Supplementary Information for

PFPE-based polymeric ¹⁹F MRI agents: a new class of contrast agents with outstanding sensitivity

Authors: Cheng Zhang,^{1,2} Shehzahdi Shebbrin Moonshi,^{1,2} Yanxiao Han,⁴ Simon Puttick,^{1,2} Hui Peng,^{1,2} Bryan John Abel Magoling,¹ James C. Reid,¹ Stefano Bernardi,¹ Debra J. Bernhardt,^{1,3} Petr Král ^{4,5,6} and Andrew K. Whittaker^{1,2*}

¹Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia.

²ARC Centre of Excellence in Convergent Bio-Nano Science and Technology

³School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Qld 4072, Australia.

⁴ Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

⁵ Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

⁶ Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA.

*E-mail: <u>a.whittaker@uq.edu.au</u>

Figure S1. The ¹H NMR spectra of PFPE-OH (bottom), PABTC (middle) and PABTC-PFPE macro-CTA (top) in CDCl₃.

Figure S2. The ¹⁹F NMR spectrum of PFPE-OH and PABTC-PFPE macro-CTA in CDCl₃.

Figure S3. ¹H NMR spectra of the crude poly(OEGA)_m-PFPE polymers in CDCl₃. OEGA monomer conversion was 88.0, 89.4 and 97.2 % for poly(OEGA)₄-PFPE, poly(OEGA)₁₀-PFPE and poly(OEGA)₂₀-PFPE, respectively.

Figure S4. SEC chromatograms of the PFPE-based polymers obtained by RAFT polymerization. THF was used as the eluent.

Figure S5. (a) and (b) The ¹H and ¹⁹F NMR spectra in $CDCl_3$ and assignments to the spectra of poly(OEGA₁₀)-PFPE. (c) The chemical structure of the poly(OEGA₁₀)-PFPE synthesized through RAFT polymerisation.

Figure S6. The (a) ¹H and (b) ¹⁹F NMR spectra of the $poly(OEGA)_4$ -PFPE and $poly(OEGA)_{20}$ -PFPE polymers in CDCl₃.

Figure S7. ¹⁹F NMR spectra of the PFPE-based polymers in PBS/D₂O (V/V 90/10) at a concentration of 20 mg/mL.

Figure S8. ¹⁹F NMR spectra of the PFPE-terminated polymers in the presence of serum (10 %).

Figure S9. *In vitro* MR spin-echo images of the poly(OEGMA-*co*-TFEA) polymers in PBS at 20 mg/mL: (a) and (b) ¹H and ¹⁹F RARE images. (c) The signal-to-noise ratio (SNR) obtained from the ¹⁹F MR images of the PFPE-based (filled black symbols) and poly(OEGMA-*co*-TFEA) polymers (filled red symbols) with different fluorine contents.

		Conversion	Fluorine	$M_{n,SEC}^{b}$	$M_{n,NMR}^{c}$	${\mathcal{D}_{\mathrm{M}}}^{b}$	$D_{\rm h}^{d}({\rm nm})$
		OEGMA	content ^a	(g/mol)	(g/mol)		
		TFEA (%)	(wt %)				
P4	Poly(OEGMA ₄₀ -co-	92.6	2.7	11870	20800	1.13	4.8±0.2
	$TFEA_{10}$)	83.3					
P5	Poly(OEGMA ₁₄ -co-	78.3	8.3	7380	8900	1.17	9.6±0.3
	TFEA ₁₃)	52.2					
P6	Poly(OEGMA ₁₁ -co-	84.5	14.5	5400	9000	1.15	36.5±0.4
	TFEA ₂₃)	58.4					

Table S1. The detailed structural characteristics of the poly(OEGMA-*co*-TFEA) polymers. Data are expressed as mean \pm SD (n=3).

^{*a*}the weight percentage of fluorine in the samples. ^{*b*} $M_{n,SEC}$ and D_M were acquired by SEC RI detector. ^{*c*}The calculations for the poly(OEGMA-*co*-TFEA) were reported in our previous publications.⁹ ^{*d*} D_h was obtained by DLS in water and based on the number-average values.

Samples	Fluorine	19 F NMR T ₁ /T ₂	¹⁹ F	Image SNR ^c
	content	$(ms)^a$	concentration	
	(wt%)		$(M)^b$	
Poly(OEGMA ₄₀ - <i>co</i> -TFEA ₁₀)	2.7	484.2/152.1	0.028	4.0±0.25
Poly(OEGMA ₁₄ -co-TFEA ₁₃)	8.3	440.5/80.8	0.087	9.0±0.29
Poly(OEGMA ₁₁ -co-TFEA ₂₃)	14.5	441.3/46.8	0.15	5.7±0.32

Table S2. NMR and MRI properties of poly(OEGMA-*co*-TFEA) in PBS. Data are expressed as mean \pm SD (n=3).

^{*a*}The ¹⁹F NMR T₁/T₂ were tested in PBS/D₂O (90/10, v/v) at 310 K. ^{*b*} The ¹⁹F concentration of the polymers in PBS solutions. ^{*d*} The image SNR was calculated from the ¹⁹F MRI images.

Figure S10. ¹⁹F NMR spectra of the poly(OEGMA-*co*-TFEA) copolymers.

Figure S11. Viability of MCF-7 cancer cells after incubation with P1, P2 and P3 polymers at different concentrations for 24 h. The results are the average of three replicates \pm standard deviation.

Figure S12. *In vivo* ${}^{1}\text{H}/{}^{19}\text{F}$ MRI of the poly(OEGA)₄-PFPE in mouse on a 9.4 T MRI scanner. (a) 2h, (b) 24 h and (c) 48 h after intravenous injection.

REFERENCES

1. Ferguson, C. J.; Hughes, R. J.; Nguyen, D.; Pham, B. T. T.; Gilbert, R. G.; Serelis, A. K.; Such, C. H.; Hawkett, B. S. Ab Initio Emulsion Polymerization by RAFT-Controlled Self-Assembly. *Macromolecules* **2005**, *38*, 2191-2204.

2. Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. *Tetrahedron Lett.* **1999**, *40*, 2435-2438.

3. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skell, R. D.; Kale, L.; Schulten, K., Scalable molecular dynamics with NAMD. *Journal of Computational Chemistry* **2005**, 26, 1781-1802.

4. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian,
E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. J., CHARMM general force field:
A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. *J. Comput. Chem.* 2010, 31, 671-690.

5. Vanommeslaeghe, K.; MacKerell Jr, A. D., Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. *J. Chem. Inf. Model.* **2012**, 52, 3144-3154.

6. Vanommeslaeghe, K.; Raman, E. P.; MacKerell Jr, A. D., Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. *J. Chem. Inf. Model.* **2012**, *52*, 3155-3168.

7. Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell Jr, A. D., Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. *J. Comput. Chem.* **2012**, 33, 2451-2468.

8. Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. *J. Chem. Phys.* **1993**, 98, 10089-10092.

9. Zhang, C.; Peng, H.; Whittaker, A. K. NMR investigation of effect of dissolved salts on the thermoresponsive behavior of oligo(ethylene glycol)-methacrylate-based polymers. *J. Polym. Sci., Part A: Polym. Chem.* **2014**, 52, 2375-2385.

10. Humphrey, W.; Dalke, A.; Schulten, K., VMD - Visual Molecular Dynamics, *J. Molec. Graphics*, **1996**, 14, 33-38.