Supporting information for: Analytic energy gradients for variational two-electron reduced-density-matrix-driven complete active space self-consistent field theory

Elvis Maradzike,[†] Gergely Gidofalvi,[‡] Justin M. Turney,[¶] Henry F. Schaefer III,[¶] and A. Eugene DePrince III^{*,†}

† Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390

‡ Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258-0089

¶ Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, GA 30602

E-mail: deprince@chem.fsu.edu

1 Errors in equilibrium bond lengths

Table S1 provides computed equilibrium molecular geometries for a set of twenty small molecules at the full-valence complete active space self-consistent field (CASSCF) level of theory. Both conventional configuration-interation (CI)-based and variational two-electron reduced-density-matrix (v2RDM)-based CASSCF computations were performed. CASSCF computations employed the cc-pVXZ basis set (X = D, T, Q). The reduced-density matrices

in the v2RDM-CASSCF computations satisfied either two-particle¹ (PQG) or two-particle and partial three-particle^{2,3} (PQG+T2) *N*-representability conditions. The CASSCF equilibrium bond lengths were compared to those determined experimentally. All experimentallyobtained equilibrium bond lengths, with the exception of that for molecular hydrogen, were taken from Ref. 4 and the references therein. For H₂, the equilibrium bond length was taken from Ref. 5.

2 Redundant orbital rotations

The v2RDM-CASSCF energy is invariant to rotations among active, inactive, or external orbitals. Here, we provide numerical evidence for the invariance of the v2RDM-CASSCF energy and energy gradient to active-active orbital rotations. Table S2 provides full-valence v2RDM-CASSCF energies and magnitudes of the energy gradient for the same twenty small molecules considered in the Table S1 at experimental geometries obtained from the Computational Chemistry Comparison and Benchmark Database.⁶ The semidefinite optimization of the active-space two-electron reduced-density matrix was considered converged when the primal ($||\mathbf{A}\mathbf{x} - \mathbf{b}||$) and dual ($||\mathbf{A}^T\mathbf{y} - \mathbf{c} + \mathbf{z}||$) errors fell below 10⁻⁹ and the primal/dual energy gap $(|E_{\text{primal}} - E_{\text{dual}}|)$ fell below 10^{-9} E_h. The orbital optimization procedure was considered converged when the orbital gradient fell below 10^{-9} E_h and the energy change produced by orbital rotations fell below 10^{-12} E_h. The v2RDM-CASSCF computations were performed within the cc-pVDZ basis set while enforcing the PQG N-representability conditions. Results are presented for computations that either include or ignore active-active orbital rotations. The largest deviation between energies computed with and without such rotations is only $1.4 \times 10^{-9} E_{\rm h}$, which is comparable to the energy convergence criterion employed in this study. The largest deviation between magnitudes of energy gradients computed with and without active-active orbital rotations is only $4.1 \times 10^{-9} E_h a_0^{-1}$.

rî	Ц	
Γ,	ke	
Ω	t_{∂}	
	ere	
$\overline{\mathbf{X}}$	M	
Ŋ	r_e	
XX	of	
[d-	\mathbf{GS}	
5	lu	
he	ΔSΛ	
n t	All	ю
·H G		Sef
S	Ŕ	ц
S	r_{e}	COL
CA	<u>ت</u>	лĥ
Ţ	ent	keı
Ą	im	ta
2R	Эer	$^{\mathrm{as}}$
	lxe	M
anc	ц	ich
Ļ	roi	wh
Ö	đ	ંદ
om	ine	Ξ
ĥ	taj	for
m	qo	at
, p	se	$^{\mathrm{th}}$
r_e	chc	of
<u>ଏ</u>	0	on
hs	đ	pti
1gt	are	ce
leı	3dt	бХ
nd	ion	he
poi	e G	h t
В	ar	vit
riu	hs	j,
libi	1gt	reii
Iu	leı	hei
e	nd	s t
ced	pol	lce
put	rg	rer
m	ute	efe
00	ldu	e re
in	Jon	$ h_{th}$
SIC		ld
Jrr(ts.'	al
ш 	Se	4
\mathbf{S}^{1}	\sin	Ref
ole	\mathbf{ba}	nl
Tał	Ø	froi

	1					Δr_e					
cc-pV]	cc-pV]	cc-pV]	DZ			cc-pVTZ			cc-pVQZ		
Bond PQG PQG+	PQG PQG+	PQG+	-T2	CI	PQG	PQG+T2	CI	PQG	PQG+T2	G	\mathbf{r}_e
C-H 3.0 2.3	3.0 2.3	2.3		2.3	1.9	1.2	1.2	1.9	1.2	1.2	1.062
C-C 3.3 2.6	3.3 2.6	2.6		2.5	2.0	1.4	1.3	1.9	1.3	1.2	1.203
C-H 3.3 2.7	3.3 2.7	2.7		2.6	2.3	1.6	1.6	2.3	1.5	1.5	1.081
C-C 2.4 2.1	2.4 2.1	2.1		2.1	1.6	1.4	1.3	1.6	1.3	1.3	1.334
C-H 3.6 3.2	3.6 3.2	3.2		3.2	2.3	1.8	1.8	2.1	1.7	1.7	1.107
C-O 1.5 0.7	1.5 0.7	0.7		0.6	1.0	0.3	0.2	0.8	0.1	0.1	1.203
C-H 3.6 2.9	3.6 2.9	2.9		2.9	2.6	1.7	1.7	2.5	1.6	1.6	1.099
C-H 3.3 2.6	3.3 2.6	2.6		2.6	2.3	1.6	1.5	2.3	1.5	1.5	1.086
C-O 1.8 1.2	1.8 1.2	1.2		1.1	1.3	0.6	0.6	1.1	0.5	0.4	1.160
C-O 1.8 1.4	1.8 1.4	1.4		1.4	1.2	0.8	0.7	0.9	0.5	0.5	1.128
F-F 10.5 10.5	10.5 10.5	10.5		10.5	4.9	4.9	4.9	4.8	4.8	4.8	1.412
H-H 2.9 2.9	2.9 2.9	2.9		2.9	1.4	1.4	1.4	1.3	1.3	1.3	0.741
O-H 1.0 0.9	1.0 0.9	0.9		0.9	0.2	0.2	0.1	0.1	0.0	0.0	0.967
0-0 5.5 4.0	5.5 4.0	4.0		4.0	4.0	2.5	2.4	3.7	2.2	2.1	1.456
O-H 1.5 1.4	1.5 1.4	1.4		1.4	0.8	0.7	0.7	0.7	0.6	0.5	0.957
C-H 2.9 2.3	2.9 2.3	2.3		2.3	-0.7	-0.8	-0.8	1.8	-0.8	-0.8	1.065
C-N 3.1 2.3	3.1 2.3	2.3		2.2	1.2	0.8	0.7	1.8	0.6	0.6	1.153
H-F 0.5 0.5	0.5 0.5	0.5		0.5	0.0	0.0	0.0	-0.2	-0.2	-0.2	0.917
C-N 2.9 2.1	2.9 2.1	2.1		2.0	1.7	0.9	0.8	1.5	0.7	0.6	1.169
N-H 2.5 1.7	2.5 1.7	1.7		1.7	1.6	0.9	0.8	1.6	0.9	0.8	0.994
N-H 2.7 2.6	2.7 2.6	2.6		2.5	1.6	1.5	1.5	1.5	1.4	1.3	1.063
N-O 1.1 0.3	1.1 0.3	0.3		0.3	0.7	0.0	-0.1	0.5	-0.2	-0.3	1.212
O-H 1.6 1.4	1.6 1.4	1.4		1.4	0.8	0.6	0.6	0.7	0.5	0.5	0.966
F-O 6.1 5.6	6.1 5.6	5.6		5.6	3.2	2.8	2.8	3.1	2.6	2.6	1.435
N-N 2.3 1.9	2.3 1.9	1.9		1.8	1.2	0.9	0.8	1.1	0.7	0.6	1.098
N-N 1.3 1.4	1.3 1.4	1.4		1.3	0.7	0.8	0.7	0.5	0.6	0.5	1.252
N-H 3.3 2.6	3.3 2.6	2.6		2.5	2.3	1.6	1.5	2.2	1.4	1.4	1.028
0-0 4.2 2.6	4.2 2.6	2.6		2.0	3.2	1.7	1.3	2.8	1.4	0.9	1.272
N-H 2.5 2.2	2.5 2.2	2.2		2.2	1.5	1.1	1.1	1.4	1.0	1.0	1.012
MSE^{b} 3.0 2.4	3.0 2.4	2.4		2.4	1.7	1.2	1.1	1.7	1.1	1.0	
MUE^{c} 3.0 2.4	3.0 2.4	2.4		2.4	1.7	1.3	1.2	1.7	1.1	1.1	
Max^d 10.5 10.5	10.5 10.5	10.5		10.5	4.9	4.9	4.9	4.8	4.8	4.8	,
			1								

 a $\Delta r_e = r_e^{\rm CASSCF} - r_e.$ b mean signed error. c mean unsigned error. d maximum unsigned error.

Table S2: Full-valence v2RDM-CASSCF energies (E_h) and magnitudes of the energy gradients $(E_h a_0^{-1})$ for twenty small molecules at experimental geometries obtained from the Computational Chemistry Comparison and Benchmark Database.⁶ The v2RDM-CASSCF orbital optimizations either did or did not include active-active orbital rotations.

	ene	rgy	gradient	
	active-active rotations?		active-active rotations?	
Molecule	yes	no	yes	no
C_2H_2	-77.0005879659	-77.0005879659	0.070761678 1	0.070761678 7
C_2H_4	-78.2278654946	-78.2278654946	0.03734110 38	0.03734110 41
CH_2	-114.03649640 79	-114.0364964081	0.0932386472	0.0932386484
CH_2O	-38.9237035145	-38.9237035145	0.032791716 5	0.032791716 0
CH_4	-40.294000109 3	-40.294000109 1	0.04145123 53	0.0414512344
CO_2	-187.850687915 7	-187.850687915 2	0.04672921 44	$0.04672921 {f 51}$
CO	-112.88890031 76	-112.88890031 86	0.0594535374	0.0594535374
F_2	-198.76574065 49	-198.76574065 55	0.0575191239	0.0575191239
H_2	-1.1469295720	-1.1469295720	0.0287647997	0.0287647997
H_2O_2	-150.89878003 34	-150.8987800342	0.04949143 13	0.04949143 23
H_2O	-76.0814873 694	76.0814873 708	0.0294042832	0.02940428 22
HCN	-93.05300705 19	-93.05300705 22	0.075879162 9	0.075879162 8
$_{ m HF}$	-100.0439426124	-100.043942612 0	0.008052729 9	0.008052729 7
HNC	-93.0262784072	-93.0262784073	0.0619382277	0.06193822 93
HNO	-129.950646313 0	-129.9506463131	0.02764872 30	0.02764872 71
HOF	-174.837407777 3	-174.837407777 8	0.04039514 21	0.04039514 16
N_2	-109.112667018 5	-109.112667018 1	0.0955042450	0.09550424 78
N_2H_2	-110.17514990 59	-110.17514990 63	0.04617770 19	0.04617770 21
O_3	-224.5353702162	-224.5353702162	0.04688567 09	0.04688567 06
NH ₃	-56.275142426 5	-56.275142426 0	0.04081234 11	0.04081234 23

References

- Garrod, C.; Percus, J. K. Reduction of the N-particle variational problem. J. Math. Phys. 1964, 5, 1756–1776.
- (2) Erdahl, R. M. Representability. Int. J. Quantum Chem. 1978, 13, 697–718.
- (3) Zhao, Z.; Braams, B. J.; Fukuda, M.; Overton, M. L.; Percus, J. K. The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. J. Chem. Phys. 2004, 120, 2095–2104.
- (4) Helgaker, T.; Gauss, J.; Jørgensen, P.; Olsen, J. The prediction of molecular equilibrium structures by the standard electronic wave functions. J. Chem. Phys. 1997, 106, 6430–6440.

- (5) Herzberg, G.; Huber, K. Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules; Van Nostrand Reinhold, 1979.
- (6) Johnson III, R. D. NIST Computational Chemistry Comparison and Benchmark Database. Release 16a, August 2013.