Uniform Fe_xNi_y nanospheres: Cost-effective electrocatalysts for non-aqueous rechargeable Li-O₂ batteries

Mengwei Yuan, ^a Caiyun Nan, ^a Yan Yang, ^a Genban Sun, *, ^a, ^b Huifeng Li, *, ^a and Shulan Ma *, ^a

^a Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.

^b Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

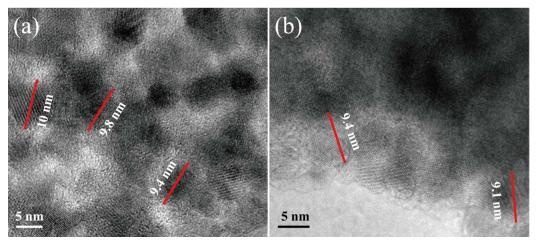
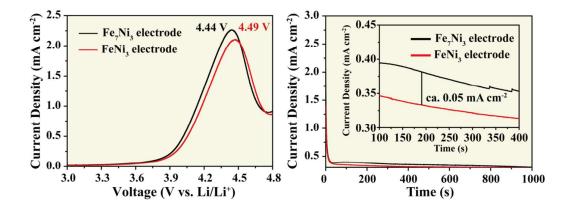



Figure S1 TEM images of Fe_7Ni_3 (a) and $FeNi_3$ (b) nanospheres in high magnification

Figure S2 a) LSV and b) chronoamperometry profiles for the Li_2O_2 containing cells catalyzed by Fe_7Ni_3 and $FeNi_3$. The LSV profiles were tested at a sweep rate of 2 mV s⁻¹. The chronoamperometry profiles were tested at the potential of 4.0 V. The ratio of Li_2O_2 , Fe_xNi_y , KB and binder was 2:2:1:1.