Supporting information

Rhamnolipids: Highly Compatible Surfactants for the Enzymatic Hydrolysis of Waste Frying Oils in Microemulsion Systems

Ignacio Moya-Ramírez*; Miguel García-Román; Alejandro Fernández-Arteaga

Chemical Engineering Department, Faculty of Sciences, University of Granada, Avda.

Fuentenueva s/n, Granada, 18071, Spain

*ignaciomr@ugr.es;Phone: +34 958244075

Table S1	S2
Table S2	S3
Figure S1	S4
Figure S2	
Figure S3	

Retention time (min)	<i>m/z</i> [M-H] ⁻	Rhamnolipid isomer	Relative abundance (%)	
0.72	621	diR-C ₈ -C ₁₀ 1.9		
0.87	475	monoR-C ₈ -C ₁₀	5.3	
1.24	649	diR- C ₁₀ -C ₁₀	25.4	
1.58	503	monoR- C_{10} - C_{10}	$C_{10}-C_{10}$ 52.9	
2.07	529	monoR- C ₁₀ -C _{12:1}	7.3	
2.07	677	diR- C ₁₀ -C _{12:1}	5.4	

Table S1. Relative abundance of the different rhamnolipid isomers found in the commercial mixture from Sigma.

Table S2. Desorption capacity (DC) of RHL and AOT over PFL and TLL hydrolyzing tributyrin in O/W emulsions and activity of both enzymes (in lipase units per gram, UL/g) hydrolyzing tributyrin O/W emulsions prepared with RHL, AOT and gum arabic (as control).

	DC (%)		Activity (UL/g)		
	RHL	AOT	RHL	AOT	Gum arabic
PFL	-2.2 ± 1.4	-5.3 ± 0.3	16028 ± 950	13709 ± 901	13846 ± 1079
TLL	-19.2 ± 1.2	-11.2 ± 1.7	25821 ± 1883	34344 ± 7636	77877 ± 10906

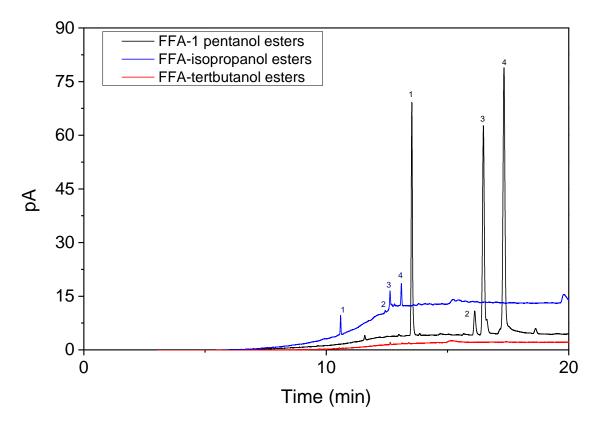


Figure S1. FFA-alcohol esters detected after WFO hydrolysis using 1-pentanol, isopropanol or tert-butanol as cosolvent in the continuous phase. Numbered peaks correspond to esters of the four main fatty acids present on the WFO: (1) palmitic, (2) stearic, (3) oleic and (4) linolenic.

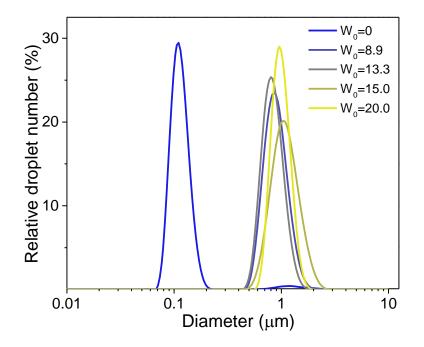


Figure S2. Influence of water/surfactant molar ratio (W_0) on the droplet diameter distributions of water-inoil microemulsions prepared with rhamnolipids as emulsifier at a concentration of 50 mM, IO/TB=75/25 and Φ =0.2.

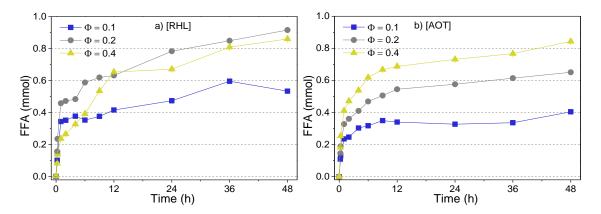


Figure S3. Free fatty acids released during WFO hydrolysis with PFL lipase, at W₀=15, IO/TB=75/25 and at different WFO volume fraction (Φ =0.1, 0.2 and 0.4) in microemulsions prepared with RHL (left) and AOT (right) as emulsifier. Hydrolysis were carried out during 48 h at 37 °C under stirring at 120 rpm. Either, AOT and RHL concentration was 50 mM in the organic phase. Lipase concentration was 0.2 g L⁻¹ referred to the bulk phase.