
Supplementary Material for “Connecting the dots across time: Reconstruction of 
single cell signaling trajectories using time-stamped data” 

 
 
 
 

 
 
 
Figure S1: Wiring diagram of the network of first order reactions. The species are 
indicated by the integers and the rate constants shown as {ka}. The values for the rate  
constants and the initial abundances are shown in Table S1.  
 
 
 
 
 
 
 
 



 

Figure S2: Variation of JSD( IT )  with subsets in the linear network. The calculation 
was carried out for the 16369 different subsets of signaling species involving 3000 single 
cells at a pair of time points (t1=0, t2=7min). The kinetics is described by first order 
reactions corresponding to the network in Fig. S1 and Table S1.   
 

 
 
 
Figure S3: IT behaves as a slow variable or an invariant in the linear kinetics. Shows 
the minimum values of JSD(IT )  for each class (black points) for the kinetics with first 
order reactions. The parameter values are the same as in Fig. S2. JSD values associated 
with the fastest (shown in orange) and the slowest species (shown in blue) in the subsets 
corresponding to the minimum JSD(IT )  are compared with minimum JSD(IT ) . The grey 
line shows the values of JSD(IM ) for the subsets that yielded the min( JSD(IT ) ). For multiple 
subsets (e.g., the subsets corresponding to class#10, #12, #13) , both IT and IM behave as 
slow variables.  



 
 
Figure S4: Result of pairing using IT for the linear kinetics. The reconstruction was 
carried out using IT for the subsets that produced min JSD(IT ) values (Fig. S3). (A) The 
ratio (black points) of the average error in the reconstruction with that for random pairing 
corresponding to subsets. The grey points show the error when the reconstruction was 
carried out for the same subsets using IM instead of IT. (B) Shows error in the 
autocorrelation function for the same reconstructions in (A).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S5: Comparison of the reconstructions carried out using IM or IT for the 
linear network. The reconstruction was carried out for the subsets that produced 
minimum JSD(IM ) . The parameters are the same as in Fig 2. (A) Shows the error (grey 
points) when the reconstruction was performed using IM. The black points show the errors 
when the single cells were paired using IT for the same subsets that yielded minimum 
JSD(I

M
). (B) Shows error in the autocorrelation function for the reconstructions in (A). 

The pairings using IT show lower error even though the subsets produced minimum 
values of JSD(IM ) . (C) Shows the JSD(IT )  values (black points) for the subsets that 
produced minimum values of JSD(IM ) . In several cases (e.g., subset for class #4) IT has a 
faster kinetics than IM.  
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure S6: The Ras activation network. SOS and Rasgrp1 are the enzymes that convert 
the de-active form of Ras or RasGDP to the active form, RasGTP. SOS binds RasGDP at 
the catalytic site and an allosteric site. In addition, the allosteric site in SOS can bind to 
RasGTP. When the allosteric site of SOS is occupied by RasGTP or RasGDP, the 
catalytic rate for Ras activation is increased. This creates a positive feedback in the 
activation. Rasgrp, when bound to the membrane bound DAG, acts as an enzyme for Ras 
activation. Ras de-activation is carried out by the enyme RasGAP. The reactions and the 
rates are shown above. The rates and initial conditions are shown in Table S2.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure S7: Variation of JSD(IT ) for the deterministic Ras activation kinetics. We used 
3000 single cells across time points t1=100s and t2=400s where the Ras activation 
displays bistability. The kinetics was simulated using the reactions shown in Fig. S6 
using the software package BIONETGEN.  
 
 

Figure S8: IM behaves as a slow variable for the deterministic Ras activation kinetics. 
Shows the minimum values of JSD(IM )  (grey points) for all the subsets. The JSD values 



corresponding to the fastest (orange points) and the slowest species (blue points) are 
shown for comparison. Some of the species abundances reached values closer to the 
steady state and generate very small change in the time window. When present, these 
species corresponded to the slowest species. JSD(IM )values were equal (very close to 
zero) to the JSD values for the slowest species for the subsets until class#10. Thus, IM 
behaved as slow variables in these subsets. JSD(IT ) values for the subsets generating 
minimum JSD(IM )  are shown in black. 
 
 

 
 
Figure S9: Error in the autocorrelation for the pairings performed using IT  and IM 
for the deterministic Ras activation kinetics. Error in the autocorrelation function when 
the pairings were performed using IT and IM. The pairings were carried out for the subsets 
that yielded minimum values for JSD(IT )  (black) or JSD(IM ) (grey). The subsets are shown 
with their class indices. Note, for each class the subsets used for IT or IM are different. 
The data compare the best level of pairings that can be carried out by IT or IM. Except the 
subsets with 2, 13, and, 14 species (class #2, #13, and #14, respectively), pairing by IT 
performs substantially better than that by IM.  
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure S10: IT and IM behaves as a slow variable for stochastic Ras activation 
kinetics. Ras activation kinetics including intrinsic noise fluctuations was generated 
using the same reaction network used for investigating the deterministic kinetics. The 
simulations were carried out using the software package BIONETGEN. The parameters 
used for the kinetics are the same as that used for Fig. S8. (A) Shows the minimum 
values of JSD(IT )  (black points) for all the subsets. The values for JSD(IT )  are very close 
to zero and are covered by the grey or the blue symbols. The JSD values corresponding to 
the fastest (orange points) and the slowest species (blue points) are shown for comparison. 
The JSD(IM )  values corresponding to the subsets for min ( JSD(IT ) )  are shown in grey. 
The separation between the points at the lower JSD values are shown in the bottom panel 
where the y axis is zoomed in between 0 to 0.5. (B)  Shows the minimum values of 
JSD(IM )  (grey points) for all the subsets. The JSD values corresponding to the fastest 
(orange points) and the slowest species (blue points) are shown for comparison. The  
JSD(IT ) values corresponding to the subsets for min ( JSD(IM ) )  are shown in black. The 
bottom panel shows the zoomed in version of the top graph (grey and blue points only) 
for the points at the lower JSD values. 
 
 
 
 
 



 
Figure S11: Error in the autocorrelation function for the pairings performed using 
IT  and IM for the stochastic Ras activation kinetics. The pairings were carried out for 
3000 single cells for stochastic Ras activation kinetics. (A) Pairing was done using IT for 
the subsets (indexed by the class numbers) that yielded minimum values of JSD(IT ) .  
Error in the autocorrelation function (black points) for single cell-sister cell pairs. The 
grey points show the error when IM was used for pairing the single cells for the same 
subsets that yielded minimum values of JSD(IT ) . (B)   Pairing was done using IM for the 
subsets (indexed by the class numbers) that yielded minimum values of JSD(IM ) .  Error in 
the autocorrelation function (grey points) for single cell-sister cell pairs. The black points 
show the error when IT was used for pairing the single cells for the same subsets that 
yielded minimum values of JSD(IM ) . 
 
 
 
 
 
 
 
 



 

 
 
 
 
Figure S12: Quantification of errors in reconstructed trajectories using IM in live-
cell imaging. The live cell imaging data as described in Fig. 4 was used to generate 
reconstructed trajectories. We used 159 single cell trajectories for the analysis. (A) Shows 
the reconstructed trajectory using IM.  (B) Distribution of the error χ , P(χ) (in black), for 
the reconstruction carried out using IM. P(χ) for random pairing is shown in grey for 
comparison. (C) Error in the autocorrelation function in the reconstructed trajectories by 
IM. The autocorrelation was calculated for the successive pairs of time points (e.g., 0min 
to 2.5min, 2.5min to 5min, and so on) available in the data. For most of the time points 
we find ΔA/ΔArandom <1. 
 



 
 
Figure S13: (A) Comparison of the distribution of χ when the time difference between 
respectively time stamped data for a bistable Ras-SOS network is progressively increased. 
6 species namely SOS, RasGDP, RasGTP, RasGAP, DAG and RasGRP were assayed at 
times t=0 to t=500 s with an increment of 100 s between successive assays. The solid 
lines in black, blue, orange, red and gray show P(χ) for the reconstructions for data sets 
assayed at time t=0 and t= 100s, t=0 and t=200 s, t=0 and t=300s, t=0 and t=400 s and t=0 
and t=500 s respectively. The system approach the bistable Ras activation close to t=300s.   
(B) Shows the distribution of the reconstruction error χ carried out for the subset that 
produced minimum JSD( IT ) for k=2 for the data set used in Fig. 6 in the main text. The 
reconstructions were carried out using IT (black) or with a method that minimizes the 
total Euclidean distance (grey). (C) Same as (B) except the comparison is done for the 
subset with minimum  JSD(IT ) for k=3.  
 
Table S1A: Rate constants for the network in Fig. S1 
 
Rate constants min-1 
k1 0.08  

k2 0.1  
k3 0.145  
k4 0.226 
k5 0.321  



k6 0.178  
k7 0.134  
k8 0.245  
k9 0.48  
k10 0.50  
k11 0.033  
k12 0.23 
k13 0.128 
k14 0.67 
k15 0.45 
k16 0.51 
k17 0.11 
k18 0.05 
k19 0.32 
k20  0.20 
 
Table S1B: Initial conditions for the network in Fig. S1 
 
The initial species copy numbers are drawn from a multivariate Gaussian distribution. 
Below we quote the average values and covariance matrix for the species abundances. 
 
Average  # of molecules 
Species 1 122 
Species 2 186 
Species 3 192 
Species 4 259 
Species 5 101 
Species 6 268 
Species 7 176 
Species 8 196 
Species 9 209 
Species 10 158 
Species 11 173 
Species 12 225 
Species 13 286 
Species 14 202 
 
Covariance Matrix 
 



 
 
Table S2A: Rate constants for the Ras activation kinetics network in Fig. S6 
 
Rate Constants  
k1 0.0053 µM-1s-1 

k-1 4.0 s-1 
k1cat 0.0005 s-1 
k2 0.12 µM-1s-1 
k-2 3.0 s-1 
k3 0.11 µM-1s-1 
k-3 0.4 s-1 
k4 0.07 µM-1s-1 
k-4 1.0 s-1 
k4cat 0.003 
k5 0.05 µM-1s-1 
k-5 0.1 s-1 
k5cat 0.038 
k6 1.74 µM-1s-1 
k-6 0.2 s-1 
k6cat 0.1 s-1 
k7 0.1 µM-1s-1 
k-7 5.0 s-1 
k8 0.33 µM-1s-1 
k-8 1.0 s-1 
k8cat 0.01 s-1 
 
Cytosolic volume used =0.08 µm3, surface area and the depth of plasma membrane used 
are 4.0 µm2 and 1.7 nm respectively.  
Table S2B: Copy numbers for the species used in the Ras activation network in Fig. 
S6 
 
 The initial copy numbers of the molecular species are drawn from a multivariate 
Gaussian distribution. Below we show the average values and the covariance used. The 
species that are not shown here have zero abundances at t=0. 
 
 



Average  # of molecules 
#1. Sos 85 
#2. RasGDP 370 
#3. RasGTP 30 
#4. RasGap 10 
#5. RasGRP1 47 
#6. DAG 40 
 
Covariance matrix.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Pseudocodes for the algorithms used for implementing the framework 
  
 
Notations 
N: Number of species measured 
k ⊂ N  {k=2, 3, …, N}: Class  with k species 
m {m=1, 2, 3, …, NCk}: sub-modules with k species (elements of class k) 
[Dt1

m,k]ij {i=1, 2, ….., # of cells}, {j=1, 2, .., k}: Data matrix at time t1 of the mth sub-
module belonging to class k. For example [Dt1

1,2]ij contains first 2 species at time t1 
whereas [Dt1

2,2]ij contains the first and the third species at time t1. 
[Dt2

m,k]ij {i=1, 2, ….., # of cells}, {j=1, 2, .., k}: Same as [Dt1
m,k]ij except the species 

abundances are measured at time t2. 
[At2

m,k]ij {i=1, 2, ….., # of cells}, {j=1, 2, .., k}: Data matrix for the sub-module m 
belonging to the class k at time t2 that contains the species abundance of the correct 
partners of the cells in [Dt1

m,k]ij. So if correctly aligned the first cell (row #1) in [Dt1
m,k]ij 

would be paired to the first cell (row #1) of [At2
m,k]ij.  

MJSD
ij {i=1, 2, …, N-1}, {j=1, 2}: Array for the min JSD values for each class k ∈{2, 3, 

…, N}.  

[IT
t1]i = 

 
Dm ,k

t1
⎡⎣ ⎤⎦

j=1

k

∑
i , j

{i=1, 2, # of cells}: Array containing sum of the species abundances of 

the mth sub-module belonging to class k at time t1. 

[IT
t2]i = 

 
Dm ,k

t2
⎡⎣ ⎤⎦

j=1

k

∑
i , j

{i=1, 2, # of cells}: Array containing sum of the species abundances 

of the mth sub-module belonging to class k at time t2. 
Bij {i=1, 2, …., # of cells}, {j=1, 2}: Alignment matrix. If the first row of B is {3, 4} then 
it means that the 3rd cell at time t1 (3rd row in [Dt1

m,k]) is aligned to the 4th cell at time t2 
(4th row in [Dt2

m,k]).  
QAlgi {i=1,N-1}: Array for the quality of alignment 
 
Algorithm for minimum JSD 
 
Input: Dt1

m,k, Dt2
m,k 

 
Output: MJSD 
 
Initialize MJSD

i,1=α where α > ln2 ∀ i ∈{1, N-1}. 
 for k← 2 to N  do  

 for m←1 to NCk  do  
              load Dt1

m,k and Dt2
m,k 

                calculate IT
t1 and IT

t2 
                          calculate P= distribution of IT

t1 and  
                                            Q= distribution of IT

t2  
                          calculate JSD(P, Q) using eqn (7) main text 
                          If JSD(P, Q) < MJSD

k-1,1 then  



                                       MJSD
k-1,1 = JSD(P, Q) and MJSD

k-1,2 = m 
                          endif 
              end            
    end 
 
Print MJSD  
 
 
Algorithm for calculation of quality of reconstruction 
 
Input: MJSD,  Dt1

m=m* ,k ,Dt2
m=m* ,k ,At2

m=m* ,k  where m* denotes the sub-module with minimum 
JSD 
Ouput: QAlg 
 
 for k← 2 to N  do  
       Load  Dt1

m* ,k ,Dt2
m* ,k ,At2

m* ,k  using MJSD 
       for i←1 to # of cells do  
               build matrix T1 and T2 such that 

             T1i,1 =i and T1i,2= 
 

Dt1
m* ,k⎡

⎣
⎤
⎦

j=1

k

∑
ij

 and 

 

              T2i,1 =i and T2i,2= 
 

Dt2
m* ,k⎡

⎣
⎤
⎦

j=1

k

∑
ij

 

         end 
 
        build ST1= Sort T1 by column 2 
                  ST2= Sort T2 by column 2 
        

        sum1=0 

        sum2=0 

 

       
 for i←1 to # of cells do  

  
                      Bi,1 = ST1i,1 

                                  Bi,2 = ST2i,1

 
                    sum1=sum1+ 

 
ABi ,1 , j − Dt2

m* ,k⎡
⎣

⎤
⎦Bi ,2 , j

⎛
⎝⎜

⎞
⎠⎟
2

j=1

k

∑  

                    sum2=sum2+ 
 

ABi ,1 , j − Dt2
m* ,k⎡

⎣
⎤
⎦Rand[1,# of cells], j

⎛
⎝

⎞
⎠

2

j=1

k

∑  

          end 



          
         QAlgk-1=sum1/sum2 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Physical interpretation of the invariant IM 
 
The time evolution changes the abundance vector  ⃗x(α)(t) as 
 
xi
(α )(t2 ) = eM (t2−t1 )⎡⎣ ⎤⎦ij x j

(α )(t1) = Aij (t2,t1)x j
(α )(t1)      (S1) 

 
A is an n×n real matrix. Suppose, the vectors,  

!x (α )(t2 )  and  
!x (α )(t1) , are scaled by matrices 

S2 and S1, respectively, such that the change given by Eq. (S1) transforms the scaled 
vectors (denoted by,  !x

" (α )
(t2 )  and  !x

" (α )
(t1) , respectively) by an orthogonal matrix, i.e., the 

scaled vectors undergo rotation or reflection. The scaled vectors are given by, 
 

 !x
" (α )
(t2 ) = S2.

"x (α )(t2 )         (S2) 

 !x
" (α )
(t1) = S1.

"x (α )(t1)   
 
The “Ŋ” operation in the above equations denotes matrix multiplication. Eq. (S1) can be 
written in terms of the scaled variables as, 

 !x
" (α )
(t2 ) = S2.A.S1

−1 . !x
" (α )
(t1)       (S3) 

 
The matrix, S2A can be polar decomposed(1) as, 
 
S2A =QP           
where, Q is an orthogonal matrix (QQT=I) and  
P = (S2A)

T (S2A)  . 
    
Below we show that when S2=[J(t2)]-1/2 =J2

-1/2 and S1=[J(t1)]-1/2=J1
-1/2, then S2AS1

-1 in Eq. 
(S3) is equal to the orthogonal matrix Q.  
 
S2.A.S1

−1 =QPS1
−1 =Q (S2A)

T (S2A)S1
−1 =Q (J2

−1/2A)T (J2
−1/2A)J1

1/2 =Q (AT J2
−1A)J1

1/2   
 
According to Eq. (15b) in the main text, J2=AJ1AT or J2

-1=(AT)-1 (J1)-1A-1
 or AT J2

-1 

A=(J1)-1
 . As a result,  

S2.A.S1
−1 =Q (AT J2

−1A)J1
1/2 =QJ1

−1/2J1
1/2 =Q  .    

 
Therefore, scaling the abundance vector (Eq. (S2) or Eq. (3) in the main text) makes the 
time evolution of the scaled vectors either a rotation or a reflection. As a result the 
magnitude of the scaled vector (or IM) does not change with time (Eq. (6) in the main 
text). 
 
1. Halmos PR (1987) Finite-dimensional vector spaces (Springer-Verlag, 

New York) pp viii, 199 p. 
 


