-2,5-dihydrofuran-2-yl)-adenine (17) : Using the general procedure \mathbf{C}, The solution of boc protected $\mathbf{1 7 - 1}(45.2 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted with Grubbs catalyst at $40^{\circ} \mathrm{C}$ for 24 h . Flash column chromatography on silica gel $(\mathrm{Hexane}: \mathrm{EtOAc}=50: 50)$ afforded 17 as a colorless oil ($37.9 \mathrm{mg}, 0.07 \mathrm{mmol}, 90.5 \%$, d.r. $=>25: 1$) $\mathrm{R}_{f} 0.24$ (Hexane:EtOAc $\left.=50: 50\right) ;[\alpha]^{19}{ }_{\mathrm{D}}=-35.6\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.87(\mathrm{~s}, 1 \mathrm{H})$, $8.41(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 7 \mathrm{H}), 6.41-6.42(\mathrm{~m}, 1 \mathrm{H}), 6.04-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.16 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{~d}, J=12.33 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.69(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,152.3,150.6$, $150.3,144.0,137.4,134.7,129.1,128.7,128.1,128.0,125.4,88.4,86.6,83.8,73.6,70.7,27.9 . ; \mathrm{IR}(\mathrm{NaCl})$ v 2980, 2929, 2862, 1789, 1756, 1599, $1577 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right) 546.2323$, found 546.2323.

5. Determination of the Structure of 2a-T

1) Synthesis of $\mathbf{1 9}$ from $\mathbf{1 8}$
(R)-3-benzyl-1-(1-(cyclohexyloxy)allyl)-5-methylpyrimidine-2,4(1H,3H)-dione (19) : Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 a}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ and N-benzylthymine ${ }^{7}(42.5 \mathrm{mg} 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.5 \mathrm{mg}, 4.9 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 1(7.8 \mathrm{mg}, 9.8 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 1,4-dioxane $(2 \mathrm{~mL}, 0.1 \mathrm{M})$ at rt for 1 h . Flash column chromatography on silica gel (Hexane:EtOAc $=80: 20$) afforded 19 as a white solid ($69.0 \mathrm{mg}, 0.196 \mathrm{mmol}, 99.9 \%$). The enantiomeric excess (99.1% ee) was determined by HPLC on a chiral column (Chiralpak ID, Hexane: $\mathrm{iPrOH}=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=11.2$ (minor), 13.9 (major)).
$\mathrm{R}_{f} 0.48\left(\right.$ Hexane: $\left.\mathrm{Et}_{2} \mathrm{O}=95: 5\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-61.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ m.p. $46-47{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.41-7.51 (m, 2H), 7.21-7.34 (m, 3H), $7.11(\mathrm{q}, ~ J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{ddd}, J=17.1$, $10.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.48(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.15-1.40(\mathrm{~m}, 5 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.6, 151.9, 137.2 134.4, 134.2, 129.1, 128.5, 127.7, $119.1,110.8,81.7,76.5,44.7,33.0,31.5,25.6,24.0,23.9,13.4 ; \mathrm{IR}(\mathrm{NaCl}) v 3067,3033,2934,2858,1702,1667$, 1450, 1353, 1235, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$377.1836, found 377.1837.

Area Percent Report

Sorted by	:	Signal		
Multiplier	:	1.0908		
Dilution	:	1.0080		
Use Multiplier 8 Dilution Factor with IsTDs				
Signal 1: wiol A , Wavelength=254 nm				
Peak RetTime type " [min]	width [min]	$\begin{gathered} \text { Area } \\ \text { [mAU*s] } \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ \text { an } \end{gathered}$
11.193 в8	๑. 3876	9964.11230	389.34052	49.9334
213.631 8в	0.5156	9990.68750	296.92917	50.8666

2) Synthesis of $\mathbf{1 9}$ from 2a-T

To a suspension of $\mathrm{NaH}(7.2 \mathrm{mg}, 0.18 \mathrm{mmol}, 60 \mathrm{wt} \%$ in mineral oil) in THF (0.5 mL) was added a solution of 2aT ($39.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 10 min at $0^{\circ} \mathrm{C}$, benzyl bromide $(27 \mathrm{~mL}, 0.22$ mmol) was added. The reaction mixture was allowed to room temperature, then stirring for 2.5 h at $65^{\circ} \mathrm{C}$. The resulting solution was quenched with water followed by extraction with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified by flash column chromatography on silica gel (Hexane:EtOAc $=80: 20$) afforded 19 as a white solid $(50.1 \mathrm{mg}, 0.14 \mathrm{mmol}, 94.2 \%)$. The spectral data are in complete accordance with the sample obtained from the previous experiment.
6. Structure determination of N^{9} / N^{7} substituted adenine ${ }^{8}$

1) HSQC experiment

2) HMBC experiment

(S)-9-(1-(cyclohexyloxy)allyl)-9H-purin-6-amine : Using the general procedure \mathbf{B}, the mixture of $\mathbf{1 a}$ (27.0 mg , $0.20 \mathrm{mmol})$ and adenine $(28.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ was reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol}),(R, R)-\mathrm{L} 2(6.9 \mathrm{mg}$, $10.0 \mu \mathrm{~mol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ at rt for 24 h . Flash column chromatography on silica gel (EtOAc: $\mathrm{MeOH}=90: 10)$ afforded product as a white solid $(49.3 \mathrm{mg}, 0.18 \mathrm{mmol}, 90.2 \%)$. The enantiomeric excess (91.7% ee) was determined by HPLC on a chiral column (Chiralpak ID, Hexane: $\operatorname{iPrOH}=60: 40$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}$, retention time $=13.45($ major $), 23.25($ minor $)$).
$\mathrm{R}_{f} 0.67$ (EtOAc: $\left.\mathrm{MeOH}=90: 10\right) ;$ M.p. $127.8-128.9^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=+79.4(\mathrm{c}=0.19, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 6.38-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.02-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 5.46-5.52(\mathrm{~m}, 1 \mathrm{H})$, 5.38-5.42(m, 1H), 3.38-3.46(m, 1H), 1.99-2.03(m, 1H), 1.38-1.77(m, 5H), 1.12-1.34 (m, 4H).; ${ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,153.1,150.1,139.1,134.6,119.4,118.9,80.6,76.7,32.9,31.5,25.6,23.9,23.8 . ; \mathrm{IR}(\mathrm{NaCl})$ $v 3328,3198,2929,2855,1654,1598 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$274.1662, found 274.1663.

A=ea Percent rapost				
sorted By_{y}	:	s1gnal		
Multipliar:			1.0000	
Dilution:		$\stackrel{*}{ }$	1.0000	
Uae \%oltiplies :	11ution	Factos mit	ISTD	
Slgnal 1: WWD1 a, Wavolength-254 nm				
$\underset{\ddagger}{\text { Peak Retime }} \underset{[\mathrm{min}]}{\mathrm{T}} \mathrm{ype}$	wratn		Hoignt [mav]	$A=a z$
${ }^{14.223} \mathrm{BE}$		1.9123664	335.34622	
222.495 в8я	1.7927	1.9140484	150.81160	50.0219
Totale :		3.8264004	486.15782	

Area Percent repost

Dilution: $\quad \underset{\sim}{\text { Olgnal }} 1.0000$

Signal 1: WWD1 a, Wavelength-254 nm

$\stackrel{\text { eak }}{\underset{7}{2}}$	gettime $[m \mathrm{~m} \mathrm{n}$	TYpe	${ }_{[m 1 a t n}$	$\begin{gathered} \text { area } \\ {\left[\operatorname{man} V^{*}\right]} \end{gathered}$	Hoight [mavy	$\mathrm{A}=2$
1	13.453	B8	0.7444	4.08215e4	795.92792	95.8542
2	23.245	38,	1.1536	1765.59595	22.64477	4.1458
Tota	日 :			4.2587124	818.57269	

7. References

1. Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011, 133, 20611.
2. Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134, 4011.
3. Whitehead, A.; McParland, J. P.; Hanson, P. R. Org. Lett. 2006, 8, 5025.
4. Nesbitt, C. L.; McErlean, C. S. P. Org. Biomol. Chem. 2011, 9, 2198.
5. Mohapatra, D. K.; Reddy, D. S.; Mallampudi, N. A.; Gaddam, J.; Polepalli, S.; Jain, N.; Yadav, J. S. Org. Biomol. Chem. 2014, 12, 9683.
6. Yasumoto, M.; Moriyama, A.; Unemi, N.; Hashimoto, S.; Suzue, T. J. Med. Chem. 1977, 20, 1592.
7. Jaime-Figueroa, S.; Zamilpa, A.; Guzmán, A.; Morgans, D. J. Synth. Commun. 2001, 31, 3739.
8. Webb, G. A. Annual Reports on NMR Spectroscopy; Elsevier Science, 2014.

8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ Spectra

KSY-4-BisBn-allene-H 11 yhr 20170122

Current
NAME
EXPE
EXPNO
PROCNO

NAME Data Parameters
EXPNO
PROCNO
F2 - Acquisition Parameter
F2 - Acquisition Paramet
Date_ 20170125
Time
${ }_{\text {Time }}^{\text {TimSTRUM }}$
INSTRUM
PROBHD
PUPROG PROLPROG
TD TD
SOLVENT NS
DS
SWH $\begin{array}{lr} & 8 \\ \text { SWH } & 2 \\ \text { EIDRES } & 6188.119\end{array}$

15

DGK-9-050-P 131 yhr 20170120

KSY-3-262-C 1120161219 YHR

LJY-3-069-iso 151 yhr 2016061

| 1 | 1 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 | |

LJY-3-072-iso 141 yhr 20160615

LJY-3-083-iso 11 yhr 20160614

KSY-3-262-C 11120161219 YHR

KSY-3-272-C 1120161219 YHR

JSH-3-162-P 13120160810

1										
200	180	160	140	120	100	80	60	40	20	0

NAME	LJY-3-098-iso
EXPNO	13
PROCNO	1
Date_	20160622
Time	4.17
INSTRUM	spect
PROBHD	5 mm PABBO BB-
PULPROG	zgpg 30
TD	65536
SOLVENT	CDC13
NS	112
DS	2
SWH	18028.846 Hz
FIDRES	0.275098 Hz
${ }^{\text {A }}$ Q	1.8175818 sec
RG	16
DW	27.733 ust
DE	6.50 ust
TE	296.6 K
D1	1.50000000 sec
D11	0.03000000 sec
TDO	1
SFO1	CHANSEL 75.4752953 MH :
NUC1	13 C
P1	10.20
SI	32768
SF	75.4677379 MH :
WDW	EM
SSB	0
${ }^{\text {LB }}$	1.00 Hz
${ }_{\text {PB }}$	1.40
PC	1.40

,	1	1	1	1	1	1	1	1	1	
200	180	160	140	120	100	80	60	40	20	0 ppm

KSY-4-053-C 1120160625

Current Data Parameter
NAME \quad KSY-4-053-
EXPNO
PROCNO

F2-Acquisition Parameters	
Date-	20160625
Time	20.29
INSTRUM	spect
PROBHD	5 mm PABBO BB-
PULPROG	zgpg 30
TD	65536
SOLVENT	CDC13
NS	246
DS	2
SWH	18028.846 Hz
FIDRES	0.275098 Hz
AQ	1.8175317 sec
RG	14.2 sec
DW	27.733 usec
DE	6.50 usec
TE	296.6 K
D1	1.50000000 sec
D11	0.03000000
TD0	1

$\begin{array}{ll}======= & \text { CHANNEL } f 1 \quad====== \\ \text { SFO1 } & 75.4752953 \mathrm{MHz} \\ \text { NUC1 } & 13 \mathrm{C}\end{array}$
$\begin{array}{lr}\text { P1 } & 10.20 \text { use } \\ \text { PLW1 } & 18.97400093 \mathrm{w}\end{array}$
$=======$
SFO2 $\quad \begin{aligned} & \text { CHANNEL } f 2===== \\ & 300.1312005 \mathrm{MHz}\end{aligned}$
$\begin{array}{lr}\text { NUC2 } & 1312005 \\ \text { CPDPRG[2 } & \text { waltz16 }\end{array}$
$\begin{array}{lc}\text { CPDPRG[2 } & \text { waltz16 } \\ \text { PCPD2 } & 90.00 \text { usec } \\ \text { PLW2 } & 8.75839996 \mathrm{~W} \\ \text { PLW12 } & 0.13083000 \mathrm{~W} \\ \text { PLW13 } & 0.1059800 \mathrm{w}\end{array}$
$\begin{array}{cc} & \\ \text { 2 } & \text { Processing parameters } \\ \text { II } & 32768 \\ \text { SF } & 75.4677402 \\ \text { WDW } & \text { EM } \\ \text { SB } & \end{array}$
$\begin{array}{lll}\text { SSB } & 0 & 1.00 \mathrm{~Hz} \\ \text { LB } & 0 & \end{array}$
1.40

JSH-3-174-P 13120160826

\footnotetext{
Current Data Parameters
NAME
JSH-3-174-1
EXPNO

Current	Data Parameters
NAME	JSH-3-196-P
EXPNO	4
procno	1
F2 - Acquisition Parameters	
Date_	20160831
Time	15.58
INSTRUM	spect
PROBHD	5 mm PABBO ${ }^{\text {BB- }}$
pULPROG	zg30
TD	65536
SOLVENT	CDC13
NS	32
DS	
SWH	6188.119 Hz
FIDRES	0.094423 Hz
AQ	5.2953086 sec
RG	287
DW	80.800 usec
DE	6.50 usec
TE	295.3 K
D1	2.00000000 sec
TD0	1
CHANNEL $\mathrm{f} 1 \mathrm{l}======$	
SFO1	300.1314684 MHz
NUC1	1H
P1	11.00 usec
pLW1	8.75839996 W
F2 - Processing parameters	
SI	32768
SF	300.1300060 MH
WDW EM	
SSB	0
LB 0.30 Hz	
GBPC	

KSY-4-096-C 11 yhr 20170104

KSY-4-123_C 11 yhr 20160929

1	1	1	1	1	1	1	1	1	1	
200	180	160	140	120	100	80	60	40	20	0

MJK-4-142 111 YHR 160719

MJK-4-142 11 YHR 160719

12

Current Data Parameters
NAME
MJK-4-136-P
EXPNO

(

MJK-4-136-P 11 yhr 20160715

KSY-4-069C 11 yhr 20170120

Current Data Parameters
NNME
EXPNO
KSY-4-069-
PROC
EXPNO
PROCNO

