Revealing the role of interfacial properties on catalytic behaviors by

in situ surface-enhanced Raman spectroscopy

Hua Zhang,† Xia-Guang Zhang,† Jie Wei,† Chen Wang,† Shu Chen,‡ Han-Lei Sun,† Ya-Hao Wang,† Bing-Hui Chen,*^{,†} Zhi-Lin Yang,‡ De-Yin Wu,† Jian-Feng Li,*^{,†};‡ and Zhong-Qun Tian†

[†]MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, and [‡]Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005, China

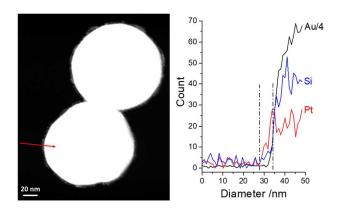


Figure S1. elemental line scan analysis of Pt-on-SHINs.

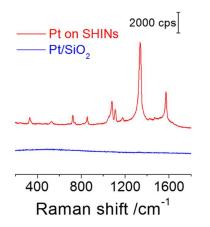
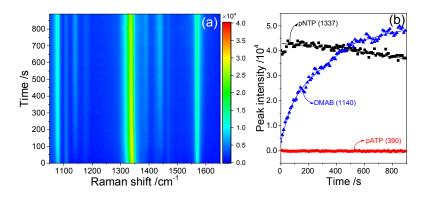
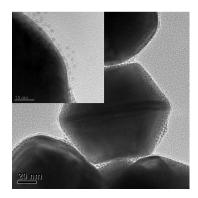
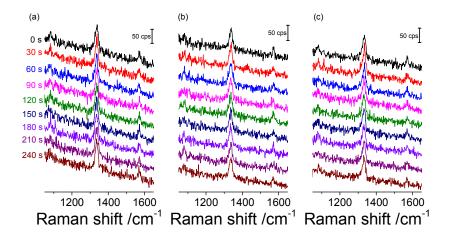
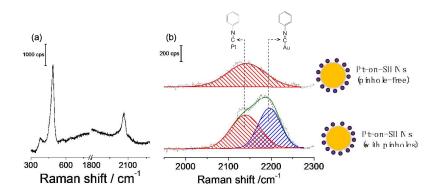
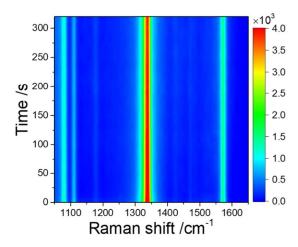
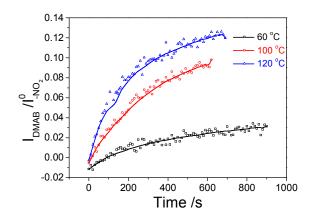



Figure S2. Raman spectra of pNTP adsorption on Pt-on-SHINs and Pt/SiO₂

Figure S3. *In-situ* SERS spectra of the hydrogenation of pNTP on SHINs (a) and the corresponding intensity of pNTP, DMAB, and pATP as a function of reaction time (b).


Figure S4. HR-TEM images of Pt-on-SHINs after reaction.


Figure S5. In-situ SERS spectra of the conversion of pNTP on pinhole-free SHINs under different conditions. (a) 25 $^{\circ}$ C, Ar. (b) 60 $^{\circ}$ C, Ar. (c) 60 $^{\circ}$ C, H₂. The intensities of the Raman signals for pNTP on the pinhole-free SHINs are much lower than those on Pt-on-SHINs (pinhole-free) due to the weak adsorption of pNTP on silica.

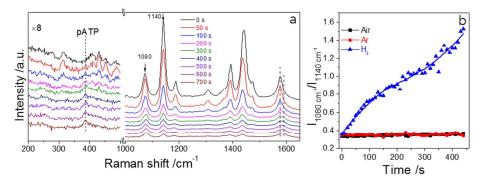

Figure S6. In situ SHINERS spectra of CO (a) and phenyl isocyanide (b) adsorbed on Pt-on-SHINs (pinhole-free)

Figure S7. In-situ SERS spectra of the conversion of pNTP on Pt-on-SHINs (pinhole-free) under Ar at 60 °C.

Figure S8. Effect of temperature on the yield of DMAB on Pt-on-Au via the photo-induced coupling reaction under Ar.

Figure S9. (a) In situ SERS spectra of the hydrogenation of DMAB on Pt-on-Au. It can be clearly seen that DMAB can be efficiently converted to pATP. (b) The ratio of the Raman band at 1080 cm⁻¹ to that at 1140 cm⁻¹ under different gaseous atmosphere as a function of time. Both DMAB and pATP show a strong Raman band at 1080 cm⁻¹, but only DMAB show a Raman band at 1140 cm⁻¹. Thus, the formation of pATP can also be speculated based on the ratio of the Raman band at 1080 cm⁻¹ to that at 1140 cm⁻¹. This ratio only increases under H₂, and maintains unchanged under Ar and air. It indicates the conversion of DMAB to pATP is triggered by H₂ rather than the laser.

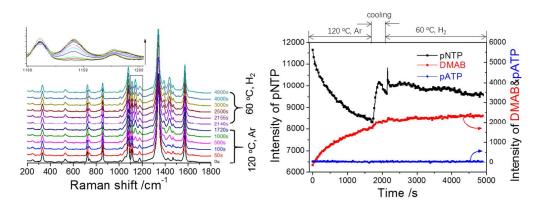
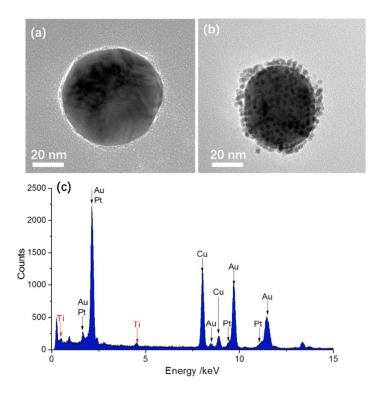



Figure S10. In situ SERS spectra of pNTP adsorbed on bare Au nanoparticles under Ar and H₂.

Figure S11. TEM image of SHINs with a TiO_2 shell (a) and the nanocomposite of Pt nanocatalysts on this kind of SHINs (Pt-on-SHINs (TiO_2 shell)) (b). (c) Energy dispersive spectroscopy (EDS) of the nanocomposites. Pt nanocatalysts are highly dispersed on the surface of the SHINs. The EDS analysis demonstrates that the shells are composed of TiO_2 .