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Abstract

This is the supplementary material to the paper “Speeding up the Hyperparameter Optimization of Deep
Convolutional Neural Networks”. Here we give more details and additional results for our experiments. We will
first describe the implementation details of the genetic algorithm (GA), followed by the hyperparameter search
spaces used for the different optimization algorithms in the first experiment. Then we will give an overview
over the best hyperparameters for the different data sets and resolutions, as found by the various optimization
algorithms during the first experiment. Following this, we will give an overview of the importance of various
subsets of hyperparameters for the STL-10 data set [7], similarly as in the original paper for the CK+ data set
[10]. Finally, we give an overview over the hyperparameter search spaces and the best hyperparameters found
in the second experiment on the 102-Flowers data set [11].

1 Implementation of the Genetic Algorithm

The general process of the GA is depicted in Figure 1. First, a population of convolutional neural networks
(CNNs) is generated with random hyperparameters. After evaluating each CNN’s fitness, some CNNs are selected
as “parents”. These parents are recombined to create “children” and these children together with the three best
CNNs from the previous generation constitute the new generation. Finally, individual hyperparameters can mutate
to increase the variance of hyperparameter values. Each optimization run is executed for a total of 30 generations.

We also measure the average time it takes to evaluate one generation. After each generation the three best
CNNs are automatically transferred to the next generation without being evaluated again. Except for the very
first generation, one generation, therefore, corresponds to 47 evaluations of CNNs. As a consequence, we have 50
evaluations in the first generation and 47 evaluations in the following 29 generations, for a total of 50+29∗47 = 1413
evaluations. We will now describe the general implementation of the GA.

Initialization For each optimization procedure with our GA, we initialize a population of 50 CNNs. The CNNs
are encoded with a direct encoding strategy for which the hyperparameters that are to be optimized are encoded
as genes, while all other hyperparameters, such as the activation function, stay the same. The hyperparameters are
initially drawn from a given range. However, through mutation, the hyperparameters can take values outside the
original range during the optimization process. Table 1 presents the list of optimized and fixed hyperparameters
used in each of our experiments.

We also adhere to common architectures and guidelines and ensure in a second step that a higher convolutional
layer does not have fewer filters than the previous convolutional layer. Analogous to how we handle the filters in the
convolutional layers we ensure that higher hidden layers do not have more hidden units than lower hidden layers.
This is some domain knowledge for CNNs that is inserted into the optimization process to speed up the time until
good results are found. See Figure 2 for an overview of the optimized hyperparameters.
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Figure 1: General procedure of the hyperparameter optimization algorithm.

Table 1: Overview of fixed and optimized hyperparameters for the GA during the experiments.
Hyperparameters Values

F
ix

ed

Activation Function Rectified Linear Unit

Pooling Operation Max Pooling

Pool Size (2,2)

Weight Initialization N (0, 2
n

)1

Momentum 0.9

Early Stopping 5 Epochs w/o Improvement

Max. Number of Epochs 50

O
p

ti
m

iz
ed

Filter Size {(x, x) | (x > 2) ∧ (x % 2 = 1)}
Batch Size {x | (x > 0) ∧ (x % 10 = 0)}
L1 Penalty {0 ∨ 10−x | x ∈ N>0}
L2 Penalty {0 ∨ 10−x | x ∈ N>0}

Learning Rate {10−x | x ∈ N>0}
Number of Conv Layers {x | x ∈ N>0}
Filters per Conv Layer {x | (x ∈ N>0) ∧ (x % 10 = 0)}

Number of Hidden Layers {x | x ∈ N>0}
Units per Hidden Layer {x | (x ∈ N>0) ∧ (x % 50 = 0)}

1n: number of incoming connections to one unit, see [8]

Training and Fitness Evaluation Each CNN is trained using stochastic gradient descent for a maximum of 50
epochs. To shorten the overall training time we employ an early stopping strategy and stop training if the validation
error does not decrease for five consecutive epochs of training. The CNN’s fitness is its error on the validation set
after training is completed. Since we want the validation error to be as small as possible, the overall goal is to
minimize the CNNs’ fitness values over time.

Parent Selection and Recombination To create the next generation of CNNs from the current generation
we combine multiple methods. First, the best three CNNs are automatically added to the next generation, this
technique is called elitism. Next, three randomly created “new” CNNs are also added to the next generation of
individuals. Then, we randomly choose 44 parents from the current generation using tournament selection, by
picking two random individuals from the current generation and ranking them according to their fitness. We then
choose the better individual with a probability of 75%, while selecting the worse individual in 25% of the cases and
add it to the pool of parents. These 44 parents are recombined to create 44 children, which fill up the pool of 50
individuals for the next generation. The recombination of two distinct parents is done via 1-point crossover. At the
crossover point in the genome, the two parents are split up and the respective parts are recombined to form two
new children. In order to retain some architectural features of a CNN we merge some individual hyperparameters
during the recombination process. More precisely, all convolutional layers with associated filters and filter sizes,
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Figure 2: Overview of the hyperparameters that are optimized during the experiments.

as well as all hidden layers with associated units are treated as individual hyperparameters. See Figure 3 for a
visualization of the recombination procedure.

Mutation After the recombination step, each individual’s gene is mutated with a probability of 10%. Through
this, the hyperparameters can take values that were not originally present. After the mutation step, it is again
ensured that higher convolutional layers do not have fewer filters than lower layers and that higher hidden layers
do not have more units than lower hidden layers.

2 Hyperparameter Search Space (Experiment 1)

Here, we provide information about the search and initialization space of the genetic algorithm, Random Search
and the TPE algorithm in the first experiment. Similar to the genetic algorithm both Random Search and TPE
were given a total of 1500 evaluations.

2.1 Genetic Algorithm

Initialization Tables 2 and 3 show the initialization parameters for the GA for the two data sets used in the first
experiment. We, start with a relatively small number of filters per convolutional layer which can be increased over
time by the GA. Additionally, a max-pooling layer is inserted after each convolutional layer. The values for many
of the hyperparameters are adapted from both, commonly seen value ranges for CNNs on these data sets [9], and
general recommendations [6, 2, 12]. If only a single value for the number of filters per layer is given, this is the
maximum value max of filters for the respective convolutional layer, i.e. the number of filters for this layer is drawn
from [10, max]

Table 2: Initialization of the hyperparameters for the CK+ data set in the first experiment.
hyperparameter GA RS and TPE

learning rate {1e-1, 1e-2, 1e-3} [0.00001, 0.1]

L1 penalty {0.0, 1e-1, 1e-2, 1e-3, , 1e-4} [0.000001, 0.1]

L2 penalty {0.0, 1e-1, 1e-2, 1e-3, , 1e-4} [0.000001, 0.1]

# conv layers (32/64/128/200px) {1, 2} / {1, 2, 3} / {1, ..., 4} / {1, ..., 5}
# filters (32px) 50, 50 150, 260

# filters (64px) 50, 50, 50 150, 260, 400

# filters (128px) 50, 50, 50, 50 150, 260, 400, 600

# filters (200px) 50, 50, 50, 50, 50 50, 100, 200, 300, 400

filter size {3x3, 5x5, 7x7}
# hidden layers {1, 2, 3}

# units per layer [50, 500]

batch size {10, 20, 30, 40, 50}
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Table 3: Initialization of the hyperparameters for the STL-10 data set in the first experiment.
hyperparameter GA RS and TPE

learning rate {1e-1, 1e-2, 1e-3} [0.00001, 0.1]

L1 penalty {0.0, 1e-1, 1e-2, 1e-3, , 1e-4} [e-7, 0.1]

L2 penalty {0.0, 1e-1, 1e-2, 1e-3, , 1e-4} [e-7, 0.1]

# conv layers (32/48/96px) {1, 2} / {1, 2, 3} / {1, 2, 3, 4}
# filters (32px) 50, 50 200, 400

# filters (48px) 50, 50, 50 200, 400, 600

# filters (96px) 50, 50, 50, 50 200, 400, 600, 800

filter size {3x3, 5x5, 7x7}
# hidden layers {1, 2, 3}

# units per layer [50, 500]

batch size {10, 20, 30, 40, 50, 60, 70, 80}

Recombination Figure 3 illustrates an example including only three hyperparameters: the learning rate, the con-
volutional layers and the hidden layers. All other individual hyperparameters, such as the regularization penalties,
are treated identically and can come from either parent, depending on the location of the crossover point.

Input

conv layer 1 conv layer 2 FC 2FC 1 softmax

max poolingmax pooling

Input

conv layer 1 FC 2FC 1 softmax

max pooling

Input

conv layer 1 conv layer 2 FC 1 softmax

max poolingmax pooling

Input

conv layer 1 FC 1 softmax

max pooling

learning rate: 0.01

learning rate: 0.001 learning rate: 0.01

learning rate: 0.001

Parents Childrencrossover

Figure 3: The two CNNs on the left are the parents with according architecture and learning rate. Each parent
has one or two convolutional layers, one or two hidden, fully connected layers (FC) and one Softmax layer for the
classification. After performing the crossover operation we obtain the two children on the right side.

Mutation Table 4 gives an overview over the mutation probabilities for the different hyperparameters. We have
a slightly higher probability for decreasing the learning rate because we can already sample the biggest allowed
learning rate of 0.1 from the very beginning. The tendency to decrease the learning rate is, therefore, advantageous
if smaller learning rates need to be found. If they are mutated, the number of the convolutional or hidden layers is
in- or decreased by one with a probability of 50% each.

The L1 and L2 regularization parameters are mutated in the same manner as the learning rate, but need some
special treatment in case they become zero. If the penalty is zero, there is a 40% chance that it will be increased.
If this is the case it is either set to 0.001 or 0.0001, each with a probability of 50%. If one of the penalties becomes
smaller than 1e-5, it is set to zero. The mutation parameters are set manually at the beginning of the optimization
process. They are not fine-tuned for the specific optimization task, but rather represent intuitive knowledge about
how hyperparameters are usually adapted during manual or grid search. The exact value of the mutation parameters
does most likely not have an impact on the final solution, but may have an impact on how quickly the algorithm
converges.
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Table 4: Mutation parameters for the first experiment. The columns describe the probability of the state changes
of a given hyperparameter in case it is mutated.

hyperparameter 10% 30% 50% hyperparameter 10% 40%

learning rate

L1 penalty

L2 penalty

×102 / ×10−2 ×10 ×10−1

# filters ±20 ±10

# hidden units ±100 ±50

filter size ±(4× 4) ±(2× 2)

batch size ±20 ±10

2.2 Random Search

For the implementation of the random search algorithm, we use the Hyperopt library1 [4] to randomly sample
hyperparameters from a previously defined search space. See Tables 2 and 3 for details on the search space for the
individual hyperparameters and data sets.

2.3 TPE

The “Tree of Parzen Estimators” (TPE) algorithm [3] is a sequential model-based optimization (SMBO) strategy
based on Bayesian probabilities. We use the implementation of TPE provided by Hyperopt1 [4]. It takes as
input a specification of the initial search space for the hyperparameters, a loss function, which maps specific
hyperparameters to a real value and an experimental history of values of the loss function [5]. The algorithm then
returns a suggestion for which hyperparameter setting should be evaluated next, given the current search history.
The next hyperparameter setting is then evaluated using the loss function, added to the search history and the next
suggestion is calculated based on the updated history. Again, the five best performing hyperparameter settings are
kept for further analysis and comparison. The definition of the search space is the same as for the random search
algorithm, see Tables 2 and 3.

1available from https://github.com/hyperopt/hyperopt
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3 Best Hyperparameters per Algorithm (Experiment 1)

Here we provide a detailed overview of the hyperparameters that were found by the various optimization algorithms
for the different data sets in the first experiment. Tables 5, 6 and 7 describe the hyperparameters found for the CK+
data set, while Tables 8, 9 and 10 describe the hyperparameters for the STL-10 data set and Table 11 describes the
hyperparameters used during the evaluation on the test sets.

Table 5: Results of the best CNNs found by the genetic algorithm for the extended Cohn-Kanade data set.
The table shows results averaged over three independent optimization runs for each resolution. For each of the four
resolutions the genetic algorithm was initialized randomly from the same search space. The crossover and mutation
parameters stay the same across all resolutions.

input size 32x32px 64x64px

avg generation time 5 min 06 sec 7 min 33 sec

avg validation error 0.048 ± 0.007 0.043 ± 0.011

learning rate 0.01 (100%) 0.1 (13%), 0.01 (87%)

batch size 10 (100%) 10 (80%), 50 (13%)

L1 regularization 0.1 (27%), 0.01− 0.001 (47%) 0.01− 0.1 (33%), 0.0001 (53%)

L2 regularization 0 (60%), 0.01− 0.1 (20%) 0 (13%) 0.01− 0.1 (87%)

number of conv layers 1 (73%), 2 (27%) 2 (100%)

number of hidden layers 1 (100%) 1 (100%)

number of filters

1st conv layer

2nd conv layer

20− 30 (47%), 50− 80 (53%) 10 (100%)

20− 40 (100%)

filter size

1st conv layer

2nd conv layer

5 (80%), 9 (20%) 5 (100%)

3 (67%), 5 (33%)

units in 1st hidden layer 200− 300 (47%), 400− 450 (47%) 200− 250 (67%), 350− 400 (33%)

input size 128x128px 200x200px

avg generation time 14 min 05 sec 20 min 44 sec

avg validation error 0.047 ± 0.011 0.058 ± 0.013

learning rate 0.01 (100%) 0.01 (100%)

batch size 10 (100%) 10 (73%), 40 (13%)

L1 regularization 0.001 (20%), 0.01− 0.1 (73%) 0− 0.001 (60%), 0.01− 0.1 (33%)

L2 regularization 0 (60%), 0.1 (40%) 0.001 (33%), 0.01− 0.1 (60%)

number of conv layers 3 (40%), 4 (60%) 4 (67%), 5 (33%)

number of hidden layers 1 (100%) 1 (87%)

number of filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

10 (67%), 60 (33%)

30− 50 (67%), 90 (33%)

60− 80 (67%), 90− 100 (33%)

100 (100%)

10− 20 (93%)

10− 30 (87%)

40− 70 (87%)

50− 70 (47%), 80− 100 (53%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5 (67%), 9 (33%)

3 (67%), 5 (27%)

3 (93%)

3 (100%)

5 (67%), 7 (33%)

3 (67%), 5 (33%)

3 (100%)

3 (100%)

units in 1st hidden layer 200− 300 (27%), 350− 450 (73%) 300− 350 (27%), 400− 500 (60%)
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Table 6: Results of the best CNNs found by Random Search for the extended Cohn-Kanade data set. The table
shows results averaged over three independent optimization runs for each resolution. For each optimization run
of the four resolutions, random search sampled 1500 hyperparameter settings from the search space and evaluated
their performance.

input size 32x32px 64x64px

avg generation time 5 min 26 sec 11 min 42 sec

avg validation error 0.064 ± 0.007 0.078 ± 0.005

learning rate 0.008− 0.08 0.001− 0.04

batch size 10− 20 (53%), 30− 40 (47%) 10− 20 (53%), 30− 40 (40%)

L1 regularization 0.0 (47%), 0.001− 0.01 (33%) 0.0 (60%), 0.002− 0.02 (33%)

L2 regularization 0.0 (33%), 0.01− 0.1 (40%) 0.0 (33%), 0.001− 0.05 (47%)

# conv layers 1 (80%), 2 (20%) 2 (27%), 3 (73%)

# hidden layers 1 (67%), 2 (20%) 1 (80%), 2 (20%)

number of filters

1st conv layer

2nd conv layer

3rd conv layer

30− 80 (60%), 90− 120 (27%) 30− 70 (60%), 100− 120 (27%)

20− 60 (40%), 70− 120 (33%)

100− 200 (45%), 210− 300 (36%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

5 (33%), 7 (60%) 5 (47%), 7 (40%)

3 (20%), 5 (47%), 7 (33%)

3 (27%), 5 (18%), 7 (55%)

units in 1st hidden layer 100− 300 (33%), 400− 500 (47%) 100− 300 (60%), 400− 500 (40%)

input size 128x128px 200x200px

avg generation time 37 min 13 sec 42 min 42 sec

avg validation error 0.07 ± 0.007 0.07 ± 0.01

learning rate 0.003− 0.05 0.003− 0.06

batch size 10− 20 (40%), 30− 40 (47%) 10− 20 (40%), 30− 40 (47%)

L1 regularization 0.0 (40%), 0.0001− 0.01 (47%) 0.0 (53%), 0.001− 0.01 (33%)

L2 regularization
0.01− 0.1 (40%)

0.0001− 0.009 (40%)

0.001− 0.01 (27%)

0.01− 0.1 (47%)

# conv layers 3 (73%), 4 (27%) 4 (73%), 5 (27%)

# hidden layers 1 (73%), 2 (27%) 1 (80%), 2 (20%)

number of filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

20− 80 (87%)

100− 150 (47%), 170− 230 (47%)

200− 270 (40%), 300− 360 (33%)

10− 50 (100%)

20− 70 (33%), 80− 130 (53%)

50− 100 (27%), 120− 200 (60%)

150− 300 (73%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

3 (27%), 5 (27%), 7 (46%)

3 (47%), 5 (40%), 7 (13%)

3 (33%), 5 (40%), 7 (17%)

5 (20%), 7 (73%)

5 (47%), 7 (40%)

3 (20%), 5 (53%), 7 (27%)

3 (20%), 5 (33%), 7 (47%)

units in 1st hidden layer 100− 250 (80%) 100− 250 (53%), 300− 450 (27%)
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Table 7: Results of the best CNNs found by the TPE algorithm for the extended Cohn-Kanade data set. The
table shows results averaged over three independent optimization runs for each resolution. For each of the four
resolutions, the TPE algorithm employed the same search space. Similar to random search the TPE algorithm got
1500 evaluations per optimization run and resolution.

input size 32x32px 64x64px

avg generation time 7 min 03 sec 12 min 10 sec

avg validation error 0.046 ± 0.007 0.046 ± 0.01

learning rate 0.006− 0.009 0.01− 0.05

batch size 10 (60%), 20 (20%) 10 (47%), 40 (33%)

L1 regularization 0.0 (47%), 0.003− 0.03 (27%) 0.0 (47%), 0.0001− 0.0005 (40%)

L2 regularization 0.005− 0.05 (80%) 0.0 (40%), 0.02− 0.06 (33%)

number of conv layers 1 (67%), 2 (33%) 2 (67%), 3 (33%)

number of hidden layers 1 (67%), 2 (33%) 1 (93%)

number of filters

1st conv layer

2nd conv layer

30− 60 (53%), 100− 130 (40%)

150− 180 (100%)

20− 40 (93%)

100− 150 (47%), 160− 180 (33%)

filter size

1st conv layer

2nd conv layer

5 (47%), 7 (53%)

5 (100%)

5 (87%), 7 (13%)

5 (53%), 7 (27%)

units in 1st hidden layer 250− 350 (60%), 400− 500 (27%) 100− 200 (47%), 300− 350 (40%)

input size 128x128px 200x200px

avg generation time 51 min 18 sec 59 min 07 sec

avg validation error 0.051 ± 0.008 0.041 ± 0.01

learning rate 0.007− 0.04 0.01− 0.05

batch size 30 (47%), 40 (33%) 10 (33%), 30 (60%)

L1 regularization 0.0 (53%), 0.002− 0.02 (40%) 0.0 (60%), 0.01− 0.1 (33%)

L2 regularization 0.0 (27%), 0.02− 0.09 (53%) 0.0 (27%), 0.01− 0.1 (53%)

number of conv layers 3 (40%), 4 (60%) 4 (67%), 5 (33%)

number of hidden layers 1 (100%) 1 (80%)

number of filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

10− 20 (100%)

10− 30 (47%), 40− 70 (40%)

120− 170 (67%), 200− 260 (27%)

470− 570 (56%)

10− 20 (53%), 30− 50 (47%)

110− 150 (87%)

80− 120 (67%), 200− 240 (27%)

200− 270 (27%), 330− 390 (60%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5 (60%), 7 (33%)

3 (27%), 7 (53%)

3 (53%), 7 (33%)

3 (44%), 7 (33%)

5 (67%), 7 (33%)

3 (53%), 5 (33%)

3 (33%), 7 (40%)

5 (33%), 7 (40%)

units in 1st hidden layer 100− 200 (53%), 250− 300 (33%) 50− 150 (47%), 400− 500 (47%)

8



Table 8: Results of the best CNNs found by the genetic algorithm for the STL-10 data set. The table shows
results averaged over three independent optimization runs for each resolution. For each of the three resolutions, the
genetic algorithm was initialized randomly from the same search space. The crossover and mutation parameters
stay the same across all resolutions.

input size 32x32px 48x48px 96x96px

avg generation time 13 min 07 sec 17 min 56 sec 29 min 56 sec

avg validation error 0.580 ± 0.001 0.579 ± 0.001 0.539 ± 0.002

learning rate 0.001 (100%) 0.001 (100%) 0.001 (100%)

batch size
20 (20%), 30 (20%)

40 (27%), 50 (33%)

20 (53%), 30 (13%)

40 (13%), 50 (13%)

10 (20%), 30 (27%)

40 (27%), 50 (20%)

L1 regularization
0.0 (47%)

0.001− 0.01 (47%)

0.001− 0.01 (47%)

0.1 (47%)

0.0 (67%)

0.01 (33%)

L2 regularization
0.0 (33%)

0.1 (67%)

0.001− 0.01 (53%)

0.1 (40%)

0.0 (33%)

0.01− 0.1 (53%)

# conv layers 2 (100%) 3 (100%) 4 (100%)

# hidden layers 2 (100%) 2 (100%) 2 (100%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

40 (93%)

50 (93%)

20− 30 (67%)

40− 50 (33%)

50− 60 (73%)

70− 80 (27%)

60− 70 (47%)

80− 90 (53%)

40− 50 (100%)

30 (33%)

60− 70 (67%)

60− 80 (80%)

100 (80%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (67%), 5 (33%)

3 (100%)

3 (100%)

3 (100%)

# hidden units

1st hidden layer

2nd hidden layer

350− 400 (47%)

450− 500 (53%)

100 (33%), 200 (33%)

300 (33%)

400− 450 (47%)

500− 600 (47%)

100− 200 (53%)

450− 500 (47%)

300− 350 (87%)

200 (60%)

350 (33%)
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Table 9: Results of the best CNNs found by Random Search for the STL-10 data set. The table shows results
averaged over three independent optimization runs for each resolution. For each optimization run of the three
resolutions, 1500 hyperparameter settings were randomly sampled from the search space and their performance was
evaluated.

input size 32x32px 48x48px 96x96px

avg generation time 13 min 22 sec 27 min 54 sec 1h 07 min 42 sec

avg validation error 0.594 ± 0.005 0.58 ± 0.013 0.573 ± 0.008

learning rate 0.0001− 0.003 0.0002− 0.001 0.0001− 0.001

batch size
10 (20%), 20 (20%)

40 (27%), 70 (20%)

10 (20%), 20 (33%)

30 (33%)

10 (30%), 20 (20%)

50 (40%)

L1 regularization
0.0 (47%)

0.001− 0.01 (40%)

0.0 (33%)

0.001− 0.05 (40%)

0.0 (40%)

0.001− 0.05 (50%)

L2 regularization
0.0 (53%)

0.01− 0.02 (33%)

0.0001− 0.001 (40%)

0.01− 0.1 (27%)

0.0 (50%)

0.001− 0.06 (50%)

# conv layers 2 (100%) 3 (93%) 3 (20%), 4 (80%)

# hidden layers 2 (60%), 3 (40%) 2 (80%), 3 (20%) 2 (70%), 3 (20%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

50− 70 (33%)

80− 110 (40%)

100− 190 (27%)

200− 300 (53%)

30− 50 (40%)

140− 160 (33%)

100− 200 (33%)

210− 300 (40%)

200− 300 (33%)

400− 600 (42%)

50− 80 (40%)

100− 150 (50%)

150− 200 (60%)

210− 250 (20%)

300− 500 (60%)

500− 800 (75%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

3 (80%), 5 (20%)

3 (67%), 5 (33%)

3 (80%), 5 (13%)

3 (80%), 7 (14%)

3 (57%), 5 (21%)

3 (40%), 5 (40%)

3 (40%), 5 (40%)

5 (60%), 7 (20%)

3 (63%), 5 (25%)

# hidden units

1st hidden layer

2nd hidden layer

250− 350 (40%)

400− 500 (53%)

100− 150 (20%)

200− 350 (67%)

250− 350 (40%)

400− 450 (47%)

200− 300 (33%)

350− 450 (53%)

100− 250 (50%)

350− 450 (50%)

150− 250 (67%)

400− 500 (22%)
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Table 10: Results of the best CNNs found by the TPE algorithm for the STL-10 data set. The table shows
results averaged over three independent optimization runs for each resolution. For each of the three resolutions, the
TPE algorithm employed the same search space. Similar to random search the TPE algorithm got 1500 evaluations
per optimization run and resolution.

input size 32x32px 48x48px 96x96px

avg generation time 18 min 52 sec 31 min 33 sec 2h 41 min 33 sec

avg validation error 0.577 ± 0.002 0.553 ± 0.004 0.533 ± 0.003

learning rate 0.0003− 0.0005 0.0002− 0.0008 0.0003− 0.0008

batch size 10 (20%), 20 (80%) 10 (100%) 40 (100%)

L1 regularization 0.0 (100%) 0.0004− 0.0009 (80%) 0.0 (100%)

L2 regularization 0.09− 0.13 (80%) 0.04− 0.1 (100%) 0.001− 0.009 (100%)

# conv layers 2 (100%) 3 (100%) 4 (100%)

# hidden layers 3 (100%) 2 (100%) 2 (100%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

150− 200 (100%)

340− 390 (100%)

90− 110 (100%)

190− 210 (80%)

400− 420 (60%)

180− 200 (100%)

50− 90 (40%)

140− 150 (60%)

360− 450 (80%)

570− 690 (100%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (80%)

3 (100%)

3 (100%)

3 (100%)

5 (60%), 7 (40%)

# hidden units

1st hidden layer

2nd hidden layer

450− 500 (100%)

200− 250 (80%)

450− 500 (100%)

400− 450 (100%)

450− 500 (80%)

450− 500 (80%)

11



Table 11: Results of 10-fold cross-validation on the extended Cohn-Kanade and the STL-10 data set. Each
setting was tested both without any additional regularization and with regularization methods such as dropout and
batch normalization (bn). The best results are highlighted in bold.

Data set Found by Hyperparameters Regularization Val error

Extended

Cohn

Kanade

Genetic

Algorithm

learning rate = 0.01, batch size = 10

# conv layers = 3, filter size = [5,3,3]

filters = [10,40,60]

# hidden layers = 1, units = [350]

L1 = 0.0001, L2 = 0.1

none 0.057 ± 0.005

dropout 0.046 ± 0.003

dropout

max dropout
0.716 ± 0.011

learning rate = 0.01, batch size = 10

# conv layers = 4, filter size = [5,3,3,3]

filters = [10,40,80,100]

# hidden layers = 1, units = [300]

L1 = 0.01, L2 = 0.1

none 0.057 ± 0.005

dropout 0.046 ± 0.002

dropout

max dropout
0.627 ± 0.065

Random

Search

learning rate = 0.018, batch size = 20

# conv layers = 3, filter size = [7,5,3]

filters = [50,200,320]

# hidden layers = 1, units = [500]

L1 = 0.0, L2 = 0.1

none 0.077 ± 0.041

dropout 0.043 ± 0.004

dropout

max dropout
0.813 ± 0.000

TPE

learning rate = 0.029, batch size = 30

# conv layers = 3, filter size = [7,7,3]

filters = [70,150,340]

# hidden layers = 1, units = [150]

L1 = 0.013, L2 = 0.02

none 0.062 ± 0.001

dropout 0.066 ± 0.007

dropout

bn
0.033 ± 0.001

learning rate = 0.032, batch size = 30

# conv layers = 4, filter size = [5,7,3,3]

filters = [10,140,220,470]

# hidden layers = 1, units = [200]

L1 = 0.0, L2 = 0.0001

none 0.079 ± 0.002

dropout 0.053 ± 0.003

dropout

bn
0.06 ± 0.003

STL-10

Genetic

Algorithm

learning rate = 0.001, batch size = 40

# conv layers = 4, filter size = [5,3,3,3]

filters = [50,70,100,140]

# hidden layers = 2, units = [350,350]

L1 = 0.0, L2 = 0.01

none 0.544 ± 0.001

dropout 0.527 ± 0.001

dropout + bn 0.862 ± 0.003

dropout +

data augm
0.467 ± 0.003

Random

Search

learning rate = 0.00087, batch size = 50

# conv layers = 4, filter size = [7,5,5,5]

filters = [110,170,400,330]

# hidden layers = 2, units = [250,450]

L1 = 0.0, L2 = 0.006

none 0.569 ± 0.001

dropout 0.556 ± 0.015

dropout + bn 0.579 ± 0.001

dropout +

data augm
0.482 ± 0.001

TPE

learning rate = 0.00087, batch size = 40

# conv layers = 4, filter size = [5,3,3,3]

filters = [200,140,380,690]

# hidden layers = 2, units = [400,450]

L1 = 0.0, L2 = 0.0155

none 0.529 ± 0.001

dropout 0.579 ± 0.049

dropout + bn 0.541 ± 0.012

data

augmentation
0.473 ± 0.001
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4 Meta-Analysis of GA, TPE, and Hyperparameters

Here, we present visualizations of the impact of various hyperparameters on the STL-10 data set, similar to the
results shown in the original paper for the CK+ data set. Figure 4 presents an overview of the progress of the
optimization procedures. Figures 5, 6 and 7 show the importance of various subsets of hyperparameters, the impact
of the learning rate and the impact of the learning rate together with the number of hidden layers for the STL-10
data set. For the visualization of the importance and effects of the hyperparameters we again aggregated the data
from all runs of all optimization algorithms.

0.52

0.54

0.56

0.58

0.60

0.62

Input: 32x32 Pixels

0 5 10 15 20 25
Generation

Input: 48x48 Pixels

0 5 10 15 20 25
Generation

0.52

0.54

0.56

0.58

0.60

0.62

Input: 96x96 Pixels
Used Algorithm

TPE

Genetic Algorithm

Be
st

Va
lid

at
io

n
Er

ro
r

Figure 4: Best average validation error after each generation for the genetic algorithm and the TPE algorithm on
the STL-10 data set over a total of 30 generations.
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optimization algorithms.
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Figure 6: Merging the results of all three optimization algorithms shows the relationship between the learning rate
and the validation error for different image resolutions on the STL-10 data set. We can see that the best learning
rate is similar for all resolutions, usually between 10−3 and 10−4.
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5 Hyperparameter Search Space (Experiment 2)

Several researchers have achieved good results on the 102 Flowers data set using common CNNs with many layers
and filters [13, 1]. These CNNs are based on some of the winners of ImageNet Competitions of the last years, but
due to hardware limitations, we are not able to use them directly. However, their hyperparameters can give us some
suggestions for an initial search space. Since the 102 Flowers data set contains many more classes than the previous
data sets we tested and the exemplary CNNs that achieve good results are very big, we change the initialization
for the GA. We now describe the initializations for the GA optimization runs on the different input sizes, as well as
for TPE, Random Search, and SMAC2. The initialization and handling of hyperparameters that are not mentioned
explicitly are the same as in the first experiment.

For the initial search space we use the hyperparameters of Sermanet et al. [12], Razavian et al. [13] and Azizpour
et al. [1] as coarse direction, but reduce the number of layers, filters and hidden units due to hardware constraints.
The initializations that are made for higher input sizes for the optimization algorithms are based on the results
of the previous, smaller input size. The initialization and mutation parameters were then adapted to reduce the
variance in the respective hyperparameters. The idea behind this is that the optimization process on the smaller
data sizes should already choose “good” areas in the hyperparameter space which should then be examined in more
detail. For more details on the exact mutation parameters that are used for the different resolutions see Table 12.
Table 13 shows the initialization of the hyperparameters for the various resolutions of the GA, while Tables 14, 15
and 16 show the search space for Random Search, TPE and SMAC for the various resolutions on the 102 Flowers
data set.

Table 12: The first horizontal block describes the mutation parameters for all hyperparameters for the smallest
resolution of 32x32 pixels. The second and third horizontal blocks describe the mutation parameters that changed
relative to the previous, smaller resolution.

32x32px 10% 40% 50%

# conv layers ±1
# hidden layers

learning rate

×102 / ×10−2 ×10 / ×10−1L1 penalty

L2 penalty

# filters +30/ + 50 ±20

# hidden units ±100 ±50

filter size ±(2× 2)

batch size ±30 ±10

64x64px 10% 40% 50%

learning rate ×10 / ×10−1 ×5 / ×5−1

# filters ±10 ±20

# hidden units ±100 ±50

128x128px 10% 40% 50%

learning rate ×5 / ×5−1 ×2 / ×2−1

batch size ±10

2For our experiments we used SMAC version 2.10.03. For further information see http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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Table 13: Initialization of the hyperparameters of the GA for the 102 Flowers data set in the second experiment.
hyperparameter 32 (15gen) 64 (10gen) 128 (5gen) 128 (30gen)

learning rate {0.001, 0.01, 0.1} {0.01, 0.1} {0.005, 0.01, 0.05, 0.1} {0.001, 0.01, 0.1}
L1 penalty [0.0, 0.1] {0.0, 0.00001} {0.0} [0.0, 0.1]

L2 penalty [0.0, 0.1] [0.0, 0.1] [0.0, 0.1] [0.0, 0.1]

# conv layers {1, 2} {2, 3, 4} {4} {1, ..., 5}

# filters
50-300

50-300

100-200, 150-300

250-400, 300-450

150-300, 200-400

250-450, 300-500
10-700

filter size {3x3, 5x5, 7x7} {3x3, 5x5, 7x7} {3x3, 5x5} {3x3, 5x5, 7x7}
# hidden layers {1, 2, 3} {1, 2} {1, 2} {1, 2, 3}
# hidden units [100, 1000] [500-1000] [500-1000] [100, 1000]

batch size [20, 100] [20, 50] [10, 40] [10, 100]

Table 14: Search space of the hyperparameters of Random Search for the 102 Flowers data set in the second
experiment.

hyperparameter 32 (15gen) 64 (10gen) 128 (5gen) 128 (30gen)

learning rate [0.00001, 0.1] [0.001, 0.1] [0.005, 0.05] [0.00001, 0.1]

L1 penalty [0.0, 0.1] [0.0, 0.00001] [0.0, 0.00001] [0.0, 0.1]

L2 penalty [0.0, 0.1] [0.0, 0.1] [0.0, 0.1] [0.0, 0.1]

# conv layers {1, 2} {3, 4} {4, 5} {1, ..., 5}

# filters
10-150

10-300

50-200, 100-400

150-600, 200-800

50-180, 150-350, 350-550

400-700, 450-800

10-150, 10-250, 10-350

10-500, 10-600

filter size {3x3, 5x5, 7x7} {3x3, 5x5, 7x7} {3x3, 5x5, 7x7} {3x3, 5x5, 7x7}
# hidden layers {1, 2, 3} {1, 2} {1, 2} {1, 2, 3}
# hidden units [100, 1000] [300, 800] [400, 800] [100, 1000]

batch size [10, 250] [10, 150] [10, 80] [10, 150]

Table 15: Search space of the hyperparameters of TPE for the 102 Flowers data set in the second experiment.
hyperparameter 32 (15gen) 64 (10gen) 128 (5gen) 128 (30gen)

learning rate [0.00001, 0.1] [0.003, 0.1] [0.005, 0.05] [0.00001, 0.1]

L1 penalty [0.0, 0.1] [0.0, 0.0001] [0.0, 0.00001] [0.0, 0.1]

L2 penalty [0.0, 0.1] [0.0, 0.1] [0.0, 0.001] [0.0, 0.1]

# conv layers {1, 2} {3, 4} {4, 5} {1, ..., 5}

# filters
10-150

10-300

40-150, 150-300

200-400, 250-500

80-150, 150-250, 250-350

400-500, 450-600

10-150, 10-300, 10-500

10-600, 10-700

filter size {3x3, 5x5, 7x7} {3x3, 5x5, 7x7} {3x3, 5x5, 7x7} {3x3, 5x5, 7x7}
# hidden layers {1, 2, 3} {1, 2} {1, 2} {1, 2, 3}
# hidden units [100, 1000] [400, 1200] [800, 1300] [100, 1000]

batch size [10, 250] [10, 120] [10, 50] [10, 150]

Table 16: Search space of the hyperparameters of SMAC for the 102 Flowers data set in the second experiment.
hyperparameter 32 (15gen) 64 (10gen) 128 (5gen) 128 (30gen)

learning rate [0.00001, 0.1] [0.001, 0.1] [0.003, 0.04] [0.00001, 0.1]

L1 penalty [0.0, 0.1] [0.0, 0.0001] [0.0, 0.000001] [0.0, 0.1]

L2 penalty [0.0, 0.1] [0.001, 0.01] [0.00001, 0.001] [0.0, 0.1]

# conv layers {1, 2} {2, 3} {4, 5} {1, ..., 5}

# filters
10-150

10-300

50-150, 150-300

200-400

50-150, 150-300, 300-400

350-500, 400-600

10-150, 10-300, 10-500

10-600, 10-700

filter size {3x3, 5x5, 7x7} {3x3, 5x5, 7x7} {3x3, 5x5} {3x3, 5x5, 7x7}
# hidden layers {1, 2, 3} {1, 2} {1, 2} {1, 2, 3}
# hidden units [100, 1000] [300, 1000] [500, 1000] [100, 1000]

batch size [10, 250] [10, 130] [10, 80] [10, 150]
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6 Best Hyperparameters per Algorithm (Experiment 2)

Here we provide a detailed overview of the hyperparameters that were found by the various optimization algorithms
for the different data sets in the first experiment. Tables 18, 19, 20 and 21 describe the hyperparameters found for
the 102 Flowers data set on the different resolutions and Table 17 describes the hyperparameters used during the
evaluation on the test sets.

Table 17: Test set errors on the 102 Flowers data set for input sizes of 128x128 pixels. The best results are
highlighted in bold. Each setting was tested both without any additional regularization and with regularization
methods such as dropout and batch normalization (bn).

Found by Hyperparameters Regularization Val error

Genetic

Algorithm

learning rate = 0.005, batch size = 20

# conv layers = 5, filter size = [3,3,3,3,3]

filters = [170,270,400,450,500]

# hidden layers = 1, units = [900]

L1 = 0.0001, L2 = 0.1

none 0.536 ± 0.007

dropout 0.532 ± 0.001

dropout

bn
0.418 ± 0.005

TPE

learning rate = 0.013, batch size = 20

# conv layers = 5, filter size = [3,3,3,3,3]

filters = [80,170,340,470,550]

# hidden layers = 1, units = [1200]

L1 = 0.0, L2 = 0.00001

none 0.536 ± 0.005

dropout 0.537 ± 0.006

dropout

bn
0.415 ± 0.004

SMAC

learning rate = 0.012, batch size = 27

# conv layers = 5, filter size = [3,3,3,3,5]

filters = [134,263,318,391,488]

# hidden layers = 1, units = [727]

L1 = 0.0, L2 = 0.0001

none 0.538 ± 0.004

dropout 0.545 ± 0.012

dropout

bn
0.440 ± 0.003

Random

Search

learning rate = 0.012, batch size = 40

# conv layers = 5, filter size = [3,3,3,5,3]

filters = [60,250,540,570,550]

# hidden layers = 1, units = [550]

L1 = 0.0, L2 = 0.0

none 0.546 ± 0.006

dropout 0.551 ± 0.012

dropout

bn
0.468 ± 0.006
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Table 18: Results of the best CNNs found by the genetic algorithm for the 102 Flowers data set. The arrows
between the input sizes for the genetic algorithm highlight that the search space of the genetic algorithm is initialized
with the results of the genetic algorithm on the previous, smaller resolution.

Algorithm Genetic Algorithm

input size 32x32px 64x64px 128x128px 128x128px

# generations 15 10 5 30

avg gen time 28min 51sec 1h 32min 45sec 3h 51min 09sec 2h 14min 18sec

avg val error 0.692 ± 0.008 0.647 ± 0.004 0.640 ± 0.007 0.696 ± 0.008

learning rate 0.01 (100%) 0.01 (93%) 0.005 (60%), 0.01 (40%) 0.01 (93%

batch size
20 (27%)

30 (67%)

20 (47%)

30 (40%)

20 (67%)

30 (27%)

10-40 (27%)

50-70 (53%)

L1 reg 0.0 (100%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

L2 reg
0.0 (47%)

0.001− 0.01 (47%)

0.0 (60%)

0.0001− 0.001 (40%)

0.0 (73%)

0.0001− 0.001 (27%)

0.0 (47%)

0.0001− 0.01 (53%)

# conv layers 3 (87%) 4 (80%), 5 (20%) 5 (93%) 4 (53%), 5 (40%)

# hidden layers 1 (100%) 1 (100%) 1 (100%) 1 (93%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

90− 120 (60%)

160− 180 (33%)

100− 120 (53%)

180− 220 (47%)

130− 150 (62%)

180− 210 (23%)

130− 150 (100%)

150− 210 (67%)

340− 350 (33%)

320− 370 (93%)

350− 390 (100%)

160− 180 (67%)

210− 250 (33%)

270− 280 (40%)

350− 400 (33%)

310− 380 (33%)

410− 440 (67%)

390− 430 (40%)

460− 490 (60%)

440− 470 (38%)

490− 500 (54%)

30− 50 (40%)

140− 180 (40%)

200− 300 (67%)

350− 400 (27%)

250− 350 (47%)

400− 450 (33%)

450− 500 (40%)

550− 600 (53%)

550− 600 (50%)

650− 700 (50%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

3 (93%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

5 (33%), 7 (67%)

5 (40%), 7 (40%)

3 (60%), 5 (40%)

3 (64%), 5 (36%)

3 (83%)

# hidden units

1st hidden layer 600− 650 (60%)

900− 950 (33%)

550− 650 (53%)

850− 950 (47%)

600− 650 (33%)

800− 950 (67%)

400− 600 (27%)

900− 1200 (47%)
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Table 19: Results of the best CNNs found by Random Search for the 102 Flowers data set. The arrows between
the input sizes for the Random Search algorithm highlight that the search space of the Random Search algorithm
is initialized with the results of the Random Search run on the previous, smaller resolution.

Algorithm Random Search

input size 32x32px 64x64px 128x128px 128x128px

# generations 15 10 5 30

avg gen time 12min 57sec 1h 44min 36sec 4h 42min 50sec 1h 39min 07sec

avg val error 0.728 ± 0.007 0.676 ± 0.009 0.673 ± 0.012 0.691 ± 0.007

learning rate 0.006− 0.06 (100%) 0.01− 0.08 (100%) 0.007− 0.03 (100%) 0.001− 0.03 (93%)

batch size
10− 50 (27%)

60− 120 (60%)

20− 50 (40%)

80− 110 (53%)

20− 50 (53%)

60− 80 (47%)

10− 50 (47%)

60− 100 (33%)

L1 reg
0.0 (100%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

L2 reg
0.0 (47%)

0.001− 0.01 (33%)

0.0 (53%)

0.0001− 0.0005 (40%)

0.0 (40%)

0.0001− 0.009 (47%)

0.0 (47%)

0.001− 0.03 (27%)

# conv layers 2 (100%) 3 (40%), 4 (60%) 4 (53%), 5 (47%) 4 (33%), 5 (60%)

# hidden layers 1 (93%) 1 (93%) 1 (87%) 1 (93%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

40− 80 (33%)

100− 150 (67%)

100− 150 (33%)

200− 300 (47%)

50− 100 (47%)

110− 150 (53%)

150− 250 (60%)

300− 350 (27%)

450− 550 (80%)

300− 500 (56%)

550− 650 (33%)

60− 120 (53%)

130− 170 (47%)

150− 250 (80%)

280− 350 (20%)

300− 400 (40%)

400− 550 (60%)

500− 600 (60%)

610− 700 (33%)

500− 600 (43%)

700− 800 (57%)

60− 100 (33%)

110− 150 (67%)

120− 170 (47%)

180− 230 (40%)

240− 300 (47%)

310− 350 (47%)

350− 400 (57%)

410− 480 (36%)

350− 450 (33%)

460− 550 (67%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

3 (73%), 5 (13%)

3 (53%), 5 (33%)

3 (93%)

3 (93%)

3 (27%), 7 (53%)

3 (67%)

3 (47%), 5 (33%)

3 (67%), 5 (33%)

3 (53%), 5 (47%)

5 (47%), 7 (33%)

3 (57%), 7 (29%)

3 (60%), 5 (27%)

3 (47%), 5 (40%)

3 (53%), 7 (40%)

3 (33%), 5 (40%)

3 (44%), 7 (33%)

# hidden units

1st hidden layer 300− 500 (53%)

700− 900 (40%)

400− 600 (73%)

700− 800 (27%)

450− 650 (60%)

700− 800 (40%)

450− 650 (33%)

700− 900 (47%)
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Table 20: Results of the best CNNs found by TPE for the 102 Flowers data set. The arrows between the input
sizes for the TPE algorithm highlight that the search space of the TPE algorithm is initialized with the results of
the TPE run on the previous, smaller resolution.

Algorithm TPE

input size 32x32px 64x64px 128x128px 128x128px

# generations 15 10 5 30

avg gen time 37min 06sec 1h 22min 40sec 3h 47min 17sec 2h 07min 24sec

avg val error 0.698 ± 0.006 0.652 ± 0.012 0.657 ± 0.013 0.654 ± 0.009

learning rate 0.005− 0.05 (100%) 0.002− 0.01 (100%) 0.005 (33%), 0.01 (67%) 0.001− 0.005 (100%)

batch size
10− 30 (73%)

60− 70 (20%)

10− 20 (80%)

30− 50 (20%)

30 (53%)

40 (47%)

10 (73%)

20 (20%)

L1 reg 0.0 (100%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

L2 reg
0.0 (20%)

0.001− 0.01 (67%)

0.0 (27%)

0.0001− 0.001 (67%)

0.0 (67%)

0.0001− 0.005 (27%)

0.0 (60%)

0.0005− 0.01 (33%)

# conv layers 2 (100%) 3 (33%), 4 (67%) 4 (67%), 5 (33%) 4 (33%), 5 (67%)

# hidden layers 1 (100%) 1 (100%) 1 (93%) 1 (100%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

40− 70 (53%)

90− 140 (47%)

180− 220 (33%)

240− 280 (67%)

80− 100 (60%)

120− 140 (40%)

180− 210 (60%)

220− 240 (33%)

260− 300 (60%)

330− 360 (40%)

430− 470 (100%)

80− 110 (60%)

120− 140 (40%)

150− 200 (27%)

210− 250 (73%)

260− 300 (47%)

320− 350 (53%)

430− 450 (47%)

480− 550 (53%)

520− 550 (100%)

20− 50 (33%)

120− 150 (67%)

50− 70 (33%)

130− 170 (67%)

200− 300 (33%)

350− 450 (53%)

350− 400 (47%)

540− 570 (40%)

40− 70 (50%)

450− 500 (50%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

3 (100%)

3 (73%), 5 (27%)

3 (100%)

3 (100%)

3 (100%), 7 (33%)

3 (100%)

3 (100%)

3 (100%)

3 (67%)

3 (67%), 5 (33%)

3 (100%)

3 (100%)

3 (100%)

3 (100%)

3 (47%), 7 (47%)

3 (50%), 5 (50%)

# hidden units

1st hidden layer 400− 600 (47%)

800− 1000 (53%)

600− 800 (33%)

900− 1200 (67%)

800− 1000 (60%)

1100− 1300 (40%)

400− 600 (33%)

750− 900 (67%)
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Table 21: Results of the best CNNs found by SMAC for the 102 Flowers data set. The arrows between the input
sizes for the SMAC algorithm highlight that the search space of the SMAC algorithm is initialized with the results
of the SMAC run on the previous, smaller resolution.

Algorithm SMAC

input size 32x32px 64x64px 128x128px 128x128px

# generations 15 10 5 30

avg gen time 14min 07sec 1h 10min 12sec 3h 51min 11sec 1h 11min 15sec

avg val error 0.729 ± 0.005 0.676 ± 0.006 0.653 ± 0.006 0.659 ± 0.008

learning rate 0.005− 0.05 (100%) 0.003− 0.03 (100%) 0.005− 0.02 (100%) 0.001− 0.006 (93%)

batch size
10− 30 (53%)

80− 100 (47%)

10− 20 (47%)

40− 80 (47%)

20− 30 (67%)

40− 60 (27%)

10− 20 (60%)

30− 40 (40%)

L1 reg 0.0 (100%) 0.0 (100%) 0.0 (100%) 0.0 (100%)

L2 reg
0.0 (67%)

0.0009− 0.0002 (33%)

0.0 (67%)

0.003− 0.008 (33%)

0.0 (100%) 0.0 (67%)

0.001− 0.01 (33%)

# conv layers 2 (100%) 3 (100%) 5 (93%) 4 (87%), 5 (13%)

# hidden layers 1 (93%) 1 (100%) 1 (100%) 1 (100%)

# filters

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

80− 90 (60%)

100− 110 (40%)

160− 200 (67%)

210− 250 (27%)

50− 80 (40%)

100− 120 (53%)

150− 180 (73%)

250− 300 (27%)

350− 400 (87%)

80− 100 (40%)

120− 150 (47%)

180− 220 (60%)

250− 280 (33%)

320− 360 (93%)

380− 420 (67%)

440− 480 (33%)

470− 520 (60%)

580− 600 (27%)

30− 80 (67%)

130− 140 (33%)

10− 20 (33%)

200− 300 (53%)

180− 220 (47%)

420− 450 (40%)

350− 440 (47%)

550− 600 (47%)

filter size

1st conv layer

2nd conv layer

3rd conv layer

4th conv layer

5th conv layer

9 (80%)

5 (33%), 7 (47%)

3 (87%)

3 (93%)

3 (67%), 5 (33%)

3 (87%)

3 (87%)

3 (100%)

3 (100%)

3 (87%)

3 (93%)

3 (87%)

3 (100%)

5 (47%), 7 (47%)

# hidden units

1st hidden layer 300− 500 (47%)

800− 1000 (53%)

500− 750 (33%)

800− 1000 (60%)

650− 750 (80%)

800− 900 (20%)

300− 500 (27%)

600− 800 (73%)
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