Antifungal and Cytotoxic β -Resorcylic Acid Lactones from *Paecilomyces* sp.

Liangxiong Xu,[†] Ping Wu,[†] Jinghua Xue,[†] Istvan Molnar,[‡] Xiaoyi Wei^{*,†}

[†] Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong
 Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of
 Sciences, Guangzhou 510650, P. R. China
 [‡] Natural Products Center, School of Natural Resources and the Environment, University of Arizona,

Tucson, AZ 85706, United States of America

*Corresponding author. E-mail: <u>wxy@scbg.ac.cn</u>; Tel: +86-20-37252538; Fax: +86-20-37252537.

Supporting Information

Table of Contents

1. Computational Results

Table S1. Relative energies and equilibrium populations of low-energy conformers of 1–3, 5 and 6	4
Figure S1. Conformations of low-energy conformers of 1 and 2	5
Figure S2. Conformations of low-energy conformers of 3	5
Figure S3. Conformations of low-energy conformers of 5	6
Figure S4. Conformations of low-energy conformers of 6	6
Figure S5. B3LYP/TZVP calculated ECD spectra of the low-energy conformers of 1 and 2	6
Figure S6. Comparison between B3LYP/TZVP calculated and measured ECD spectra of 1 and 2	7
Figure S7. CAM-B3LYP/TZVP calculated ECD spectra of the low-energy conformers of 1 and 2	7
Figure S8. Comparison between CAM-B3LYP/TZVP calculated and measured ECD spectra of 1 and 2	7
Figure S9. Calculated ECD spectra of the low-energy conformers of 3	8

Figure S10. Comparison between ω B97X/TZVP calculated and measured ECD spectra of 3 8	
Figure S11. Calculated ECD spectra of the low-energy conformers of 5	
Figure S12. Comparison between PBE1PBE/TZVP calculated and measured ECD spectra of 5	
Figure S13. Calculated ECD spectra of the low-energy conformers of 6	
Figure S14. Comparison between TPSSh/TZVP calculated and experimental ECD spectra of 6	
2. NMR Spectra and HRESIMS of Compounds 1–8	
Figure S15. ¹ H NMR spectrum of paecilomycin N (1) 1	0
Figure S16. ¹³ C NMR and DEPT spectra of paecilomycin N (1)1	0
Figure S17 ¹ H- ¹ H COSY spectrum of paecilomycin N (1) 1	1
Figure S18. HSQC spectrum of paecilomycin N (1) 1	1
Figure S19. HMBC spectrum of paecilomycin N (1) 1	2
Figure S20. NOESY spectrum of paecilomycin N (1) 1	2
Figure S21. HRESIMS spectrum of paecilomycin N (1) 1	3
Figure S22. ¹ H NMR spectrum of paecilomycin O (2) 1	3
Figure S23. ¹³ C NMR and DEPT spectra of paecilomycin O (2) 1	4
Figure S24. ¹ H- ¹ H COSY spectrum of paecilomycin O (2)	4
Figure S25. HSQC spectrum of paecilomycin O (2)1	5
Figure S26. HMBC spectrum of paecilomycin O (2)1	5
Figure S27. NOESY spectrum of paecilomycin O (2) 1	6
Figure S28. HRESIMS spectrum of paecilomycin O (2) 1	6
Figure S29. ¹ H NMR spectrum of paecilomycin P (3) 1	7
Figure S30. ¹³ C NMR and DEPT spectra of paecilomycin P (3) 1	7
Figure S31. ¹ H- ¹ H COSY spectrum of paecilomycin P (3)	8
Figure S32. HSQC spectrum of paecilomycin P (3) 1	8
Figure S33. HMBC spectrum of paecilomycin P (3) 1	9
Figure S34. HRESIMS spectrum of paecilomycin P (3) 1	9
Figure S35. ¹ H NMR spectrum of dechloropochonin I (4)	0
Figure S36. ¹³ C NMR spectrum of dechloropochonin I (4)	0
Figure S37. ¹ H- ¹ H COSY spectrum of dechloropochonin I (4)	1
Figure S38. HSQC spectrum of dechloropochonin I (4)	1
Figure S39. HMBC spectrum of dechloropochonin I (4)	2

Figure S40. HRESIMS spectrum of dechloropochonin I (4)
Figure S41. ¹ H NMR spectrum of monocillin VI (5)
Figure S42. ¹³ C NMR spectrum of monocillin VI (5)
Figure S43. ¹ H- ¹ H COSY spectrum of monocillin VI (5)
Figure S44. HSQC spectrum of monocillin VI (5)
Figure S45. HMBC spectrum of monocillin VI (5)
Figure S46. HRESIMS spectrum of monocillin VI (5) 25
Figure S47. ¹ H NMR spectrum of monocillin VII (6)
Figure S48. ¹³ C NMR spectrum of monocillin VII (6)
Figure S49. ¹ H- ¹ H COSY spectrum of monocillin VII (6)
Figure S50. HSQC spectrum of monocillin VII (6)
Figure S51. HMBC spectrum of monocillin VII (6)
Figure S52. NOESY spectrum of monocillin VII (6)
Figure S53. HRESIMS spectrum of monocillin VII (6)
Figure S54. ¹ H NMR spectrum of 4'-methoxymonocillin IV (7)
Figure S55. ¹³ C NMR spectrum of 4'-methoxymonocillin IV (7)
Figure S56. ¹ H- ¹ H COSY spectrum of 4'-methoxymonocillin IV (7)
Figure S57. HSQC spectrum of 4'-methoxymonocillin IV (7)
Figure S58. HMBC spectrum of 4'-methoxymonocillin IV (7)
Figure S59. NOESY spectrum of 4'-methoxymonocillin IV (7)
Figure S60. HRESIMS spectrum of 4'-methoxymonocillin IV (7)
Figure S61. ¹ H NMR spectrum of 4'-hydroxymonocillin IV (8)
Figure S62. ¹³ C NMR spectrum of 4'-hydroxymonocillin IV (8)
Figure S63. ¹ H- ¹ H COSY spectrum of 4'-hydroxymonocillin IV (8)
Figure S64. HSQC spectrum of 4'-hydroxymonocillin IV (8)
Figure S65. HMBC spectrum of 4'-hydroxymonocillin IV (8)
Figure S66. HRESIMS spectrum of 4'-hydroxymonocillin IV (8)
Table S2. ¹ H and ¹³ C NMR data of 2'α-hydroxymonocillin II (9) 36
3. Comparison between ECD Spectra of 7 and 8

Figure S67.	Comparison betw	veen ECD spectra of '	and 8 3	37
-------------	-----------------	-----------------------	---------	----

Table S1. Relative and free energies^a and equilibrium populations^b of low-energy conformers of 1–3, 5, and 6 in

MeOH

conformer	ΔE	ΔG	P (%)
compound 1			
1a	0.0	0.0	69.2
1b	0.50	0.48	30.8
compound 2			
2a	0.00	0.00	71.3
2b	0.52	0.54	28.7
compound 3			
3a	0.0	0.0	35.3
3b	0.04	0.09	30.3
3c	0.91	0.70	10.8
3d	0.99	0.93	7.3
3e	0.90	1.02	6.3
3f	1.51	1.32	3.8
3g	1.51	1.48	2.9
3h	2.39	1.96	1.3
3i ^{<i>c</i>}	2.19	2.10	1.0
3j ^{<i>c</i>}	2.68	2.19	0.9
compound 5			
5a	0.00	0.00	87.2
5b	1.15	1.51	6.8
5c	2.07	2.06	2.7
5d	2.02	2.13	2.4
5e ^c	2.35	2.71	0.9
compound 6			
6a	0.0	0.0	65.9
6b	0.16	0.39	34.1
6c ^{<i>c</i>}	4.41	4.13	0.1

^{*a*} At the B3LYP/6-311+G(d,p) (1 and 2) or B3LYP/def2-TZVP (others) level, in kcal/mol.

^{*b*} From ΔG values at 298.15 K.

^c Conformer not used for ECD/ TDDFT calculations.

Figure S1. Conformations of low-energy conformers of 1 and 2.

Figure S2. Conformations of low-energy conformers of 3.

Figure S3. Conformations of low-energy conformers of 5.

Figure S4. Conformations of low-energy conformers of 6.

Figure S5. B3LYP/TZVP calculated ECD spectra of the low-energy conformers of **1** and **2** in MeOH. Vertical bars represent rotational strengths *R*. $\sigma = 0.29$ eV; shift = ±0 nm.

Figure S6. Comparison between B3LYP/TZVP calculated and experimental ECD spectra of **1** and **2** in MeOH. Vertical bars represent rotational strengths *R* of the global energy minima). Parameters for calculated ECD spectra: $\sigma = 0.29$ eV (for both), shift = -6 (for 1) / -4 (for 2) nm, and scaling factor = 0.85 (for 1) / 0.53 (for 2).

Figure S7. CAM-B3LYP/TZVP calculated ECD spectra of the low-energy conformers of **1** and **2** in MeOH. Vertical bars represent rotational strengths *R*. 0.40 (for **1**) or 0.32 (for **2**) eV; shift = ± 0 nm.

Figure S8. Comparison between CAM-B3LYP/TZVP calculated and experimental ECD spectra of **1** and **2** in MeOH. $\sigma = 0.40$ (for **1**) or 0.32 (for **2**) eV; shift = +11 (for **1**) or +14 (for **2**) nm.

Figure S9. Calculated ECD spectra of the low-energy conformers of **3** in MeOH using the ω B97X /TZVP method. Vertical bars represent rotational strengths *R*. $\sigma = 0.35$ eV; shift = ±0 nm.

Figure S10. Comparison between the ω B97X/TZVP calculated and the measured ECD spectra of 3 in MeOH.

Parameters for calculated ECD spectrum: $\sigma = 0.35$ eV, shift = +20 nm, and scaling factor = 0.24.

Figure S11. Calculated ECD spectra of the low-energy conformers of **5** in MeOH using the PBE1PBE /TZVP method. Vertical bars represent rotational strengths *R*. $\sigma = 0.27$ eV; shift = ±0 nm.

Figure S12. Comparison between the PBE1PBE/TZVP calculated and the measured ECD spectra of **5** in MeOH. Vertical bars represent rotational strengths *R* of the lowest-energy conformer. Parameters for calculated ECD spectrum: $\sigma = 0.27$ eV, shift = +8 nm, and scaling factor = 0.27.

Figure S13. Calculated ECD spectra of the low-energy conformers of **6** in MeOH using the TPSSh /TZVP method. Vertical bars represent rotational strengths *R*. $\sigma = 0.33$ eV; shift = ±0 nm.

Figure S14. Comparison between the TPSSh/TZVP calculated and experimental ECD spectra of **6** in MeOH. Vertical bars represent rotational strengths *R* of the lowest-energy conformer. Parameters for calculated ECD spectrum: $\sigma = 0.33$ eV, shift = -14 nm, and scaling factor = 0.40.

Figure S15. ¹H NMR (400 MHz) spectrum of paecilomycin N (1) in C₅D₅N.

Figure S16. 13 C NMR (100 MHz) and DEPT spectra of paecilomycin N (1) in C₅D₅N.

Figure S17. 1 H- 1 H COSY spectrum of paecilomycin N (1) in C₅D₅N.

Figure S18. HSQC spectrum of paecilomycin N (1) in C₅D₅N.

Figure S19. HMBC spectrum of paecilomycin N (1) in C_5D_5N .

Figure S20. NOESY spectrum of paecilomycin N (1) in C_5D_5N .

Figure S21. (-)-HRESIMS of paecilomycin N (1).

Figure S22. ¹H NMR (400 MHz) spectrum of paecilomycin O (2) in C_5D_5N .

Figure S23. 13 C NMR (100 MHz) and DEPT spectra of paecilomycin O (2) in C₅D₅N.

Figure S24. ¹H-¹H COSY spectrum of paecilomycin O (2) in C₅D₅N.

Figure S25. HSQC spectrum of paecilomycin O (2) in C₅D₅N.

Figure S26. HMBC spectrum of paecilomycin O (2) in C_5D_5N .

Figure S27. NOESY spectrum of paecilomycin O (2) in C₅D₅N.

Figure S28. (-)-HRESIMS of paecilomycin O (2).

Figure S29. ¹H NMR (400MHz) spectrum of paecilomycin P (3) in CDCl₃.

Figure S30. ¹³C NMR and DEPT (100MHz) spectra of paecilomycin P (3) in CDCl₃.

Figure S31. ¹H-¹H COSY spectrum of paecilomycin P (**3**) in CDCl₃.

Figure S32. HSQC spectrum of paecilomycin P (3) in CDCl₃.

Figure S33. HMBC spectrum of paecilomycin P (3) in CDCl₃.

Figure S34. (-)-HRESIMS spectrum of paecilomycin P (3)

Figure S35. ¹H NMR (400MHz) spectrum of dechloropochonin I (4) in CDCl₃.

Figure S36. ¹³C NMR (100MHz) spectrum of dechloropochonin I (4) in CDCl₃.

Figure S37. ¹H-¹H COSY spectrum of dechloropochonin I (4) in CDCl₃

Figure S38. HSQC spectrum of dechloropochonin I (4) in $CDCl_3$

Figure S39. HMBC spectrum of dechloropochonin I (4) in CDCl₃

Figure S40. (+)-HRESIMS spectrum of dechloropochonin I (4)

Figure S41. ¹H NMR (400MHz) spectrum of monocillin VI (5) in CDCl₃.

Figure S42. ¹³C NMR (100MHz) spectrum of monocillin VI (**5**) in CDCl₃.

Figure S43. ¹H-¹H COSY spectrum of monocillin VI (**5**) in CDCl₃.

Figure S44. HSQC spectrum of monocillin VI (5) in CDCl₃.

Figure S45. HMBC spectrum of monocillin VI (5) in CDCl₃.

Figure S46. (+)-HRESIMS spectrum of monocillin VI (5).

Figure S47. ¹H NMR (400MHz) spectrum of monocillin VII (6) in C₅D₅N.

Figure S48. 13 C NMR (100MHz) spectrum of monocillin VII (6) in C₅D₅N.

Figure S49. ¹H-¹H COSY spectrum of monocillin VII (6) in C₅D₅N.

Figure S50. HSQC spectrum of monocillin VII (6) in C_5D_5N .

Figure S51. HMBC spectrum of monocillin VII (6) in C₅D₅N.

Figure S52. NOESY spectrum of monocillin VII (6) in C₅D₅N.

Figure S53. (+)-HRESIMS spectrum of monocillin VII (6).

Figure S54. ¹H NMR (500 MHz) spectrum of 4'-methoxymonocillin IV (7) in CDCl₃.

Figure S55. ¹³C NMR (125 MHz) spectrum of 4'-methoxymonocillin IV (7) in CDCl₃.

Figure S56. ¹H-¹H COSY spectrum of 4'-methoxymonocillin IV (7) in CDCl₃.

Figure S57. HSQC spectrum of 4'-methoxymonocillin IV (7) in CDCl₃.

Figure S58. HMBC spectrum of 4'-methoxymonocillin IV (7) in CDCl₃.

Figure S59. NOESY spectrum of 4'-methoxymonocillin IV (7) in CDCl₃.

Figure S60. (+)-HRESIMS spectrum of 4'-methoxymonocillin IV (7).

Figure S61. ¹H NMR (400 MHz) spectrum of 4'-hydroxymonocillin IV (8) in CDCl₃.

Figure S62. ¹³C NMR (100 MHz) spectrum of 4'-hydroxymonocillin IV (8) in CDCl₃.

Figure S63. ¹H-¹H COSY spectrum of 4'-hydroxymonocillin IV (8) in CDCl₃.

Figure S64. HSQC spectrum of 4'-hydroxymonocillin IV (8) in CDCl₃.

Figure S65. HMBC spectrum of 4'-hydroxymonocillin IV (8) in CDCl₃.

Figure S66. (+)-HRESIMS spectrum of 4'-hydroxymonocillin IV (8).

nosition	$\delta_{ m H}$ mult.	δ _a in CDCl _a type	
position	in CDCl ₃	in acetone- d_6	ol in energy, type
1			107.1, C
2			164.6, C
3	6.82 d (2.6)	6.52 d (2.5)	102.0, CH
4			163.1, C
5	7.20 d (2.6)	6.25 d (2.5)	111.9, CH
6			144.5, C
7			171.6, C
1'	3.95 dd (13.5, 6.9)	3.73 dd (13.3, 7.6)	43.0, CH ₂
	3.35 dd (13.5, 6.2)	2.86 dd (13.3, 6.3)	
2'	4.70 td (6.3, 6.2)	4.17 m	74.2, CH
3'	5.74 dd (15.5, 5.8)	5.33 dd (15.5, 4.5)	135.2, CH
4'	5.64 dt (15.5, 6.3)	5.36 m	127.9, CH
5'	2.03 m	2.10 m	30.5, CH ₂
	1.95 d (9.0)	1.95 m	
6'	2.10 m	2.14 m	31.5, CH ₂
7'	5.23 dd (14.2, 7.0)	5.22 m	133.0, CH
8'	5.40 dt (14.2, 6.8)	5.44 m	125.9, CH
9'	2.61 ddd (14.4, 6.8, 2.5)	2.69 ddd (15.0, 7.6, 3.6)	37.6, CH ₂
	2.21 dt (13.8, 6.2)	2.31 dt (15.0, 5.7)	
10'	5.27 m	5.24 m	72.3, CH
11'	1.30 d (6.4).	1.40 d (6.4).	19.2, CH ₃
2-OH	12.50 br s	11.90 br s	

Table S2. ¹H (400 MHz) and ¹³C (100 MHz) NMR data of $2'\alpha$ -hydroxymonocillin II (9).

3. Comparison between ECD Spectra of 7 and 8

Figure S67. Comparison between ECD spectra of 7 and 8 in MeOH.