SUPPORTING INFORMATION

Practical Singly and Doubly Electrophilic Aminating Agents: A New, More Sustainable Platform for Carbon-Nitrogen Bond-Formation

Padmanabha V. Kattamuri[†], Jun Yin[†], Surached Siriwongsup[†], Doo-Hyun Kwon[‡], Daniel H. Ess^{*‡}, Qun Li[§], Guigen Li^{*§,I}, Muhammed Yousufuddin⁺, Paul F. Richardson[¥], Scott C. Sutton[¥], and László Kürti^{*†}

[†]Department of Chemistry, Rice University, BioScience Research Collaborative, Houston, TX 77005, USA.

[‡]Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.

[§]Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, 210093, P. R. China.

¹Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.

^LLife and Health Sciences Department, University of North Texas at Dallas, TX 75241, USA.

^{*}Medicinal Sciences, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA 92121

Correspondence to: kurti.laszlo@rice.edu dhe@chem.byu.edu guigenli@nju.edu.cn

TABLE OF CONTENTS

1. General Experimental Procedures
2. Gram-scale preparation of diisopropyl 2,2-dihydroxymalonate (44)S11-S22
Synthesis of 44 on 400 g scale
Data for diisopropyl 2,2-dihydroxymalonate (44)
X-ray crystal structure of 44S14
X-ray crystal data and structure refinement for 44S14
Pictorial representations for the synthesis of 44 on bulk scale
3. Preparation of di- <i>tert</i> -butyl 2,2-dihydroxymalonate (38a)
Data for di-tert-butyl 2,2-dihydroxymalonate (38a)
4. Preparation of diisopropyl 2-(hydroxyimino)malonate (46) (Methods A & B) S23
Data for diisopropyl 2-(hydroxyimino)malonate (46)
5. Preparation of di-tert-butyl 2-(hydroxyimino)malonate (46a)
Data for di- <i>tert</i> -butyl 2-(hydroxyimino)malonate (46a)
6. Preparation of dimethyl and diethyl oximinomalonates (46b, 46c)
Data for dimethyl 2-(hydroxyimino)malonate (46b)
Data for diethyl 2-(hydroxyimino)malonate (46c)
7. Activation of oximinomalonates with different sulfonyl chlorides
8. Standard procedure for oximinomalonate activation with sulfonyl chlorides S28
9. General procedure for the synthesis of diisopropyl 2-((tosyloxy)imino)malonate
(47)
Data for diisopropyl 2-((tosyloxy)imino)malonate (47)
X-Ray crystal structure of 47S30
X-Ray crystal data and structure refinement for 47S30
Data for diisopropyl 2-(((methylsulfonyl)oxy)imino)malonate (47a)
Data for diisopropyl 2-((((4-(trifluoromethyl)phenyl)sulfonyl)oxy)
imino)malonate (47b)S38
Data for diisopropyl 2-(((mesitylsulfonyl)oxy)imino)malonate (47c)

Data for diisopropyl 2-((((2,4,6-triisopropylphenyl)sulfonyl)oxy)
imino)malonate (47d)S39
Data for diethyl 2-((tosyloxy)imino)malonate (47e)S40
Data for dimethyl 2-((tosyloxy)imino)malonate (47f)S40
Data for diethyl 2-(((methylsulfonyl)oxy)imino)malonate (47g)S41
Data for dimethyl 2-(((methylsulfonyl)oxy)imino)malonate (47h)
Data for di- <i>tert</i> -butyl 2-((tosyloxy)imino)malonate (47i)S41
10. Preparation of diisopropyl and diethyl iminomalonates (51a-v)
Standard procedure for the preparation of iminomalonatesS43
General procedure for the synthesis of diisopropyl 2-(phenylimino)malonate
(39)
11. Characterization data of the iminomalonate substrates (as displayed in Table S4)
1. Diisopropyl 2-(phenylimino)malonate (39)S44
2. Diisopropyl 2-(methylimino)malonate (51a)S44
3. Diisopropyl 2-((2,2,2-trifluoroethyl)imino)malonate (51b)
4. Diisopropyl 2-((2-((<i>tert</i> -butyldimethylsilyl)oxy)ethyl)imino)malonate (51c)
5. Diisopropyl 2-(cyclopropylimino)malonate (51d)S46
6. Diisopropyl 2-(butylimino)malonate (51e)S46
7. Diisopropyl 2-(phenethylimino)malonate (51f)S47
8. Diisopropyl 2-(cyclopentylimino)malonate (51g)S47
9. Diisopropyl 2-(cyclohexylimino)malonate (51h)S48
10. Diisopropyl 2-((1-(<i>tert</i> -butoxycarbonyl)piperidin-4-yl)imino)malonate
(51i)
11. Tetraisopropyl 2,2'-(decane-1,10-diylbis(azanylylidene))dimalonate (51j)
12. Diisopropyl 2-(<i>m</i> -tolylimino)malonate (51k)S49
13. Diisopropyl 2-(p-tolylimino)malonate (511)
14. Diisopropyl 2-((4-methoxyphenyl)imino)malonate (51m)

15. Diisopropyl 2-((4-(2-((<i>tert</i> -butyldimethylsilyl)oxy)ethyl)phenyl)imino)
malonate (51n)
16. Diisopropyl 2-((2-bromophenyl)imino)malonate (510)
17. Diethyl 2-((2-bromophenyl)imino)malonate (51p)
18. Diisopropyl 2-((3,5-dimethylphenyl)imino)malonate (51q)
19. Diisopropyl 2-((3,5-dimethoxyphenyl)imino)malonate (51r)
20. Diisopropyl 2-(benzo[d][1,3]dioxol-5-ylimino)malonate (51s)
21. Diethyl 2-((2,6-dichlorophenyl)imino)malonate (51t)
22. Diisopropyl 2-((3-(trifluoromethyl)phenyl)imino)malonate (51u)
23. Diisopropyl 2-(pyridin-3-ylimino)malonate (51v)
12(a). Procedure for the synthesis of 39 using nitroso benzene
12(b). Procedure for the synthesis of 40 using nitroso benzene
1. Characterization data of di-tert-butyl 2-(phenylimino)malonate (40) S57
13. Screening of solvents for the amination using 40
14. Optimization of the reaction conditions for amination using 47
15. Screening of different activating groups
16. Screening of different aminating agents
17. General experimental procedures (Methods C–H)S61-S63
18. Characterization data of di-tert-butyl 2-(diphenylamino)malonate (40a)
19. Characterization data of the products made using the singly- and doubly-
electrophilic aminating agents (as displayed in Figures 3-5)
1. Diisopropyl 2-(methyl(phenyl)amino)malonate (55a)
2. Diisopropyl 2-(isopropyl(methyl)amino)malonate (55b)
3. Diisopropyl 2-(phenyl(2,2,2-trifluoroethyl)amino)malonate (55c)
4. Diisopropyl 2-((2-bromophenyl)(2,2,2-trifluoroethyl)amino)malonate (55d)
5. Diisopropyl 2-((2-((<i>tert</i> -butyldimethylsilyl)oxy)ethyl)(phenyl)amino)
malonate (55e)
6. Diisopropyl 2-(dicyclopropylamino)malonate (55f)
7. Diisopropyl 2-(cyclobutyl(cyclopropyl)amino)malonate (55g)
8. Diisopropyl 2-(cyclopropyl(phenyl)amino)malonate (55h)

9. Diisopropyl 2-(cyclopropyl(4-(trifluoromethoxy)phenyl)amino)malonate
(55i)
10. Diisopropyl 2-(dibutylamino)malonate (55j)
11. Diisopropyl 2-(butyl(phenyl)amino)malonate (55k)
12. Diisopropyl 2-(butyl(o-tolyl)amino)malonate (55l)
13. Diisopropyl 2-(butyl(p-tolyl)amino)malonate (55m)
14. Diisopropyl 2-(butyl(4-chlorophenyl)amino)malonate (55n)
15. Diisopropyl 2-((3-(benzyloxy)phenyl)(butyl)amino)malonate (55o) S71
16. Diisopropyl 2-(butyl(2-vinylphenyl)amino)malonate (55p)
17. Diisopropyl 2-(butyl(3-fluoro-4-methoxyphenyl)amino)malonate (55q)
18. Diisopropyl 2-(butyl(3-fluoro-5-methylphenyl)amino)malonate (55r) S73
19. Diisopropyl 2-(butyl(4-fluoro-3,5-dimethylphenyl)amino)malonate (55s)
20. Diisopropyl 2-(butyl(3-chloro-5-fluoro-4-methoxyphenyl)amino)
malonate (55t)
21. Diisopropyl 2-(butyl(naphthalen-2-yl)amino)malonate (55u)
22. Diisopropyl 2-(methyl(phenethyl)amino)malonate (55v)
23. Diisopropyl 2-(butyl(phenethyl)amino)malonate (55w)
24. Diisopropyl 2-(phenethyl(phenyl)amino)malonate (55x)
25. Diisopropyl 2-((3,5-difluoro-4-methoxyphenyl)(phenethyl)amino)
malonate (55y)
26. Diisopropyl 2-(cyclopentyl(phenyl)amino)malonate (55z)
27. Diisopropyl 2-(cyclopentyl(<i>p</i> -tolyl)amino)malonate (56a)
X-Ray crystal structure of 56a
X-Ray crystal data and structure refinement for 56a
28. Diisopropyl 2-(cyclopentyl(4-methoxy-3,5-
dimethylphenyl)amino)malonate (56b)
29. Diisopropyl 2-(cyclohexyl(phenyl)amino)malonate (56c)
30. Diisopropyl 2-((1-(tert-butoxycarbonyl)piperidin-4-
yl)(phenyl)amino)malonate (56d)

31. Diisopropyl 2-((1-(tert-butoxycarbonyl)piperidin-4-yl)(2,3-
dihydrobenzofuran-5-yl)amino)malonate (56e)
32. Tetraisopropyl 2,2'-(decane-1,10-diylbis((4-
fluorophenyl)azanediyl))dimalonate (56f)
33. Tetraisopropyl 2,2'-(decane-1,10-diylbis((4-methoxyphenyl)azanediyl))
dimalonate (56g)
34. Diisopropyl 2-((10-((1,3-diisopropoxy-1,3-dioxopropan-2-yl)(4-
fluorophenyl) amino)decyl)(4-methoxyphenyl)amino)malonate (56h) S92
35. Diisopropyl 2-(benzyl(phenyl)amino)malonate (56i)
36. Diisopropyl 2-(phenyl(p-tolyl)amino)malonate (56j)
37. Diisopropyl 2-((4-(methylthio)phenyl)(phenyl)amino)malonate (56k) S93
38. Diisopropyl 2-((4-phenoxyphenyl)(phenyl)amino)malonate (56l)
39. Diisopropyl 2-([1,1'-biphenyl]-4-yl(phenyl)amino)malonate (56m) S94
40. Diisopropyl 2-(m-tolyl(p-tolyl)amino)malonate (56n)
41. Diisopropyl 2-(thiophen-2-yl(p-tolyl)amino)malonate (560)
42. Diisopropyl 2-(benzo[b]thiophen-3-yl(p-tolyl)amino)malonate (56p) S96
43. Diisopropyl 2-((4-chlorophenyl)(4-methoxyphenyl)amino)malonate (56q)
44. Diisopropyl 2-((4-fluoro-3,5-dimethylphenyl)(4-
methoxyphenyl)amino)malonate (56r)
45. Diisopropyl 2-((4-(2-((<i>tert</i> -butyldimethylsilyl)oxy)ethyl)phenyl)(4-fluoro-
3,5-dimethylphenyl) amino)malonate (56s)
46. Diisopropyl 2-((2-bromophenyl)(p-tolyl)amino)malonate (56t)
47. Diisopropyl 2-((4-chlorophenyl)(3,5-dimethylphenyl)amino)malonate
(56u)
48. Diisopropyl 2-((3,5-dimethylphenyl)(4-phenoxyphenyl)amino) malonate
(56v)
49. Diisopropyl 2-([1,1'-biphenyl]-3-yl(3,5-dimethylphenyl)amino) malonate
(56w)
50. Diisopropyl 2-((3,5-dimethylphenyl)(4-fluoro-3,5-dimethylphenyl)

51. Diisopropyl 2-(benzo[b]thiophen-3-yl(3,5-dimethoxyphenyl)amino)
malonate (56y)
52. Diisopropyl 2-(benzo[d][1,3]dioxol-5-yl(thiophen-2-yl)amino)malonate
(56z)
53. Diethyl 2-((2,6-dichlorophenyl)(2-vinylphenyl)amino)malonate (57a) S102
54. Diethyl 2-((2-allylphenyl)(2,6-dichlorophenyl)amino)malonate (57b). S103
55. Diisopropyl 2-(diphenylamino)malonate (59a)
56. Diisopropyl 2-(di-p-tolylamino)malonate (59b)
57. Diisopropyl 2-(bis(4-chlorophenyl)amino)malonate (59c)
58. Diisopropyl 2-(bis(4-(methylthio)phenyl)amino)malonate (59d)
59. Diisopropyl 2-(bis(4-phenoxyphenyl)amino)malonate (59e)
60. Diisopropyl 2-(di([1,1'-biphenyl]-4-yl)amino)malonate (59f)
61. Diisopropyl 2-(di([1,1'-biphenyl]-3-yl)amino)malonate (59g)
62. Diethyl 2-(bis(2-vinylphenyl)amino)malonate (59h)
63. Diethyl 2-(bis(2-allylphenyl)amino)malonate (59i)
64. Dimethyl 2-(bis(2,3-dichlorophenyl)amino)malonate (59j)S108
65. Dimethyl 2-(bis(4-chloro-2-methylphenyl)amino)malonate (59k) S109
66. Diisopropyl 2-(bis(3-fluoro-5-methylphenyl)amino)malonate (59l) S109
67. Diisopropyl 2-(bis(4-methoxy-3,5-dimethylphenyl)amino)malonate (59m)
68. Diisopropyl 2-(bis(4-fluoro-3,5-dimethylphenyl)amino)malonate (59n)
69. Dimethyl 2-(bis(4-methoxy-2,5-dimethylphenyl)amino)malonate (590)
70. Diisopropyl 2-(dibenzylamino)malonate (59p)
71. Diisopropyl 2-(dicyclobutylamino)malonate (59q)
72. Diisopropyl 2-(diisopropylamino)malonate (59r)
20. Characterization data of the amines formed by the addition of soft <i>C</i> -
nucleophiles onto the iminomalonates in Figure 7
1. 2,2-diisopropyl 3-methyl 1-(3-(trifluoromethyl)phenyl)aziridine-2,2,3
tricarboxylate (64a)

2. 2,2-diisopropyl 3-methyl 1-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)
aziridine-2,2,3-tri-carboxylate (64b)
3. 2,2-diisopropyl 3-methyl 1-(pyridin-3-yl)aziridine-2,2,3-tricarboxylate
(64c)
4. Diisopropyl 2-((4-methoxyphenyl)(2-oxo-2-phenylethyl)amino)malonate
(66)
21. General experimental procedures for post-functionalization of the amines (as
displayed in Figures 6 & 7) (Methods I–O)S116-S118
22. Characterization data of the post-functionalized amines as displayed in Fig. 6
1. <i>N</i> -methylaniline (60a)
2. N-(2,2,2-trifluoroethyl)aniline (60b)
3. N-(2-((tert-butyldimethylsilyl)oxy)ethyl)aniline (60c)
4. N-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)-4-fluoro-3,5-
dimethylaniline (60d)
5. N-butylaniline (60e)
6. N-butyl-2-methylaniline (60f)
7. N-butyl-2-vinylaniline (60g)
8. N-butyl-4-methylaniline (60h)S122
9. N-butyl-4-chloroaniline (60i)
10. 3-(benzyloxy)-N-butylaniline (60j)
11. N-butyl-3-fluoro-5-methylaniline (60k)S124
12. N-butyl-3-fluoro-4-methoxyaniline (60l)
13. N-butyl-4-fluoro-3,5-dimethylaniline (60m)
14. N-butyl-3-chloro-5-fluoro-4-methoxyaniline (60n)
15. N-butylnaphthalen-2-amine (60o)S126
16. <i>N</i> -cyclopentylaniline (60p)S127
17. <i>N</i> -cyclopentyl-4-methylaniline (60q)S127
18. N-cyclopentyl-4-methoxy-3,5-dimethylaniline (60r)
19. N-cyclohexylaniline (60s)
20. Tert-butyl 4-(phenylamino)piperidine-1-carboxylate (60t)

21. Tert-butyl 4-((2,3-dihydrobenzofuran-5-yl)amino)piperidine-1-
carboxylate (60u)S129
22. N-benzylaniline (60v)S130
23. N-phenethylaniline (60w)
24. 3,5-difluoro-4-methoxy-N-phenethylaniline (60x)
25. Diphenylamine (60y)
26. Di- <i>p</i> -tolylamine (60z)
27. Bis(4-chlorophenyl)amine (61a)S132
28. Di([1,1'-biphenyl]-3-yl)amine (61b)
29. Bis(4-fluoro-3,5-dimethylphenyl)amine (61c)
30. Bis(4-methoxy-3,5-dimethylphenyl)amine (61d)S134
31. 4-methyl-N-phenylaniline (61e)
32. N-phenyl-[1,1'-biphenyl]-4-amine (61f)
33. 4-phenoxy-N-phenylaniline (61g)
34. 3-methyl- <i>N</i> -(<i>p</i> -tolyl)aniline (61h)
35. 4-chloro-N-(4-methoxyphenyl)aniline (61i)
36. 4-fluoro-N-(4-methoxyphenyl)-3,5-dimethylaniline (61j)S137
37. N-(4-chlorophenyl)-3,5-dimethylaniline (61k)
38. N-(3,5-dimethylphenyl)-[1,1'-biphenyl]-3-amine (611)
39. 3,5-dimethyl-N-(4-phenoxyphenyl)aniline (61m)
40. N-(3,5-dimethylphenyl)-4-fluoro-3,5-dimethylaniline (61n)
41. 2-bromo- <i>N</i> -(<i>p</i> -tolyl)aniline (610)
23. Characterization data of the post-functionalized amines displayed in Figure 7
5. Diisopropyl 2-((2-hydroxy-2-phenylethyl)(4-
methoxyphenyl)amino)malonate (67)S140
6. Isopropyl 4-(4-methoxyphenyl)-2-oxo-6-phenylmorpholine-3-carboxylate
(68)
7. 6-chloro-2,4-dimethyl-9H-carbazole (69)S141
8. Diethyl 2-((2,6-dichlorophenyl)(2-(2-methoxy-2-
oxoethyl)phenyl)amino)malonate (70)S141

9. Diethyl 2-(5H-dibenzo[b,f]azepin-5-yl)malonate (71)	S142
10. Diethyl 2-(5,8-dihydro-13 <i>H</i> -dibenzo[<i>b</i> , <i>h</i>]azonin-13-yl)malonate (7	2). . S143
24. Computational Details	43-S216
Proton affinities and reduction potentials	S144
Alkyl versus aryl Grignard reagents	S146
Further reaction pathway details	S146
Xyz coordinates and thermochemistry in THF solvent (Hartree and \ref{A}	A) S147
Xyz coordinates and thermochemistry in DCM solvent (Hartree and	Å).S182
25. References	217-S219
26. DSC (Differential Scanning Calorimetry) Analysis Data of the Starting	
Materials	20-S232
27. ¹ H-, ¹³ C- and ¹⁹ F- NMR Spectra of All the Compounds	33-8596

1. General Experimental Procedures:

Reagents were purchased at the highest quality from the commercially available sources and used without further purification. Dichloromethane (DCM) and tetrahydrofuran (THF) for the reactions were obtained from pure process technology solvent system by passing the previously degassed solvents through an activated alumina column under argon. All reactions were carried out in flame-dried glass ware under an atmosphere of argon with magnetic stirring. All reactions were monitored by either ¹H NMR or thin layer chromatography (TLC) carried out on 0.25 mm pre-coated E. Merck silica plates (60F-254), using shortwave UV light as visualizing agent and KMnO₄ or phosphomolybdic acid (PMA) and heat as developing agents. Flash column chromatography was performed using Biotage Isolera One automated chromatograph with pre-packed KP-Sil cartridges. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-600 spectrometer operating at 600 MHz for proton and 151 MHz for carbon nuclei and were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR and 77.00 ppm ¹³C NMR; DMSO- d_6 : 2.50 ppm ¹H NMR and 39.52 ppm ¹³C NMR). ¹⁹F NMR spectra were recorded on a Bruker 500 UltraShield spectrometer operating at 471 MHz and the chemical shifts were relative to $CF^{35}Cl_3$ defined as 0 ppm. For reporting NMR peak multiplicities, the following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = heptet, m =multiplet. High-resolution mass spectra (HRMS) were recorded on an Agilent UHPLC TOF mass spectrometer using electrospray ionization time-of-flight (ESI-TOF) or chemical ionization time-of-flight (CI-TOF) reflectron experiments. Melting points and ranges were recorded on Mettler Toledo MP50 melting point system.

2. Gram-scale preparation of diisopropyl 2,2-dihydroxymalonate (44)

In a 3 L three-necked round bottom flask, diisopropyl malonate (50 g, 265.64 mmol, 1equiv) was first dissolved in acetonitrile (1.32 L, 0.2M) and to the resulting solution

ceric ammonium nitrate (CAN; 21.84 g, 15 mol%) was added in one portion under constant stirring. The reaction vessel was fitted with gas dispenser and a slow stream of air was bubbled through the reaction mixture under constant stirring. Progress of the reaction was monitored by checking the crude ¹H-NMR of the reaction mixture. After 2.5 days, the starting material was totally consumed. Important: During the course of the reaction, there is a decrease in the amount of solvent due to purging and based on the amount of solvent lost, the same amount of solvent is added to the reaction mixture as needed. After confirming the consumption of the starting material, water (1.5L) was added to the reaction mixture and stirred until the reaction mixture became colorless (e.g., usually an overnight period was allowed to hydrate all the ketomalonate in the reaction mixture). Next, the reaction mixture was extracted with ethyl acetate thrice (3 X 1L). The combined organic layers were washed with brine (1L), dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was obtained as a thick slurry which was then triturated with hexanes (100 mL) and filtered (i.e., a white crystalline solid). During the filtration, some additional product crystallized from the mother liquor which was then recovered by filtration. The combined filtrates were washed with hexanes (3 X 50 mL) three times to afford 44 as white crystalline solid (43g, 73%) that requires no further purification.

Synthesis of 44 on 400 g scale

Diisopropyl 2,2-dihydroxymalonate **44** was synthesized on 400 g scale (by largely adapting the above procedure) in a 10 L ChemGlass jacketed reactor that is outfitted with a large gas disperser as well as overhead mechanical stirring (see pictures). First, diisopropyl malonate (400 g, 2.12 mol, 1 equiv) was dissolved in acetonitrile (9 L) under constant stirring and to this solution ceric ammonium nitrate (CAN; 174.77 g, 15 mol%) was added in one portion. Next, a slow stream of air was introduced via the gas disperser and over the next 2 h period the temperature of the reaction mixture increased by 2 °C (22.5 °C to 24.6 °C). After continued vigorous stirring (at 200 rpm) overnight, the temperature remained at 24.7 °C. Progress of the reaction was monitored by ¹H-NMR and after 2.5 days of stirring the reaction was totally complete. At this point the bubbling of air was stopped and 4 L of deionized water was added to the reaction mixture under constant stirring (i.e., the 10 L reactor has > 3 L of overhead space to allow extra volume

during workup). During the workup the temperature initially dropped from 24 °C to 16 °C and stirring continued overnight (~15 h). At this point the reaction mixture was colorless and temperature of the reaction mixture was 24 °C. After draining through the bottom reactor valve, acetonitrile was removed under reduced pressure. The aqueous layer was extracted with ethyl acetate thrice (3 x 3 L). The combined organic layers were dried over anhydrous Na₂SO₄ (150 g) and concentrated. The slurry that was formed after concentration was triturated with 300 mL of hexanes and filtered. The solid was washed repeatedly with another 500 mL of hexanes to afford a pure white crystalline solid (320 g, 68%).

Note: Repeated washing of the above product with hexanes is important for obtaining the pure product.

Diisopropyl 2,2-dihydroxymalonate (44)

Yield: 68%

Physical State: white crystalline solid (m.p. = 56 – 61 °C);

 $\mathbf{R}_{f} = 0.23$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 5.15 (hept, J = 6.3 Hz, 2H), 4.80 (s, 2H), 1.30 (d, J = 6.3

Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 168.0, 89.8, 71.6, 21.3;

HRMS (ESI-TOF): calc'd for $C_9H_{16}O_6[M+Na]^+$ 243.0839; found 243.0840.

Figure S1. X-Ray crystal structure of diisopropyl 2,2-dihydroxymalonate (44)

 Table S1. X-ray crystal data and structure refinement for 44

Table 1.

Identification code	pvk19_0m_a		
Empirical formula	C9 H16 O6		
Formula weight	220.22		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	$a = 9.406(2) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	b = 13.924(3) Å	β=112.918(4)°.	
	c = 10.168(3) Å	$\gamma = 90^{\circ}.$	
Volume	1226.5(5) Å ³		
Z	4		
Density (calculated)	1.193 Mg/m ³		
Absorption coefficient	0.101 mm ⁻¹		
F(000)	472		

Crystal size	0.150 x 0.100 x 0.050 mm ³
Theta range for data collection	2.505 to 28.522°.
Index ranges	-12<=h<=10, -18<=k<=18, -13<=l<=13
Reflections collected	9598
Independent reflections	3110 [R(int) = 0.0718]
Completeness to theta = 25.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.745 and 0.453
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3110 / 18 / 143
Goodness-of-fit on F ²	1.767
Final R indices [I>2sigma(I)]	R1 = 0.0926, $wR2 = 0.2729$
R indices (all data)	R1 = 0.1912, wR2 = 0.2956
Extinction coefficient	0.015(7)
Largest diff. peak and hole	0.497 and -0.431 e.Å ⁻³

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for pvk19_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
O(1)	7849(3)	6286(2)	3173(2)	89(1)	
O(2)	4836(3)	7209(2)	2834(2)	86(1)	
O(3)	4028(2)	5372(2)	1506(3)	100(1)	
O(4)	6075(3)	4772(2)	3505(3)	100(1)	
O(5)	6598(3)	5765(2)	933(3)	106(1)	
O(6)	4848(4)	6215(2)	4562(3)	104(1)	
C(1)	5423(4)	5588(3)	2646(4)	76(1)	
C(2)	6682(4)	5891(3)	2146(4)	74(1)	
C(3)	9175(5)	6614(4)	2887(5)	110(2)	
C(4)	9224(8)	7589(6)	2956(9)	208(3)	
C(5)	10526(7)	6266(6)	4081(9)	231(4)	
C(6)	5012(4)	6359(3)	3477(4)	74(1)	
C(7)	4439(6)	8039(3)	3495(5)	96(1)	
C(8)	5798(7)	8570(4)	4303(7)	169(3)	

O(1)-C(2)	1.306(4)
O(1)-C(3)	1.460(5)
O(2)-C(6)	1.330(4)
O(2)-C(7)	1.457(5)
O(3)-C(1)	1.404(3)
O(3)-H(3)	0.8200
O(4)-C(1)	1.418(4)
O(4)-H(4)	0.8200
O(5)-C(2)	1.217(4)
O(6)-C(6)	1.190(4)
C(1)-C(6)	1.507(5)
C(1)-C(2)	1.519(5)
C(3)-C(4)	1.359(9)
C(3)-C(5)	1.456(8)
C(3)-H(3A)	0.9800
C(4)-H(4A)	0.9600
C(4)-H(4B)	0.9600
C(4)-H(4C)	0.9600
C(5)-H(5A)	0.9600
C(5)-H(5B)	0.9600
C(5)-H(5C)	0.9600
C(7)-C(8)	1.428(7)
C(7)-C(9)	1.441(7)
C(7)-H(7)	0.9800
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600

Table 3. Bond lengths [Å] and angles [°] for pvk19_0m_a.

C(2)-O(1)-C(3)	119.3(3)
C(6)-O(2)-C(7)	119.0(3)
C(1)-O(3)-H(3)	109.5
C(1)-O(4)-H(4)	109.5
O(3)-C(1)-O(4)	112.2(3)
O(3)-C(1)-C(6)	104.7(3)
O(4)-C(1)-C(6)	111.7(3)
O(3)-C(1)-C(2)	112.5(3)
O(4)-C(1)-C(2)	102.9(3)
C(6)-C(1)-C(2)	113.1(3)
O(5)-C(2)-O(1)	125.0(3)
O(5)-C(2)-C(1)	123.2(3)
O(1)-C(2)-C(1)	111.8(3)
C(4)-C(3)-C(5)	106.7(6)
C(4)-C(3)-O(1)	108.4(5)
C(5)-C(3)-O(1)	105.4(4)
C(4)-C(3)-H(3A)	112.0
C(5)-C(3)-H(3A)	112.0
O(1)-C(3)-H(3A)	112.0
C(3)-C(4)-H(4A)	109.5
C(3)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	109.5
C(3)-C(4)-H(4C)	109.5
H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
C(3)-C(5)-H(5A)	109.5
C(3)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(3)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
O(6)-C(6)-O(2)	124.7(3)
O(6)-C(6)-C(1)	123.6(4)
O(2)-C(6)-C(1)	111.6(3)
C(8)-C(7)-C(9)	114.2(5)
C(8)-C(7)-O(2)	110.1(4)

C(9)-C(7)-O(2)	110.0(4)
C(8)-C(7)-H(7)	107.4
C(9)-C(7)-H(7)	107.4
O(2)-C(7)-H(7)	107.4
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(7)-C(9)-H(9A)	109.5
C(7)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(7)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for pvk19_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}$]

	U11	U ²²	U ³³	U ²³	U13	U12	
O(1)	70(2)	116(2)	75(1)	-20(2)	20(1)	-34(2)	
O(2)	116(2)	57(2)	82(2)	2(1)	37(1)	10(1)	
O(3)	67(2)	105(2)	115(2)	-40(2)	23(1)	-18(1)	
O(4)	106(2)	65(2)	137(2)	14(2)	56(2)	15(2)	
O(5)	105(2)	125(3)	82(2)	-27(2)	31(2)	-20(2)	
O(6)	135(2)	84(2)	103(2)	7(2)	56(2)	-3(2)	
C(1)	66(2)	68(2)	84(2)	-11(2)	20(2)	-5(2)	
C(2)	74(2)	65(2)	72(2)	-7(2)	16(2)	-8(2)	
C(3)	86(3)	133(4)	106(3)	-25(3)	33(2)	-43(3)	
C(4)	169(4)	172(5)	305(6)	56(4)	117(4)	-17(4)	
C(5)	112(4)	225(7)	347(8)	85(6)	81(5)	-12(4)	

C(6)	73(2)	71(3)	71(2)	1(2)	21(2)	-5(2)	
C(7)	127(3)	65(3)	99(3)	-5(2)	47(3)	5(3)	
C(8)	151(5)	122(5)	182(5)	-52(4)	9(4)	12(4)	
C(9)	146(5)	138(5)	212(6)	-35(5)	23(5)	51(4)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for pvk19_0m_a.

	Х	У	Z	U(eq)	
H(3)	4208	5177	825	149	
H(4)	5796	4756	4175	150	
H(3A)	9145	6376	1969	131	
H(4A)	9640	7787	3938	312	
H(4B)	8200	7841	2489	312	
H(4C)	9867	7826	2491	312	
H(5A)	11256	6006	3729	346	
H(5B)	10220	5775	4580	346	
H(5C)	10993	6788	4720	346	
H(7)	4005	7798	4165	115	
H(8A)	6599	8135	4857	253	
H(8B)	5577	9007	4929	253	
H(8C)	6132	8926	3665	253	
H(9A)	2989	9136	2875	270	
H(9B)	2361	8204	1968	270	
H(9C)	3634	8823	1732	270	

Table 6.	Torsion	angles	[°]	for	pvk19_	_0m_	_a.
----------	---------	--------	-----	-----	--------	------	-----

Pictorial representations for the synthesis of 44 on bulk scale

Figure S2. Reaction mixture after adding ceric ammonium nitrate (CAN)

Figure S3. Reaction mixture after quenching with water

Figure S4. Filtration of crystalline product 44 after trituration

3. Preparation of di-tert-butyl 2,2-dihydroxymalonate (38a)

Compound **38a** was prepared according to the procedure described for the preparation of **44**. Di-*tert*-butyl malonate (**38**; 10 g, 46.23 mmol, 1equiv) was first dissolved in acetonitrile (232 mL, 0.2M) and to this solution ceric ammonium nitrate (CAN; 3.8 g, 15 mol%) was added in one portion under constant stirring. The three-necked round bottom flask was fitted with gas dispenser and a slow stream of air was bubbled through the reaction mixture under constant stirring. Progress of the reaction was monitored by checking the crude ¹H-NMR of the reaction mixture. After 5 days the NMR analysis indicated total consumption of the starting material (**38**). Any solvent lost during the course of the reaction due to the constant bubbling of air was replaced as needed. After confirming the completion of reaction, deionized water (250 mL) was added and stirring continued until the brownish yellow color of the reaction mixture turned colorless. Next,

the reaction mixture was extracted with ethyl acetate thrice (3 X 250 mL). The combined organic layers were washed with brine (300 mL), dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was obtained as thick slurry. This slurry was then triturated with hexanes (25 mL) and filtered. During the filtration process some of the product crystallized in the filtrate – these crystals were then recovered. The combined crops were washed with hexanes (3 X 20 mL) three times to afford **38a** as white crystalline solid (5.9 g, 52%) that requires no further purification.

4. Preparation of diisopropyl 2-(hydroxyimino)malonate (46) (Methods A & B)

<u>Method A:</u> This procedure was adapted from literature reports¹⁻³. Sodium hydroxide (0.997 g, 24.93 mmol, 0.66 equiv) was dissolved in glacial acetic acid (7.55 mL) under constant stirring. A thick, white slurry was formed. Then, a solution of diisopropyl malonate (7.1 g, 37.77 mmol, 1 equiv) in glacial acetic acid (2.11 mL) was added dropwise to the ice bath-cooled slurry (0 $^{\circ}$ C) over a period of 5 minutes. After this addition was complete, a 0 $^{\circ}$ C solution of sodium nitrite (13.03 g, 188.87 mmol, 5 equiv)

in water (23.61 mL) was added dropwise over a period of one hour (!) to the reaction mixture by means of an addition funnel, maintaining the temperature of the reaction mixture at 0 °C. After the addition of sodium nitrite was complete, the addition funnel was replaced with a septum fitted with an empty balloon and the reaction mixture was allowed to warm to room temperature and stirred for 5 days. After 5 days, the reaction mixture was saturated with solid sodium chloride and extracted with ethyl acetate thrice (3 X 75 mL). The combined organic extracts were washed with a 1:1 mixture of saturated aqueous solution of NaHCO₃ and brine until the pH of the aqueous layer becomes basic (pH 8-9). Then the organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography to afford the **46** as a colorless viscous oily liquid (6.85 g, 84%). **Note:** In this method, the reaction goes to 85% completion only and 15% of the starting material was recovered during the chromatographic purification.

Method B: Diisopropyl 2,2-dihydroxymalonate 44 (20 g, 90.81 mmol, 1 equiv) was dissolved in toluene (227 mL) and to this solution hydroxylamine hydrochloride (9.46g, 136.22 mmol, 1.5 equiv) was added followed by triethylamine (18.98 mL, 136.22 mmol, 1.5 equiv) at room temperature under constant stirring. Then the reaction mixture was heated to reflux under Dean-Stark conditions for 5 h. Progress of the reaction was monitored by ¹H-NMR. After confirming the completion of the reaction by crude NMR, heating was stopped and the reaction mixture was allowed to cool to room temperature. Next, the precipitated triethylamine hydrochloride salt was filtered and washed with ethyl acetate thrice (3 X 25 mL). The combined organic layers were washed once with saturated aqueous NaHCO₃ solution (150 mL) followed by brine, dried over anhydrous sodium sulfate and concentrated. The crude product was purified by column chromatography to afford the product **46** as colorless viscous oily liquid (16.8 g, 85%).

Diisopropyl 2-(hydroxyimino)malonate (46)

ⁱPrO₂C CO₂ⁱPr

Yield: 85% (Method B)

Physical State: colorless viscous oily liquid;

 $\mathbf{R}_{f} = 0.45 \ (20\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 10.41 (s, 1H), 5.22 (hept, J = 6.3 Hz, 1H), 5.15 (hept, J = 6.2 Hz, 1H), 1.29 (dd, J = 17.2, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 160.0, 159.3, 144.3, 70.5, 70.3, 21.2, 21.1;

HRMS (ESI-TOF): calc'd for C₉H₁₅NO₅ [M+Na]⁺ 240.0842; found 240.0843.

5. Preparation of di-tert-butyl 2-(hydroxyimino)malonate

Di-*tert*-butyl 2-(hydroxyimino)malonate was prepared on 1 gram scale according to the procedure described in **Method B** for the preparation of **46**. The product was obtained as colorless viscous oily liquid (614 mg, 62% yield).

Di-tert-butyl 2-(hydroxyimino)malonate (46a)

Yield: 62%

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.24 \ (20\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 10.58 (s, 1H), 1.49 (d, *J* = 17.0 Hz, 18H);

¹³C NMR (151 MHz, CDCl₃): δ 159.8, 158.9, 145.3, 84.3, 84.0, 27.8, 27.7;

HRMS (ESI-TOF): calc'd for $C_{11}H_{19}NO_5[M+Na]^+$ 268.1155; found 168.1155.

6. Preparation of dimethyl and diethyl oximinomalonates (46b, 46c)

Both the dimethyl and diethyl oximinomalonates were prepared according to literature reported procedures¹⁻³. First, sodium hydroxide (3.99 g, 99.91 mmol, 0.66 equiv) was dissolved in glacial acetic acid (30 mL) under constant stirring. A thick white slurry was formed. Then, a solution of dimethyl malonate (20 g, 151.38 mmol, 1 equiv) in glacial acetic acid (8.4 mL) was added dropwise over a period of 5 minutes to the ice bathcooled slurry. After this addition was complete, a 0 °C solution of sodium nitrite (20.89 g, 302.77 mmol, 2 equiv) in water (160 mL) was added dropwise over a period of 1 h to the reaction mixture by means of an addition funnel, while carefully maintaining the temperature of the reaction mixture at 0 °C. After the addition of NaNO₂ solution was completed, the addition funnel was replaced with a septum fitted with an empty balloon and the reaction mixture was allowed to warm to room temperature and stirred overnight (14h). After overnight stirring, the reaction mixture was saturated with sodium chloride and extracted with ethyl acetate thrice (3 X 100 mL). The combined organic extracts were washed with a 1:1 mixture of saturated aqueous solution of NaHCO₃ and brine until the pH of the aqueous layer was basic (pH 8-9). Next, the organic layer was dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was purified by column chromatography to afford the pure dimethyl oximinomalonate as a colorless viscous oily liquid which became a white solid (18.2 g, 75%) upon standing in the refrigerator. The diethyl oximinomalonate was also prepared by this same procedure: pale yellow colored viscous oily liquid (90% yield). The characterization data for these oximinomalonates is consistent with the literature reported data.

Dimethyl 2-(hydroxyimino)malonate (46b)

MeO₂C CO₂Me

Yield: 75%

Physical State: White solid;

 $\mathbf{R}_{f} = 0.12$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 10.73 (s, 1H), 3.86 (d, *J* = 17.8 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 160.9, 160.4, 143.5, 53.2, 52.9;

Spectral data is in accordance with the literature report².

Diethyl 2-(hydroxyimino)malonate (46c)

EtO₂C 46c

diethyl 2-(hydroxyimino)malonate

Yield: 90%

Physical State: Pale yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.2$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 10.47 (s, 1H), 4.33 (dq, J = 25.4, 7.1 Hz, 4H), 1.30 (dt, J

= 14.1, 7.1 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 160.5, 159.9, 144.0, 62.6, 62.4, 13.79, 13.75;

Spectral data is in accordance with the literature report².

	$RO_{2}C + Ar/R' - S - CI - HO_{2}C + Ar/R' - S - CI - HO_{2}C + Ar/R' - S - CI - HO_{2}C + CO_{2}R + CI - HO_{2}C + HO_{2}C $	Et₃N (1.02 equiv.) DCM, rt, 6 h	$ \begin{array}{c} $
Entry	R	Ar/R'	Yield(%)
1	Me	Me	93
2	Me	Me -	83
3	Et	Me	82
4	Et	Me -	72
5	ⁱ Pr	Me	70
6	ⁱ Pr	Me -	72
7	ⁱ Pr	F ₃ C	76
8	ⁱ Pr	Me Me	74
9	ⁱ Pr		85
10	^t Bu	Me —	79

7. Table S2. Activation of oximinomalonates with different sulfonyl chlorides

8. Standard procedure for oximinomalonate activation with sulfonyl chlorides

This procedure was adapted from the literature³ with small changes. To a solution of hydroxyimino malonate (1 equiv) and sulfonyl chloride (1 equiv) in DCM (0.56 M) under argon, was added neat Et_3N (1.02 equiv) in one portion at room temperature under constant stirring. The reaction mixture was stirred at room temperature for 6 hours. After confirming the complete consumption of starting material by thin layer chromatography (TLC), the reaction mixture was diluted with DCM (two volumes of the reaction mixture)

and washed with water thrice. The organic layer was then dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

9. General procedure for the synthesis of diisopropyl 2-((tosyloxy)imino)malonate (47)

To a solution of diisopropyl 2-(hydroxyimino) malonate **46** (20 g, 92.07 mmol, 1 equiv) and tosyl chloride (17.55 g, 92.07 mmol, 1 equiv) in DCM (165 mL) under argon, was added a solution of Et_3N (13.08 mL, 93.91 mmol, 1.02 equiv) in DCM (41 mL) in 2 minutes at room temperature under constant stirring. The reaction mixture was stirred at room temperature for 6 hours. After confirming the complete consumption of starting material by TLC, the reaction mixture was diluted with DCM (200 mL) and washed with water thrice (3 X 100 mL). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography to afford the product as a white crystalline solid (28 g, 81%). All the oximinomalonates listed in **Table S2** (page S28) were activated with different sulfonyl chlorides by this procedure.

```
Diisopropyl 2-((tosyloxy)imino)malonate (47)
```

Yield: 81%

Physical State: white crystalline solid (m.p. 82 − 87 °C);

 $\mathbf{R}_{f} = 0.20 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.87 (d, J = 7.9 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 5.24 (hept, J = 6.1 Hz, 1H), 5.12 (hept, J = 6.0 Hz, 1H), 2.45 (s, 3H), 1.31 (dd, J = 24.3, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 157.5, 157.3, 150.2, 146.1, 131.1, 129.8, 129.1, 71.8, 71.7, 21.7, 21.44, 21.41;

HRMS (ESI-TOF): calc'd for $C_{16}H_{21}NO_7S[M+H]^+$ 372.1111; found 372.1119.

Figure S5. X-Ray crystal structure of diisopropyl 2-((tosyloxy)imino)malonate (47)

Table S3.	X-Ray crystal	data and	structure	refinement	for	47
-----------	---------------	----------	-----------	------------	-----	----

Table 1.	
Identification code	pvk127_0m_a
Empirical formula	C16 H21 N O7 S
Formula weight	371.40
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$a = 8.2805(16) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 11.437(2) \text{ Å}$ $\beta = 109.858(2)^{\circ}.$
	$c = 10.852(2) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	966.6(3) Å ³
Z	2
	S30

Density (calculated)	1.276 Mg/m ³
Absorption coefficient	0.202 mm ⁻¹
F(000)	392
Crystal size	0.400 x 0.350 x 0.250 mm ³
Theta range for data collection	1.995 to 33.070°.
Index ranges	-12<=h<=12, -17<=k<=17, -16<=l<=16
Reflections collected	13160
Independent reflections	6721 [R(int) = 0.0173]
Completeness to theta = 25.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.651
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6721 / 7 / 231
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0398, $wR2 = 0.1108$
R indices (all data)	R1 = 0.0447, wR2 = 0.1154
Absolute structure parameter	0.054(15)
Extinction coefficient	n/a
Largest diff. peak and hole	0.339 and -0.359 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for pvk127_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
<u>S(1)</u>	4131(1)	6076(1)	9696(1)	43(1)
O(1)	2922(2)	5311(2)	9941(2)	59(1)
O(2)	5375(2)	6674(2)	10741(2)	57(1)
O(3)	5368(2)	5300(1)	9108(2)	47(1)
O(4)	5505(2)	2348(2)	6395(2)	56(1)
O(5)	2853(2)	2811(2)	6350(2)	68(1)
O(6)	8084(2)	3253(2)	9007(2)	56(1)
O(7)	7795(3)	4638(2)	7482(2)	75(1)
N(1)	4345(2)	4486(1)	8162(2)	44(1)
C(1)	3113(2)	7040(2)	8422(2)	40(1)

C(2)	3770(3)	8167(2)	8474(2)	48(1)
C(3)	2944(3)	8945(2)	7483(2)	54(1)
C(4)	1509(3)	8619(2)	6437(2)	53(1)
C(5)	882(3)	7481(2)	6409(2)	54(1)
C(6)	1658(3)	6690(2)	7393(2)	50(1)
C(7)	660(4)	9479(3)	5361(3)	76(1)
C(8)	5310(2)	3845(2)	7750(2)	39(1)
C(9)	4368(3)	2943(2)	6748(2)	44(1)
C(10)	4826(4)	1457(2)	5366(3)	67(1)
C(11)	6212(9)	544(4)	5662(7)	141(2)
C(12)	4423(7)	2016(4)	4055(4)	99(1)
C(13)	7223(3)	3970(2)	8076(2)	44(1)
C(14)	9958(3)	3179(4)	9278(3)	87(1)
C(15)	10752(5)	2926(6)	10673(5)	112(1)
C(16)	10194(7)	2240(8)	8355(7)	170(3)

Table 3. Bond lengths [Å] and angles [°] for pvk127_0m_a.

S(1)-O(1)	1.4208(19)
S(1)-O(2)	1.4223(16)
S(1)-O(3)	1.6393(15)
S(1)-C(1)	1.745(2)
O(3)-N(1)	1.430(2)
O(4)-C(9)	1.319(2)
O(4)-C(10)	1.475(3)
O(5)-C(9)	1.189(3)
O(6)-C(13)	1.308(2)
O(6)-C(14)	1.481(3)
O(7)-C(13)	1.196(3)
N(1)-C(8)	1.273(2)
C(1)-C(2)	1.393(3)
C(1)-C(6)	1.395(3)
C(2)-C(3)	1.383(3)
C(2)-H(2)	0.9300
C(3)-C(4)	1.387(3)

C(3)-H(3)	0.9300
C(4)-C(5)	1.398(3)
C(4)-C(7)	1.505(3)
C(5)-C(6)	1.381(3)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-C(13)	1.508(3)
C(8)-C(9)	1.510(3)
C(10)-C(12)	1.490(5)
C(10)-C(11)	1.504(6)
C(10)-H(10)	0.9800
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(14)-C(15)	1.459(5)
C(14)-C(16)	1.526(8)
C(14)-H(14)	0.9800
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
O(1)-S(1)-O(2)	120.78(11)
O(1)-S(1)-O(3)	108.25(10)
O(2)-S(1)-O(3)	101.07(9)
O(1)-S(1)-C(1)	110.86(11)
O(2)-S(1)-C(1)	110.60(10)
O(3)-S(1)-C(1)	103.38(8)

N(1)-O(3)-S(1)	109.57(12)
C(9)-O(4)-C(10)	116.7(2)
C(13)-O(6)-C(14)	116.64(19)
C(8)-N(1)-O(3)	109.72(16)
C(2)-C(1)-C(6)	121.14(19)
C(2)-C(1)-S(1)	118.45(15)
C(6)-C(1)-S(1)	120.40(15)
C(3)-C(2)-C(1)	118.72(18)
C(3)-C(2)-H(2)	120.6
C(1)-C(2)-H(2)	120.6
C(2)-C(3)-C(4)	121.6(2)
C(2)-C(3)-H(3)	119.2
C(4)-C(3)-H(3)	119.2
C(3)-C(4)-C(5)	118.4(2)
C(3)-C(4)-C(7)	120.3(2)
C(5)-C(4)-C(7)	121.3(2)
C(6)-C(5)-C(4)	121.5(2)
C(6)-C(5)-H(5)	119.3
C(4)-C(5)-H(5)	119.3
C(5)-C(6)-C(1)	118.64(18)
C(5)-C(6)-H(6)	120.7
C(1)-C(6)-H(6)	120.7
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
N(1)-C(8)-C(13)	126.73(17)
N(1)-C(8)-C(9)	114.48(17)
C(13)-C(8)-C(9)	118.57(16)
O(5)-C(9)-O(4)	126.7(2)
O(5)-C(9)-C(8)	124.85(19)
O(4)-C(9)-C(8)	108.44(17)
O(4)-C(10)-C(12)	109.3(2)
O(4)-C(10)-C(11)	104.5(3)

C(12)-C(10)-C(11)	114.2(4)
O(4)-C(10)-H(10)	109.6
C(12)-C(10)-H(10)	109.6
C(11)-C(10)-H(10)	109.6
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(10)-C(12)-H(12A)	109.5
C(10)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(10)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
O(7)-C(13)-O(6)	127.2(2)
O(7)-C(13)-C(8)	120.7(2)
O(6)-C(13)-C(8)	112.02(16)
C(15)-C(14)-O(6)	106.9(3)
C(15)-C(14)-C(16)	115.3(5)
O(6)-C(14)-C(16)	105.6(3)
C(15)-C(14)-H(14)	109.6
O(6)-C(14)-H(14)	109.6
C(16)-C(14)-H(14)	109.6
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5

H(16B)-C(16)-H(16C) 109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for pvk127_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U11	U ²²	U33	U23	U13	U12	
S (1)	45(1)	40(1)	42(1)	-6(1)	12(1)	2(1)	
O(1)	66(1)	53(1)	64(1)	1(1)	31(1)	-3(1)	
O(2)	59(1)	57(1)	45(1)	-13(1)	4(1)	4(1)	
O(3)	44(1)	42(1)	51(1)	-10(1)	11(1)	4(1)	
O(4)	56(1)	54(1)	64(1)	-22(1)	26(1)	-5(1)	
O(5)	44(1)	87(1)	63(1)	-21(1)	5(1)	1(1)	
O(6)	35(1)	72(1)	59(1)	20(1)	14(1)	2(1)	
O(7)	72(1)	70(1)	90(1)	28(1)	38(1)	1(1)	
N(1)	46(1)	39(1)	41(1)	-5(1)	8(1)	7(1)	
C(1)	38(1)	37(1)	42(1)	-7(1)	10(1)	2(1)	
C(2)	49(1)	43(1)	48(1)	-8(1)	10(1)	-7(1)	
C(3)	57(1)	41(1)	60(1)	-1(1)	14(1)	-6(1)	
C(4)	50(1)	49(1)	55(1)	1(1)	12(1)	4(1)	
C(5)	44(1)	53(1)	53(1)	-3(1)	1(1)	0(1)	
C(6)	45(1)	40(1)	55(1)	-7(1)	5(1)	-5(1)	
C(7)	70(2)	67(2)	77(2)	20(1)	5(1)	5(1)	
C(8)	43(1)	36(1)	36(1)	2(1)	10(1)	6(1)	
C(9)	47(1)	45(1)	37(1)	-2(1)	10(1)	4(1)	
C(10)	86(2)	50(1)	75(2)	-26(1)	40(1)	-18(1)	
C(11)	164(5)	86(3)	152(4)	-56(3)	28(4)	39(3)	
C(12)	151(4)	88(2)	66(2)	-29(2)	45(2)	-40(3)	
C(13)	48(1)	41(1)	45(1)	0(1)	17(1)	0(1)	
C(14)	33(1)	132(3)	94(2)	41(2)	19(1)	-2(1)	
C(15)	61(2)	161(3)	103(2)	24(2)	16(2)	-3(2)	
C(16)	75(3)	248(8)	195(6)	-28(6)	55(4)	56(4)	
	Х	у	Z	U(eq)			
--------	-------	-------	-------	-------	--		
H(2)	4744	8393	9160	58			
H(3)	3360	9704	7521	65			
H(5)	-80	7252	5713	65			
H(6)	1219	5939	7370	59			
H(7A)	689	10245	5731	114			
H(7B)	-511	9250	4923	114			
H(7C)	1261	9491	4745	114			
H(10)	3780	1112	5441	81			
H(11A)	7229	879	5572	211			
H(11B)	5831	-96	5060	211			
H(11C)	6462	266	6542	211			
H(12A)	3654	2661	3984	149			
H(12B)	3890	1453	3383	149			
H(12C)	5464	2294	3953	149			
H(14)	10381	3931	9077	104			
H(15A)	10551	3566	11175	168			
H(15B)	11965	2821	10878	168			
H(15C)	10262	2225	10882	168			
H(16A)	11377	2215	8413	255			
H(16B)	9488	2420	7472	255			
H(16C)	9868	1493	8600	255			

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for pvk127_0m_a.

Table 6. Torsion angles [°] for pvk127_0m_a.

Diisopropyl 2-(((methylsulfonyl)oxy)imino)malonate (47a)

ⁱPrO₂C 47a

Yield: 70%

Physical State: off-white solid (m.p. = 50 - 55 °C);

 $\mathbf{R}_{f} = 0.26 \ (20\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.28 (hept, J = 6.3 Hz, 1H), 5.21 (hept, J = 6.4 Hz, 1H),

3.24 (s, 3H), 1.35 (t, *J* = 6.0 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 157.3, 157.1, 150.9, 72.2, 72.0, 36.9, 21.3;

HRMS (ESI-TOF): calc'd for $C_{10}H_{17}NO_7S [M+K]^+$ 334.0357; found 334.0368.

Diisopropyl 2-((((4-(trifluoromethyl)phenyl)sulfonyl)oxy)imino)malonate (47b)

Yield: 76%

Physical State: white solid (m.p. = 73 - 78 °C);

 $\mathbf{R}_{f} = 0.29 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 8.15 (d, J = 8.3 Hz, 2H), 7.86 (d, J = 8.3 Hz, 2H), 5.26 (hept, J = 6.2 Hz, 1H), 5.13 (hept, J = 6.2 Hz, 1H), 1.34 (d, J = 6.3 Hz, 6H), 1.29 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 157.2, 156.9, 151.0, 137.7, 136.5, 136.3, 136.1, 135.9, 129.7, 126.37, 126.35, 125.6, 123.8, 121.9, 120.1, 72.1, 72.0, 21.4, 21.3;

¹⁹F NMR (471 MHz, CDCl₃): δ –63.4 (s);

HRMS (ESI-TOF): calc'd for $C_{16}H_{18}F_3NO_7S$ [M+Na]⁺ 448.0648; found 448.0663.

Diisopropyl 2-(((mesitylsulfonyl)oxy)imino)malonate (47c)

Yield: 74%

Physical State: white solid (m.p. 73 – 78 °C);

 $\mathbf{R}_{f} = 0.48$ (20% EtOAc/hexanes);

¹H NMR (600 MHz, CDCl₃): δ 6.99 (s, 2H), 5.27 (hept, J = 6.3 Hz, 1H), 5.10 (hept, J = 6.2 Hz, 1H), 2.64 (s, 6H), 2.32 (s, 3H), 1.35 (d, J = 6.3 Hz, 6H), 1.27 (d, J = 6.3 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 157.7, 157.5, 149.5, 144.5, 141.4, 131.8, 129.3, 71.7, 71.6, 22.7, 21.5, 21.4, 21.1;

HRMS (ESI-TOF): calc'd for $C_{18}H_{25}NO_7S[M+H]^+$ 400.1424; found 400.1315.

Diisopropyl 2-((((2,4,6-triisopropylphenyl)sulfonyl)oxy)imino)malonate (47d)

Yield: 85%

Physical State: white solid (m.p. 74 – 78 °C);

 $\mathbf{R}_{f} = 0.37 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.21 (s, 2H), 5.28 (p, *J* = 6.2 Hz, 1H), 5.11 (p, *J* = 6.3 Hz, 1H), 4.12 (hept, *J* = 6.8 Hz, 2H), 2.92 (p, *J* = 6.9 Hz, 1H), 1.36 (d, *J* = 6.4 Hz, 6H), 1.27 (t, *J* = 5.2 Hz, 24H);

¹³C NMR (151 MHz, CDCl₃): δ 157.8, 157.7, 154.8, 152.2, 149.3, 128.0, 124.0, 71.69, 71.68, 34.2, 29.9, 24.6, 23.4, 21.5, 21.4;

HRMS (ESI-TOF): calc'd for $C_{24}H_{37}NO_7S[M+H]^+$ 484.2363; found 484.2349.

Diethyl 2-((tosyloxy)imino)malonate (47e)

EtO₂C 47e

Yield: 72%

Physical State: white solid (m.p. 63 – 68 °C);

 $\mathbf{R}_{f} = 0.44 \ (20\% \ \text{EtOAc/hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.40 (q, J = 7.2 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 2.46 (s, 3H), 1.33 (dt, J = 20.1, 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 157.99, 157.95, 149.7, 146.2, 131.1, 129.8, 129.1, 63.4, 63.2, 21.7, 13.9, 13.8;

HRMS (ESI-TOF): calc'd for C₁₄H₁₇NO₇S [M+H]⁺ 344.0798 [M+Na]⁺ 366.0618; found 344.0799, 366.0623.

Dimethyl 2-((tosyloxy)imino)malonate (47f)

Yield: 83%

Physical State: off-white solid (m.p. 91 – 96 °C);

 $\mathbf{R}_{f} = 0.21 \ (20\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.87 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H), 3.87 (s, 3H), 2.46 (s, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 158.4, 158.3, 149.1, 146.3, 130.9, 129.9, 129.1, 53.8, 53.6, 21.7;

HRMS (ESI-TOF): calc'd for $C_{12}H_{13}NO_7S [M+H]^+ 316.0485 [M+Na]^+ 338.0305$; found 316.0482, 338.0317.

Diethyl 2-(((methylsulfonyl)oxy)imino)malonate (47g)

 $\mathbf{F}_{tO_2C} = \mathbf{F}_{tT_2} =$

¹³C NMR (151 MHz, CDCl₃): δ 157.7, 157.6, 150.2, 63.6, 63.4, 36.9, 13.77, 13.75;

HRMS (**CI-TOF**): calc'd for $C_8H_{13}NO_7S[M+H]^+$ 268.0491; found 268.0486.

Dimethyl 2-(((methylsulfonyl)oxy)imino)malonate (47h) $\int_{MeO_2c} \int_{CO_2Me} \int_{CO_2Me} \int_{Th} \int_{CO_2Me} \int_{Th} \int_{CO_2Me} \int_{Th} \int_{CO_2Me} \int_{Th} \int_{Th$

Di-tert-butyl 2-((tosyloxy)imino)malonate (47i)

Yield: 79% **Physical State:** white solid (m.p. 72 – 77 °C);

 $\mathbf{R}_{f} = 0.43$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.41 (s, 3H), 1.51 (s, 9H), 1.46 (s, 9H);

¹³C NMR (151 MHz, CDCl₃): δ 157.1, 156.4, 151.1, 145.9, 131.1, 129.6, 128.9, 85.8, 85.2, 27.7, 27.5, 21.5;

HRMS (ESI-TOF): calc'd for $C_{18}H_{25}NO_7S [M+Na]^+ 422.1244$; found 422.1240.

10. Preparation of diisopropyl and diethyl iminomalonates (51a-v)

Table S4. List of diisopropyl and diethyl iminomalonates

Standard procedure for the preparation of iminomalonates presented above

Diisopropyl 2,2-dihydroxymalonate **44** (1 equiv) was taken in a flame dried flask and to this aliphatic or aromatic amine (1 equiv) was added followed by pTSA or CSA (5 mol%). To this mixture 5 Å molecular sieves were added followed by dry toluene (0.2 M) and heated to reflux using a Dean-Stark adapter for 3 h. Progress of the reaction was monitored by TLC. After confirming the completion of the reaction, heating was stopped and the reaction mixture was allowed to cool to room temperature. Toluene was removed under reduced pressure and the crude product was purified by column chromatography.

<u>Note:</u> One can use either pTSA or CSA and both are equally efficient in catalyzing the imine-formation reaction. The reaction also proceeds in the absence of catalyst but it takes twice as long. It is always better to purify the crude imine immediately after the reaction in order to obtain better yields. The imines are stable for 3 to 4 days in the freezer (-20 °C). Aliphatic imines are generally more stable and can be stored for longer periods of time compared to aromatic imines. All the above mentioned imines (**39** to **51v**) were prepared according to this standard procedure.

General procedure for the synthesis of diisopropyl 2-(phenylimino)malonate (39)

Diisopropyl 2,2-dihydroxymalonate **44** (500 mg, 2.27 mmol, 1 equiv) was taken in a flame dried flask and to this aniline (0.20 mL, 2.27 mmol, 1 equiv) was added followed by camphor sulfonic acid (CSA) (26.4 mg, 5 mol%). To this mixture 5 Å molecular sieves were added followed by dry toluene (0.2 M, 11.4 mL) and heated to reflux using a Dean-Stark adapter for 3 h or until the complete consumption of the starting material. Progress of the reaction was monitored TLC. After confirming the completion of the reaction, heating was stopped and the reaction mixture was allowed to cool to room temperature. Toluene was removed under reduced pressure and the crude product was purified by column chromatography to afford **39** as yellow viscous oil (420 mg, 67%).

11. Characterization data of the iminomalonate substrates (as displayed in Table S4)

1. Diisopropyl 2-(phenylimino)malonate (39)

Standard procedure described above was followed for converting 4.54 mmol of 44 and

aniline to 39

Yield: 67%

Physical State: yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.37 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 2H), 5.18 (hept, *J* = 6.2 Hz, 1H), 4.94 (hept, *J* = 6.2 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 6H), 0.99 (d, *J* = 6.5 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 161.6, 160.1, 153.0, 147.5, 128.4, 126.1, 119.1, 70.6, 69.8, 21.2, 20.9;

HRMS (**CI-TOF**): calc'd for $C_{15}H_{19}NO_4[M]^+ 277.1314$; found 277.1314.

2. Diisopropyl 2-(methylimino)malonate (51a)

Standard procedure described above was followed for converting 9.08 mmol of **44** and methyl amine to **51a**.

Yield: 33%

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.26 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.02 (hept, J = 6.4 Hz, 1H), 4.96 (hept, J = 6.4 Hz, 1H), 3.25 (s, 3H), 1.11 (dd, J = 8.1, 6.4 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 161.0, 159.8, 155.0, 69.7, 69.4, 41.5, 21.0, 20.9;

HRMS (ESI-TOF): calc'd for $C_{10}H_{17}NO_4[M+H]^+$ 216.1230; found 216.1233.

3. Diisopropyl 2-((2,2,2-trifluoroethyl)imino)malonate (51b)

Standard procedure described above was followed for converting 2.27 mmol of **44** and trifluoroethyl amine to **51b**.

Yield: 42%

Physical State: pale beige colored oily liquid;

 $\mathbf{R}_{f} = 0.19 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.21 (dhept, *J* = 18.7, 6.1 Hz, 2H), 4.20 (q, *J* = 9.1 Hz, 2H), 1.33 (dd, *J* = 6.2, 2.0 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 160.5, 159.4, 157.2, 126.6, 124.7, 122.9, 121.1, 71.1, 71.0, 55.2, 55.0, 54.7, 54.5, 21.5, 21.4;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -70.44 (d, J = 7.5 Hz);

HRMS (ESI-TOF): calc'd for C₁₁H₁₆F₃NO₄ [M+Na]⁺ 306.0924; found 306.0939.

4. Diisopropyl 2-((2-((tert-butyldimethylsilyl)oxy)ethyl)imino)malonate (51c)

Standard procedure described above was followed for converting 3.80 mmol of 44 and TBDMS protected ethanolamine to 51c.

Yield: 26%

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.34 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.19 (dp, J = 29.1, 6.3 Hz, 2H), 3.92 (t, J = 6.1 Hz, 2H), 3.70 (t, J = 6.1 Hz, 2H), 1.32 – 1.28 (m, 12H), 0.84 (s, 9H), 0.02 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 161.6, 160.5, 154.9, 70.3, 70.0, 62.1, 57.4, 25.7, 21.59, 21.50, 18.2, -5.3;

HRMS (CI-TOF): calc'd for $C_{17}H_{33}NO_5Si [M+H]^+$ 360.2206; found 360.2208.

5. Diisopropyl 2-(cyclopropylimino)malonate (51d)

Standard procedure described above was followed for converting 2.27 mmol of **44** and cyclopropyl amine to **51d**.

Yield: 94%

Physical State: colorless viscous oily liquid;

 $\mathbf{R}_{f} = 0.41 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.22 (hept, J = 6.3 Hz, 1H), 5.13 (hept, J = 6.3 Hz, 1H), 3.13 (tt, J = 6.5, 3.1 Hz, 1H), 1.30 (d, J = 6.3 Hz, 6H), 1.26 (d, J = 6.3 Hz, 6H), 1.18 (p, J = 4.2, 3.5 Hz, 2H), 1.10 (dt, J = 6.6, 3.6 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 162.2, 160.5, 151.7, 69.9, 69.7, 37.3, 21.5, 21.4, 11.8; HRMS (ESI-TOF): calc'd for C₁₂H₁₉NO₄ [M+H]⁺ 242.1387; found 242.1343.

6. Diisopropyl 2-(butylimino)malonate (51e)

Standard procedure described above was followed for converting 4.54 mmol of **44** and nbutyl amine to **51e**.

Yield: 53%

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.45 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.22 (dq, J = 12.6, 6.1 Hz, 1H), 5.16 (dq, J = 12.4, 6.2 Hz, 1H), 3.55 (t, J = 7.1 Hz, 2H), 1.68 (p, J = 7.2 Hz, 2H), 1.38 – 1.25 (m, 14H), 0.89 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 162.1, 160.4, 153.9, 70.3, 69.9, 55.2, 31.8, 21.5, 21.4, 20.4, 13.6;

HRMS (ESI-TOF): calc'd for $C_{13}H_{23}NO_4 [M+H]^+ 258.1700$; found 258.1702.

7. Diisopropyl 2-(phenethylimino)malonate (51f)

Standard procedure described above was followed for converting 4.54 mmol of **44** and phenethyl amine to **51f**.

Yield: 77%

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.32 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.25 (dd, *J* = 9.5, 5.6 Hz, 2H), 7.19 – 7.14 (m, 3H), 5.18 (pd, *J* = 6.3, 2.5 Hz, 2H), 4.01 – 3.69 (m, 2H), 3.15 – 2.88 (m, 2H), 1.28 (dd, *J* = 22.7, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 161.5, 160.2, 154.1, 138.6, 128.4, 128.2, 126.1, 70.2, 69.8, 56.8, 36.1, 21.3, 21.3;

HRMS (CI-TOF): calc'd for $C_{17}H_{23}NO_4 [M+H]^+ 306.1705$; found 306.1711.

8. Diisopropyl 2-(cyclopentylimino)malonate (51g)

Standard procedure described above was followed for converting 4.54 mmol of **44** and cyclopentyl amine to **51g**.

Yield: 84%

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.43 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR** (**600 MHz**, **CDCl**₃): δ 5.04 (ddt, *J* = 39.8, 12.1, 6.0 Hz, 2H), 3.98 – 3.44 (m, 1H), 1.76 – 1.64 (m, 4H), 1.58 (dq, *J* = 14.2, 8.1, 7.4 Hz, 2H), 1.47 (t, *J* = 5.8 Hz, 2H), 1.16 (dd, *J* = 10.8, 6.5 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 162.0, 160.0, 151.8, 69.7, 69.3, 65.0, 33.8, 24.5, 21.2, 21.1;

9. Diisopropyl 2-(cyclohexylimino)malonate (51h)

Standard procedure described above was followed for converting 2.27 mmol of **44** and cyclohexyl amine to **51h**.

Yield: 66%

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.36 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 5.24 (hept, J = 6.1 Hz, 1H), 5.18 (hept, J = 6.2 Hz, 1H), 3.33 (tt, J = 10.1, 4.0 Hz, 1H), 1.79 (d, J = 12.5 Hz, 2H), 1.68 (d, J = 10.7 Hz, 2H), 1.65 – 1.55 (m, 3H), 1.31 (t, J = 6.5 Hz, 12H), 1.23 (dq, J = 24.4, 12.3, 11.8 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 162.6, 160.5, 152.1, 70.3, 69.7, 64.6, 32.8, 25.1, 24.1, 21.6, 21.5;

HRMS (**ESI-TOF**): calc'd for $C_{15}H_{25}NO_4[M+H]^+$ 284.1856; found 284.1869.

10. Diisopropyl 2-((1-(*tert*-butoxycarbonyl)piperidin-4-yl)imino)malonate (51i)

Standard procedure described above was followed for converting 4.54 mmol of **44** and boc protected 4-piperidinyl amine to **51i**.

Yield: 82%

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.57 \; (30\% \; \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.02 (hept, J = 6.0 Hz, 1H), 4.94 (hept, J = 6.1 Hz, 1H), 3.82 (s, 2H), 3.34 (dt, J = 9.4, 5.0 Hz, 1H), 2.67 (s, 2H), 1.57 – 1.49 (m, 2H), 1.45 (d, J = 10.2 Hz, 2H), 1.22 (s, 9H), 1.09 (dd, J = 9.0, 6.4 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 161.3, 159.7, 154.0, 152.5, 78.8, 69.8, 69.5, 61.3, 31.3, 27.8, 21.0, 20.9;

HRMS (ESI-TOF): calc'd for $C_{19}H_{32}N_2O_6$ [M+Na]⁺ 407.2153; found 407.2168.

11. Tetraisopropyl 2,2'-(decane-1,10-diylbis(azanylylidene))dimalonate (51j)

$$\begin{array}{c}
 CO_2'Pr \\
 V \\
 CO_2'Pr \\
 V \\
 V \\
 T_7 \\
 S1j \\
 CO_2'Pr \\
 CO_2'Pr \\
 CO_2'Pr \\
 S1j \\
 CO_2'Pr \\
 CO_2'Pr \\
 S1j \\
 CO_2'Pr \\
 CO_2'Pr \\
 S1j \\
 CO_2'Pr \\
 CO_2'Pr \\
 CO_2'Pr \\
 S1j \\
 CO_2'Pr \\
 CO_2'Pr \\
 S1j \\
 CO_2'Pr \\
 CO_2 PP \\
 CO_2 PP \\
 CO_2$$

Standard procedure described above was followed for converting 8.0 mmol of 44 and 1,10-diaminodecane to 51j.

Yield: 79%

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.27 \ (20\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.29 – 5.09 (m, 4H), 3.54 (t, *J* = 7.2 Hz, 4H), 1.68 (p, *J* = 7.0 Hz, 4H), 1.29 (dd, *J* = 6.3, 2.8 Hz, 26H), 1.24 (d, *J* = 6.6 Hz, 10H);

¹³C NMR (151 MHz, CDCl₃): δ 162.1, 160.4, 153.8, 70.3, 69.8, 55.5, 29.8, 29.3, 29.1, 27.2, 21.58, 21.50;

HRMS (ESI-TOF): calc'd for $C_{28}H_{48}N_2O_8[M+Na]^+$ 563.3303; found 563.3317.

12. Diisopropyl 2-(*m*-tolylimino)malonate (51k)

Standard procedure described above was followed for converting 4.54 mmol of **44** and m-toulidine to **51k**.

Yield: 72%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.41 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.18 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.77 (d, J = 8.6 Hz, 2H), 5.25 (hept, J = 6.3 Hz, 1H), 5.04 (hept, J = 6.3 Hz, 1H), 2.30 (s, 3H), 1.36 (d, J = 6.3 Hz, 6H), 1.09 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 162.0, 160.4, 152.9, 147.7, 138.5, 128.5, 127.2, 119.9, 116.5, 70.8, 70.0, 21.5, 21.2, 21.1;

HRMS (ESI-TOF): calc'd for $C_{16}H_{21}NO_4 [M+H]^+$ 292.1543; found 292.1556.

13. Diisopropyl 2-(p-tolylimino)malonate (511)

Standard procedure described above was followed for converting 2.27 mmol of **44** and p-toulidine to **511**.

Yield: 78%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.40 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.02 (d, *J* = 7.9 Hz, 2H), 6.82 (d, *J* = 7.9 Hz, 2H), 5.15 (dt, *J* = 12.3, 6.1 Hz, 1H), 4.97 (dt, *J* = 12.4, 6.1 Hz, 1H), 2.21 (s, 3H), 1.27 (d, *J* = 6.3 Hz, 6H), 1.02 (d, *J* = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 161.9, 160.1, 152.2, 144.9, 136.3, 129.0, 119.5, 70.4, 69.7, 21.2, 20.9, 20.6;

HRMS (**CI-TOF**): calc'd for $C_{16}H_{21}NO_4[M]^+$ 291.1471; found 291.1468.

14. Diisopropyl 2-((4-methoxyphenyl)imino)malonate (51m)

Standard procedure described above was followed for converting 2.27 mmol of 44 and p-

anisidine to **51m**.

Yield: 87%

Physical State: dark yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.35$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.03 (d, *J* = 8.9 Hz, 2H), 6.83 (d, *J* = 8.9 Hz, 2H), 5.23 (hept, *J* = 6.3 Hz, 1H), 5.10 (hept, *J* = 6.3 Hz, 1H), 3.76 (s, 3H), 1.34 (d, *J* = 6.3 Hz, 6H), 1.14 (d, *J* = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 162.8, 160.5, 158.9, 151.1, 140.4, 122.3, 113.9, 70.6, 70.0, 55.3, 21.5, 21.2.

HRMS (ESI-TOF): calc'd for $C_{14}H_{18}N_2O_4$ [M+H]⁺ 308.1492; found 308.1443.

15. Diisopropyl 2-((4-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)phenyl)imino) malonate (51n)

Standard procedure described above was followed for converting 3.80 mmol of 44 and 4-

(2-((tert-butyldimethylsilyl)oxy)ethyl)aniline to 51n.

Yield: 54%

Physical State: dark yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.39 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.13 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.3 Hz, 2H), 5.23 (hept, J = 6.2 Hz, 1H), 5.03 (hept, J = 6.3 Hz, 1H), 3.74 (t, J = 6.7 Hz, 2H), 2.75 (t, J =

6.7 Hz, 2H), 1.34 (d, *J* = 6.4 Hz, 6H), 1.08 (d, *J* = 6.3 Hz, 6H), 0.82 (s, 9H), -0.08 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 162.1, 160.3, 152.6, 145.7, 138.0, 129.4, 119.6, 70.7, 69.9, 64.0, 38.9, 25.7, 21.4, 21.2, 18.1, -5.5;

HRMS (**ESI-TOF**): calc'd for C₂₃H₃₇NO₅Si [M+H]⁺ 436.2514; found 436.2541.

16. Diisopropyl 2-((2-bromophenyl)imino)malonate (510)

Standard procedure described above was followed for converting 4.54 mmol of **44** and 2bromo aniline to **510**.

Yield: 52%

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.35 \ (10\% \ \text{EtOAc/hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 7.53 (dd, J = 8.0, 1.1 Hz, 1H), 7.19 (td, J = 7.7, 1.2 Hz, 1H), 6.99 (td, J = 7.8, 1.5 Hz, 1H), 6.74 (dd, J = 7.9, 1.5 Hz, 1H), 5.24 (hept, J = 6.3 Hz, 1H), 4.94 (hept, J = 6.3 Hz, 1H), 1.35 (d, J = 6.3 Hz, 6H), 1.01 (d, J = 6.3 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 160.4, 160.0, 154.3, 146.8, 132.6, 127.4, 126.8, 118.6, 113.7, 71.0, 70.3, 21.4, 21.0;

HRMS (**CI-TOF**): calc'd for $C_{15}H_{18}BrNO_4 [M+H]^+$ 357.0399; found 357.0390.

17. Diethyl 2-((2-bromophenyl)imino)malonate (51p)

Standard procedure described above was followed for converting 4.35 mmol of diethylketomalonate and 2-bromo aniline to **51p**.

Yield: 79%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.50 \ (20\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.52 (dd, J = 8.0, 1.0 Hz, 1H), 7.19 (td, J = 7.7, 1.1 Hz, 1H), 6.99 (td, J = 7.9, 1.4 Hz, 1H), 6.76 – 6.69 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.07 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 160.7, 160.4, 153.5, 146.5, 132.6, 127.5, 127.0, 118.4, 113.7, 62.8, 61.9, 13.7, 13.4;

HRMS (**ESI-TOF**): calc'd for C₁₃H₁₄BrNO₄ [M+H]⁺ 328.0179; found 328.0179.

18. Diisopropyl 2-((3,5-dimethylphenyl)imino)malonate (51q)

Standard procedure described above was followed for converting 4.54 mmol of **44** and 3,5-dimethyl aniline to **51q**

Yield: 66%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.40 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 6.80 (s, 1H), 6.59 (s, 2H), 5.24 (hept, J = 6.3 Hz, 1H), 5.05 (hept, J = 6.3 Hz, 1H), 2.25 (s, 6H), 1.35 (d, J = 6.3 Hz, 6H), 1.11 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 162.0, 160.4, 152.6, 147.6, 138.3, 128.1, 117.1, 70.7, 69.9, 21.4, 21.1, 21.0;

HRMS (ESI-TOF): calc'd for $C_{17}H_{23}NO_4 [M+H]^+$ 306.1700; found 306.1789.

19. Diisopropyl 2-((3,5-dimethoxyphenyl)imino)malonate (51r)

Standard procedure described above was followed for converting 2.27 mmol of **44** and 3,5-dimethoxy aniline to **51r**

Yield: 23%

Physical State: dark yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.38$ (20% EtOAc/hexanes);

¹**H** NMR (600 MHz, CDCl₃): δ 6.21 (s, 1H), 6.06 (d, J = 2.0 Hz, 2H), 5.17 (hept, J = 6.2 Hz, 1H), 4.99 (hept, J = 6.2 Hz, 1H), 3.65 (s, 6H); 1.29 (d, J = 6.3 Hz, 6H), 1.05 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 161.6, 160.7, 160.0, 153.1, 149.3, 98.3, 97.5, 70.7, 70.0, 55.0, 21.3, 21.2, 21.0;

HRMS (ESI-TOF): calc'd for C₁₇H₂₃NO₆ [M+Na]⁺ 360.1418; found 360.1418.

20. Diisopropyl 2-(benzo[d][1,3]dioxol-5-ylimino)malonate (51s)

Standard procedure described above was followed for converting 4.54 mmol of **44** and 3,4-methylenedioxy)aniline to **51s**

Yield: 73%

Physical State: dark yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.24 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 6.72 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 2.1 Hz, 1H), 6.53 (dd, J = 8.2, 2.1 Hz, 1H), 5.93 (s, 2H), 5.22 (hept, J = 6.3 Hz, 1H), 5.11 (hept, J = 6.3 Hz, 1H), 1.33 (d, J = 6.3 Hz, 6H), 1.16 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 162.5, 160.4, 151.6, 147.9, 146.8, 141.7, 114.2, 107.9, 102.2, 101.5, 70.7, 70.1, 21.4, 21.2;

HRMS (**CI-TOF**): calc'd for $C_{16}H_{19}NO_6 [M]^+$ 321.1212; found 321.1208.

21. Diethyl 2-((2,6-dichlorophenyl)imino)malonate (51t)

Standard procedure described above was followed for converting 5.74 mmol of diethylketomalonate and 2,6-dichloro aniline to **51t**.

Yield: 83%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.45$ (10% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.28 (d, *J* = 8.1 Hz, 2H), 7.00 (t, *J* = 8.1 Hz, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 160.8, 159.0, 155.7, 143.2, 127.8, 125.7, 123.0, 63.1, 62.4, 13.9, 13.4;

HRMS (ESI-TOF): calc'd for $C_{13}H_{13}Cl_2NO_4 [M+H]^+$ 318.0294; found 318.0294.

22. Diisopropyl 2-((3-(trifluoromethyl)phenyl)imino)malonate (51u)

Standard procedure described above was followed for converting 2.27 mmol of **44** and m-trifluoromethyl aniline to **51u**

Yield: 81%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.36 (10\% \text{ EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.37 – 7.30 (m, 2H), 7.09 (s, 1H), 7.05 – 7.01 (m, 1H), 5.14 (hept, J = 6.3 Hz, 1H), 4.90 (hept, J = 6.2 Hz, 1H), 1.24 (d, J = 6.4 Hz, 6H), 0.95 (d, J = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 160.8, 159.7, 154.4, 148.0, 131.3, 131.1, 130.9, 130.6, 129.2, 126.0, 124.2, 122.5, 120.6, 115.73, 115.70, 115.68, 115.65, 70.9, 70.3, 21.0, 20.7;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -61.9 (s);

HRMS (ESI-TOF): calc'd for $C_{16}H_{18}F_3NO_4 [M+H]^+ 346.1261$; found 346.1261.

23. Diisopropyl 2-(pyridin-3-ylimino)malonate (51v)

Standard procedure described above was followed for converting 4.54 mmol of **44** and 3-aminopyridine to **51v**.

Yield: 86%

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.28$ (30% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 8.39 (dd, J = 4.6, 1.5 Hz, 1H), 8.20 (d, J = 2.4 Hz, 1H), 7.29 – 7.21 (m, 2H), 5.21 (hept, J = 6.3 Hz, 1H), 4.99 (hept, J = 6.3 Hz, 1H), 1.32 (d, J = 6.4 Hz, 6H), 1.04 (d, J = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 160.9, 159.7, 154.7, 147.4, 143.7, 139.8, 126.7, 123.1, 71.2, 70.6, 21.3, 21.1;

HRMS (ESI-TOF): calc'd for $C_{14}H_{18}N_2O_4$ [M+H]⁺ 279.1339; found 279.1336.

12(a). Procedure for the synthesis of 39 using nitroso benzene (This procedure was adapted from literature reported procedure)⁴

To a solution of diisopropyl malonate (500 mg, 2.65 mmol, 1 equiv) and nitroso benzene (313 mg, 2.92 mmol, 1 equiv) in absolute ethanol (1.25 mL, 2.2M), a saturated ethanolic solution of NaOH was added dropwise until the blue color of the solution turns pale brown. The reaction mixture was allowed to stir for 10 minutes and the solvent was removed under reduced pressure and the crude product was purified by column chromatography to afford **39** as viscous yellow colored oily liquid (492 mg, 67%).

Note: The crude imine prepared by this method is very unstable and should be used immediately.

12(b). Procedure for the synthesis of 40 using nitroso benzene

The procedure described above for the synthesis of **39** was followed for converting 9.24 mmol of **38** to **40** as an yellow colored waxy solid (1.83g, 65%).

1. Characterization data of di-tert-butyl 2-(phenylimino)malonate (40)

Yield: 65% Physical State: yellow colored waxy solid;

 $\mathbf{R}_{f} = 0.28 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.31 (t, *J* = 7.8 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 2H), 1.59 (s, 9H), 1.29 (s, 9H);

¹³C NMR (151 MHz, CDCl₃): δ 161.6, 159.9, 154.6, 148.1, 128.6, 126.0, 119.4, 84.1, 27.9, 27.6;

HRMS (ESI-TOF): calc'd for $C_{17}H_{23}NO_4 [M+Na]^+$ 328.1519; found 328.1525.

13. Screening of solvents for the amination using 40

$\frac{1}{^{t}BuO_{2}C} \underbrace{CO_{2}^{t}Bu}_{40} + \underbrace{WB^{T}}_{0} \underbrace{Conditions}_{BuO_{2}C} \underbrace{OO_{2}^{t}Bu}_{40a} + \underbrace{OO_{2}C}_{0} \underbrace{OO_{2}^{t}Bu}_{40b}$					
Entry	Solvent	PhMgBr	Temperature	Time	Yield (%)
	(M)	(M)	(°C)		(40a:40b)
1	DCM (0.1M)	0.84M in THF	-78 °C	1h	53:32
2	DME (0.1M)	0.84M in THF	-78 °C	1h	64:13
3	MTBE (0.1M)	0.84M in THF	-78 °C	1h	59:14
4	THF (0.1M)	1M in THF	-78 °C	1h	67:12
5	2-Me-THF	1M in THF	-78 °C	1h	56:10
	(0.1M)				
6	Et ₂ O (0.1M)	1M in THF	-78 °C	1h	51:6

Table S5. Optimization of solvents for amination using 40

14. Optimization of the reaction conditions for amination using 47

	Me SO ₂ I V V V V V V V V V V V V V	+ 🚺 ^M	gBr conditions	/PrOOC	N COO'Pr 59a
Entry	Solvent	PhMgBr	Temperature	Time	Yield (%)
	(M)	(M)	(°C)		
1	THF (0.2M)	0.7M in	−78 °C	10 min	22
	× ,	THF			
2	DCM (0.2M)	0.7M in	-78 °C (3h) to RT	Overnight	61
	. ,	THF		-	
3	DME (0.2M)	0.76M in	-78 °C	3h	24
		THF			

4	Et ₂ O (0.2M)	0.88M in	-78 °C	3h	(Starting material
		THF			was not totally
					consumed)
5	DCE (0.2M)	0.26M in	-78 °C (3h) to RT	Overnight	22
		THF			
6	Toluene	0.26M in	-78 °C (3h) to RT	Overnight	31
	(0.2M)	THF			
7	DCM (0.2M)	0.6M in	-78 °C	1h	30
		THF			
8	DCE (0.2M)	0.6M in	-78 °C	1h	13
		THF			
9	Toluene	0.6M in	-78 °C	1h	42
	(0.2M)	THF			
10	Toluene	0.74M in	-42 °C	1h 15min	45
	(0.2M)	THF			
11	DCM (0.2 M)	0.74M in	-42 °C	1h 15min	56
		THF			
12	DCM (0.2M)	0.76M in	-78 $^{\rm o}C$	1h	63
_		THF			
13	DCM (0.1M)	0.76M	−78 °C	1h	75
_		in THF			
14	DCM (0.1M)	0.76M in	-42 °C	1h	63
		THF			
15	DCM (0.1M)	1.6M in	-78 $^{\rm o}C$	1h	(Reaction was
		Et_2O			messy with lot of
_					spots on TLC)
16	DCM (0.05M)	1.6M in	-78 $^{\rm o}C$	1h	(Reaction was
		Et_2O			messy with lot of
					spots on TLC)
17	DCM (0.1M)	0.66M in	-78 °C	1h	66
		THF			
18	DCM (0.05M)	0.66M in	-78 $^{\rm o}C$	1h	66
		THF			
19	DCM (0.1M)	0.88M in	-20 °C	1h	62
		THF			
20	DCM (0.1M)	0.88M in	0 °C	1h	58
		THF			
21	DCM (0.1M)	0.88M in	RT	1h	58
		THF			

Table S6. Optimization of conditions for amination

15. Screening of different activating groups

Table S7. Evaluation of different activating groups

16. Screening of different aminating agents

Table S8. Evaluation of different aminating agents

17. General experimental procedures (Methods C through H)

Amination of aryl and alkyl metals using doubly electrophilic aminating agent 47

Method C: To a flame dried 25 mL round bottom flask, activated magnesium turnings (7.5 mmol, 1.5 equiv) were added under argon followed by 2.5 mL of anhydrous THF. To this mixture 2 drops of 1,2-dibromoethane were added under constant stirring. After 5 min, a solution of aryl or alkyl bromide (5.0 mmol, 1.0 equiv) in 2.5 mL of anhydrous THF was added dropwise over 10-15 minutes to the suspension. This reaction is slightly exothermic but no external cooling is required. After the flask cools to room temperature by itself, the Grignard reagent is titrated using the standard procedure⁵ and the concentration is determined. Next, to a thick-walled flame dried reaction vial, aminating agent 47 (1.0 mmol, 1.0 equiv) followed by anhydrous DCM (10 mL, 0.1M) were added under argon. The resulting solution of 47 was cooled to -78 °C by means of dry ice/acetone bath and the freshly prepared Grignard reagent (2.1 mmol, 2.1 equiv) was added via syringe over a period of 1 min under constant stirring. After stirring for 1 hour at -78 °C, the reaction mixture was quenched using saturated NH₄Cl solution (3 mL) and allowed to warm to room temperature.

Workup and purification: After quenching, the reaction mixture was diluted with water (20 mL) and the organic layer was separated. The aqueous layer was then extracted with DCM twice (2 X 20 mL) and the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

Method D: This procedure was adapted from the literature⁶. To a flame dried 25 mL round bottom flask, commercially available iPrMgCl·LiCl solution in THF (1.3M; 1.1 mmol, 1.1 eq) was added under argon. This mixture was cooled to -15 °C in case of aryl bromides and to -45 °C in case of aryl iodides and the corresponding solution of aryl bromide or iodide (1.0 mmol, 1.0 equiv) in THF was added in 1 min and stirred for 30 min. This turbo Grignard reagent was then titrated and the concentration was determined. To a thick-walled flame dried reaction vial, aminating agent (1.0 mmol, 1.0 equiv) followed by anhydrous DCM (10 mL, 0.1M) was added under argon. This reaction mixture was cooled to -78 °C by means of dry ice/acetone bath and the freshly prepared

Grignard reagent (2.1 mmol, 2.1 equiv) was added in 1 min under constant stirring. After stirring for 1 hour at -78 °C the reaction mixture was quenched using saturated NH₄Cl solution (3 mL) and allowed to warm to room temperature.

Workup and purification: After quenching, the reaction mixture was diluted with water (20 mL) and the organic layer was separated. The aqueous layer was then extracted with DCM twice (2 X 20 mL) and the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

Method E (Amination using N-substituted diisopropyl iminomalonates):

To a flame dried 25 mL round bottom flask, activated magnesium turnings (7.5 mmol, 1.5 equiv) were added under argon followed by 2.5 mL of anhydrous THF. To this mixture 2 drops of 1,2-dibromoethane were added under constant stirring. After 5 min, a solution of aryl or alkyl bromide (5.0 mmol, 1.0 equiv) in 2.5 mL of anhydrous THF was added dropwise over 10-15 minutes to the suspension. This reaction is slightly exothermic but no external cooling is required. After the flask cools to room temperature by itself, the Grignard reagent is titrated using the standard procedure⁵ and the concentration is determined. For making the turbo Grignard reagent, follow **Mehod D**. To a thick-walled flame dried reaction vial, iminomalonate (1.0 mmol, 1.0 equiv) dissolved in anhydrous DCM (10 mL, 0.1M) was added under argon. This reaction mixture was cooled to -78 °C by means of dry ice/acetone bath and the freshly prepared Grignard reagent (1.1 mmol, 1.1 equiv) was added over 1 min while mainatining constant stirring. After stirring for 1 hour at -78 °C the reaction was quenched using saturated NH₄Cl solution (3 mL) and allowed to warm to room temperature.

Workup and purification: After quenching, the reaction mixture was diluted with water (20 mL) and the organic layer was separated. The aqueous layer was then extracted with DCM twice (2 X 20 mL) and the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

<u>Method F</u>: To a thick-walled flame dried reaction vial, iminomalonate (1.0 mmol, 1.0 equiv) dissolved in anhydrous THF (10 mL, 0.1M) was added under argon. This solution was cooled to -78 °C by means of dry ice/acetone bath and the commercially available

aryl or alkyl lithium solution in THF (1.1 mmol, 1.1 equiv) was added dropwise under constant stirring. After stirring for 1 hour at -78 °C the reaction was quenched using saturated NH₄Cl solution (3 mL).

Method G: This procedure was adapted from the literature with slight modifications⁷. In a thick-walled flame dried reaction vial, methyl-2-bromo acetate (2.0 mmol, 2.0 equiv) was taken in anhydrous THF (10 mL, 0.2M) under argon and cooled to -78 °C using dry ice/acetone bath. To this cooled reaction mixture, commercially available LiHMDS (1M solution in THF) (2.1 mmol, 2.1 equiv) was added dropwise and stirred for 45 min. Then iminomalonate (1.0 mmol, 1.0 equiv) dissolved in anhydrous THF (10 mL, 0.1M) was added slowly dropwise to the enolate solution and continued stirring for 2 h. Then the reaction was quenched using saturated NH₄Cl solution (3 mL).

Workup and purification: After quenching, the reaction mixture was diluted with water (20 mL) and the organic layer was separated. The aqueous layer was then extracted with EtOAc twice (2 X 20 mL) and the combined organic layers were washed with brine (30 mL) once, dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

<u>Method H:</u> In a thick-walled flame dried reaction vial, acetophenone (2.0 mmol, 2.0 equiv) was dissolved in anhydrous THF (5 mL, 0.4M) under argon and cooled to -78 °C using dry ice/acetone bath. To this cooled reaction mixture, commercially available LiHMDS (1M solution in THF) (2.1 mmol, 2.1 equiv) was added dropwise and stirred for 45 min. Then iminomalonate (1.0 mmol, 1.0 equiv) dissolved in anhydrous THF (5 mL, 0.2M) was added slowly dropwise to the enolate solution and continued stirring for 2 h at -78 °C. Then the reaction was quenched using saturated NH₄Cl solution (3 mL).

Workup and purification: After quenching, the reaction mixture was diluted with water (20 mL) and the organic layer was separated. The aqueous layer was then extracted with EtOAc twice (2 X 20 mL) and the combined organic layers were washed with brine (30 mL) once, dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

18. Characterization data of di-tert-butyl 2-(diphenylamino)malonate (40a)

Yield: 67% (Method E, here THF was used as the solvent instead of DCM) Physical State: Brown colored solid (m.p. = 76 – 81 °C); $R_f = 0.53$ (9:1 EtOAc : hexanes); ¹H NMR (600 MHz, CDCl₃): δ 7.17 (ddd, J = 7.5, 6.3, 1.8 Hz, 4H), 6.96 (d, J = 7.7 Hz, 4H), 6.92 (t, J = 7.3 Hz, 2H), 5.12 (s, 1H), 1.26 (s, 18H); ¹³C NMR (151 MHz, CDCl₃): δ 166.4, 146.2, 129.1, 122.5, 122.2, 82.5, 69.1, 27.7; HRMS (ESI-TOF): calc'd for C₂₃H₂₉NO₄ [M+Na]⁺ 406.1989; found 406.1990.

19. Characterization data of the products made using the singly- and doublyelectrophilic aminating agents (as displayed in Figs. 3-5)

1. Diisopropyl 2-(methyl(phenyl)amino)malonate (55a)

Yield: 68% (Method E)

Physical State: dark purple colored waxy solid;

 $\mathbf{R}_{f} = 0.52 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.31 – 7.24 (m, 2H), 6.86 – 6.80 (m, 3H), 5.16 (hept, J = 6.3 Hz, 2H), 5.08 (s, 1H), 3.11 (s, 3H), 1.31 (d, J = 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 149.0, 129.1, 118.3, 113.3, 69.5, 66.1, 35.7, 21.6, 21.5;

HRMS (ESI-TOF): calc'd for $C_{16}H_{23}NO_4 [M+H]^+ 294.1700$; found 294.1703.

2. Diisopropyl 2-(isopropyl(methyl)amino)malonate (55b)

Yield: 80% (Method E)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.62$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 4.97 (hept, J = 6.3 Hz, 2H), 4.06 (s, 1H), 2.90 (hept, J = 6.5 Hz, 1H), 2.37 (s, 3H), 1.15 (d, J = 6.4 Hz, 12H), 0.97 (d, J = 6.6 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.7, 68.2, 66.8, 52.8, 33.9, 21.29, 21.27, 19.5;

HRMS (ESI-TOF): calc'd for $C_{13}H_{25}NO_4[M+H]^+$ 260.1856; found 260.1846.

Note: For this reaction to form **55b**, directly iPrMgCl·LiCl solution in THF was added on to the imine.

3. Diisopropyl 2-(phenyl(2,2,2-trifluoroethyl)amino)malonate (55c)

CO₂ⁱPr 55c

Yield: 34% (Method E)

Physical State: orange colored waxy solid;

 $\mathbf{R}_{f} = 0.59 \; (8:1 \; \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.28 (t, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 6.98 (t, *J* = 7.3 Hz, 1H), 5.10 (hept, *J* = 6.2 Hz, 2H), 4.88 (s, 1H), 4.24 – 4.14 (m, 2H), 1.26 (dd, *J* = 16.6, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.8, 148.2, 129.2, 127.8, 125.9, 124.1, 122.2, 121.9, 118.1, 70.1, 68.2, 51.2, 51.0, 50.8, 50.6, 21.5;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -69.83 (t, *J* = 8.9 Hz);

HRMS (ESI-TOF): calc'd for $C_{17}H_{22}F_3NO_4[M+H]^+$ 362.1574; found 362.1581.

4. Diisopropyl 2-((2-bromophenyl)(2,2,2-trifluoroethyl)amino)malonate (55d)

Yield: 79% (Method E)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.72$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.63 (d, *J* = 7.8 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.25 – 7.17 (m, 2H), 5.99 (d, *J* = 52.9 Hz, 1H), 5.14 (dt, *J* = 12.3, 6.0 Hz, 1H), 5.03 (s, 1H), 4.07 – 3.51 (m, 2H), 1.79 – 0.76 (m, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 169.2, 155.6, 155.4, 133.6, 133.3, 133.1, 130.7, 130.5, 130.4, 127.5, 126.6, 126.4, 124.8, 124.6, 122.9, 122.7, 121.0, 120.9, 70.5, 69.6, 63.5, 46.5, 46.3, 46.0, 45.8, 22.0, 21.8, 21.7, 21.6, 21.4.

¹⁹F NMR (471 MHz, CDCl₃): δ -69.5 - -70.2 (m);

HRMS (ESI-TOF): calc'd for $C_{17}H_{21}BrF_3NO_4[M+H]^+$ 440.0679; found 440.0674.

5. Diisopropyl 2-((2-((*tert*-butyldimethylsilyl)oxy)ethyl)(phenyl)amino)malonate (55e)

Yield: 58% (Method E)

Physical State: dark yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.53 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 5.11 (hept, *J* = 6.2 Hz, 2H), 5.00 (s, 1H), 3.80 (t, *J* = 7.3 Hz, 2H), 3.59 (t, *J* = 7.3 Hz, 2H), 1.27 (dd, *J* = 8.8, 6.3 Hz, 12H), 0.91 (s, 9H), 0.06 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.3, 147.9, 129.0, 118.8, 114.4, 69.5, 67.1, 60.8, 51.6, 25.8, 21.5, 18.2;

HRMS (ESI-TOF): calc'd for $C_{23}H_{39}NO_5Si[M+H]^+ 438.2670$; found 438.3076.

6. Diisopropyl 2-(dicyclopropylamino)malonate (55f)

Yield: 89% (Method E) Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.21 \ (5\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.00 (hept, J = 6.2 Hz, 2H), 4.15 (s, 1H), 2.52 (tt, J = 6.8, 3.9 Hz, 2H), 1.18 (dd, J = 6.4, 3.2 Hz, 12H), 0.39 (p, J = 4.6, 3.8 Hz, 4H), 0.37 – 0.31 (m, 4H);

¹³C NMR (151 MHz, CDCl₃): δ 167.4, 70.3, 68.4, 34.5, 21.5, 21.4, 6.3;

HRMS (ESI-TOF): calc'd for $C_{15}H_{25}NO_4 [M+H]^+ 284.1856$; found 284.1861.

7. Diisopropyl 2-(cyclobutyl(cyclopropyl)amino)malonate (55g)

Yield: 85% (Method E)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.39 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.00 (hept, J = 6.3 Hz, 2H), 4.10 (s, 1H), 3.58 (ddd, J = 16.8, 9.4, 7.4 Hz, 1H), 2.29 (tt, J = 6.7, 3.9 Hz, 1H), 2.06 – 1.97 (m, 2H), 1.96 – 1.89 (m, 2H), 1.56 – 1.38 (m, 2H), 1.20 (dd, J = 6.5, 3.2 Hz, 12H), 0.49 – 0.43 (m, 2H), 0.42 – 0.35 (m, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 167.7, 68.4, 67.5, 57.4, 30.9, 28.7, 21.47, 21.40, 14.5, 6.5;

HRMS (ESI-TOF): calc'd for $C_{16}H_{27}NO_4 [M+H]^+$ 298.2013; found 298.2024.

8. Diisopropyl 2-(cyclopropyl(phenyl)amino)malonate (55h)

Yield: 73% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.63$ (8:1 EtOAc : hexanes);

¹H NMR (600 MHz, CDCl₃): δ 7.22 (t, J = 7.9 Hz, 2H), 6.92 (d, J = 8.2 Hz, 2H), 6.82 (t, J = 7.3 Hz, 1H), 5.11 (hept, J = 6.1 Hz, 2H), 4.91 (s, 1H), 2.87 – 2.76 (m, 1H), 1.27 (d, J = 6.2 Hz, 6H), 1.23 (d, J = 6.2 Hz, 6H), 0.87 – 0.81 (m, 2H), 0.78 (d, J = 6.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 167.3, 148.7, 128.6, 118.8, 114.8, 69.5, 69.0, 31.6, 21.6, 21.5, 9.3;

HRMS (ESI-TOF): calc'd for $C_{18}H_{25}NO_4 [M+H]^+$ 320.1856; found 320.1865.

9. Diisopropyl 2-(cyclopropyl(4-(trifluoromethoxy)phenyl)amino)malonate (55i)

Yield: 19% (Method E)

Physical State: beige colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.42 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.07 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 9.2 Hz, 2H), 5.09 (hept, J = 6.3 Hz, 2H), 4.87 (s, 1H), 2.85 – 2.79 (m, 1H), 1.26 (d, J = 6.3 Hz, 6H), 1.19 (d, J = 6.3 Hz, 6H), 0.83 – 0.76 (m, 4H);

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 147.3, 141.7, 121.5, 115.6, 69.7, 69.2, 32.5,

21.58, 21.50, 9.5;

¹⁹F NMR (471 MHz, CDCl₃): δ –58.4 (s);

HRMS (ESI-TOF): calc'd for $C_{19}H_{24}F_3NO_5[M+H]^+$ 404.1679; found 404.1680.

10. Diisopropyl 2-(dibutylamino)malonate (55j)

Yield: 56% (Method F)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.53 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.06 (hept, J = 6.0 Hz, 2H), 4.13 (s, 1H), 2.66 – 2.61 (m, 4H), 1.42 (p, J = 7.5 Hz, 4H), 1.28 (dt, J = 15.0, 7.4 Hz, 4H), 1.23 (d, J = 6.3 Hz, 12H), 0.87 (t, J = 7.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.9, 68.6, 67.6, 52.0, 30.7, 21.6, 21.6, 20.2, 13.9; HRMS (ESI-TOF): calc'd for C₁₇H₃₃NO₄ [M+H]⁺ 316.2482; found 316.2489.

11. Diisopropyl 2-(butyl(phenyl)amino)malonate (55k)

55k

Yield: 94% (Method E)

Physical State: dark brown oily liquid;

 $\mathbf{R}_{f} = 0.66 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.23 (dd, J = 8.8, 7.2 Hz, 2H), 6.85 – 6.78 (m, 3H), 5.12 (hept, J = 6.3 Hz, 2H), 4.98 (s, 1H), 3.50 – 3.35 (m, 2H), 1.63 (p, J = 7.8 Hz, 2H), 1.35 (h, J = 7.4 Hz, 2H), 1.27 (dd, J = 11.1, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 167.4, 147.9, 128.9, 118.5, 114.8, 69.4, 67.3, 49.2, 30.0, 21.5, 20.1, 13.8;

HRMS (ESI-TOF): calc'd for $C_{19}H_{29}NO_4[M+H]^+$ 336.2169; found 336.2180.

12. Diisopropyl 2-(butyl(o-tolyl)amino)malonate (55l)

Yield: 83% (Method E)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.51 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.33 (d, *J* = 7.9 Hz, 1H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 5.10 (hept, *J* = 6.2 Hz, 2H), 4.27 (s, 1H), 3.40 (t, *J* = 6.8 Hz, 2H), 3.40 (t, *J* = 6.8 Hz, 3H), 1.30 (dd, *J* = 14.7, 5.2 Hz, 4H), 1.25 (dd, *J* = 8.1, 6.4 Hz, 12H), 0.82 (t, *J* = 7.0 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.4, 147.3, 134.8, 130.8, 125.8, 124.1, 124.0, 69.8, 68.5, 48.3, 30.4, 21.4, 21.3, 19.9, 17.6, 13.7;

HRMS (ESI-TOF): calc'd for $C_{20}H_{31}NO_4 [M+H]^+$ 350.2326; found 350.2388.

13. Diisopropyl 2-(butyl(*p*-tolyl)amino)malonate (55m)

Yield: 94% (Method E)

Physical State: brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.60 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.05 (d, J = 7.7 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 5.16 – 5.07 (m, 2H), 4.93 (s, 1H), 3.46 – 3.33 (m, 2H), 2.26 (s, 3H), 1.59 (s, 2H), 1.33 (dd, J = 14.6, 7.3 Hz, 2H), 1.32 – 1.23 (m, 12H), 0.93 (t, J = 7.1 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.5, 145.7, 129.5, 128.0, 115.5, 69.3, 67.9, 49.1, 30.2, 21.5, 20.2, 20.1, 13.8;

HRMS (ESI-TOF): calc'd for $C_{20}H_{31}NO_4 [M+H]^+$ 350.2326; found 350.2336.

14. Diisopropyl 2-(butyl(4-chlorophenyl)amino)malonate (55n)

Yield: 86% (Method E)

Physical State: brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.58 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.15 (d, J = 9.0 Hz, 2H), 6.73 (d, J = 9.0 Hz, 2H), 5.09 (hept, J = 6.3 Hz, 2H), 4.87 (s, 1H), 3.43 – 3.31 (m, 2H), 1.57 (p, J = 7.7 Hz, 2H), 1.31 (h, J = 7.4 Hz, 2H), 1.25 (dd, J = 13.6, 6.3 Hz, 12H), 0.91 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 146.5, 128.7, 123.4, 116.1, 69.6, 67.5, 49.6, 29.9, 21.5, 20.0, 13.8;

HRMS (ESI-TOF): calc'd for $C_{19}H_{28}CINO_4 [M+H]^+ 370.1780$; found 370.1785.

15. Diisopropyl 2-((3-(benzyloxy)phenyl)(butyl)amino)malonate (550)

Yield: 81% (Method E)Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.50 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 7.48 (d, J = 7.3 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 8.2 Hz, 1H), 6.54 – 6.44 (m, 3H), 5.16 (hept, J = 6.2 Hz, 2H), 5.09 (s, 2H), 5.02 (s, 1H), 3.47 – 3.42 (m, 2H), 1.65 (ddd, J = 15.6, 8.8, 6.8 Hz, 2H), 1.37 (dt, J = 15.1, 7.5 Hz, 2H), 1.32 (dd, J = 9.7, 6.3 Hz, 12H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.3, 159.7, 149.3, 137.1, 129.6, 128.4, 127.7, 127.3, 107.7, 104.3, 102.1, 69.8, 69.4, 67.2, 49.3, 30.0, 21.5, 20.1, 13.8;

HRMS (ESI-TOF): calc'd for $C_{26}H_{35}NO_5 [M+H]^+ 442.2588$; found 442.2624.

16. Diisopropyl 2-(butyl(2-vinylphenyl)amino)malonate (55p)

Yield: 86% (Method E)

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.49 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR** (600 MHz, CDCl₃): δ 7.49 (dd, J = 7.7, 1.4 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.20 (td, J = 7.9, 1.5 Hz, 1H), 7.15 (dd, J = 17.8, 11.0 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 5.66 (dd, J = 17.8, 1.5 Hz, 1H), 5.23 (dd, J = 11.0, 1.4 Hz, 1H), 5.10 (hept, J = 6.3 Hz, 2H), 4.36 (s, 1H), 3.40 (t, J = 7.1 Hz, 2H), 1.36 (p, J = 7.7, 6.9 Hz, 2H), 1.30 (dt, J = 15.4, 7.2 Hz, 2H), 1.27 – 1.21 (m, 12H), 0.83 (t, J = 7.3 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.5, 146.4, 134.3, 133.8, 127.7, 126.6, 123.9, 123.2, 114.2, 70.6, 68.8, 47.8, 30.3, 21.58, 21.51, 20.0, 13.8;

HRMS (**ESI-TOF**): calc'd for $C_{21}H_{31}NO_4[M+H]^+$ 362.2326; found 362.2382.
17. Diisopropyl 2-(butyl(3-fluoro-4-methoxyphenyl)amino)malonate (55q)

Yield: 80% (Method E)

Physical State: dark brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.40 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.85 (t, J = 9.3 Hz, 1H), 6.68 (dd, J = 14.1, 2.9 Hz, 1H), 6.59 – 6.53 (m, 1H), 5.09 (hept, J = 6.3 Hz, 2H), 4.79 (s, 1H), 3.82 (s, 3H), 3.38 – 3.24 (m, 2H), 1.54 (p, J = 7.7 Hz, 2H), 1.32 (dt, J = 15.0, 7.5 Hz, 2H), 1.26 (dd, J = 10.0, 6.3 Hz, 12H), 0.91 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.2, 153.7, 152.1, 142.7, 142.6, 140.9, 140.8, 114.9, 114.8, 111.69, 111.68, 105.5, 105.3, 69.6, 68.4, 57.1, 49.9, 30.1, 21.63, 21.62, 20.1, 13.8; ¹⁹F NMR (471 MHz, CDCl₃): δ –133.4 (ddd, J = 14.0, 9.7, 1.3 Hz);

HRMS (ESI-TOF): calc'd for $C_{20}H_{30}FNO_5 [M+H]^+$ 384.2181; found 384.2192.

18. Diisopropyl 2-(butyl(3-fluoro-5-methylphenyl)amino)malonate (55r)

Yield: 96% (Method E)

Physical State: brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.60 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 6.35 (s, 1H), 6.31 (d, J = 10.7 Hz, 2H), 5.11 (hept, J = 6.2 Hz, 2H), 4.91 (s, 1H), 3.42 – 3.34 (m, 2H), 2.27 (s, 3H), 1.61 (p, J = 7.8 Hz, 2H), 1.33 (dq, J = 14.9, 7.5 Hz, 2H), 1.27 (dd, J = 9.5, 6.3 Hz, 12H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.0, 164.5, 162.9, 149.4, 149.3, 140.39, 140.32, 110.6, 105.9, 105.7, 98.9, 98.7, 69.6, 67.1, 49.6, 29.9, 21.8, 21.7, 21.5, 20.0, 13.7;

¹⁹**F** NMR (471 MHz, CDCl₃): δ -113.5 (dd, J = 12.2, 9.2 Hz); HRMS (ESI-TOF): calc'd for C₂₀H₃₀FNO₄ [M+H]⁺ 368.2232; found 368.2240.

19. Diisopropyl 2-(butyl(4-fluoro-3,5-dimethylphenyl)amino)malonate (55s)

Yield: 91% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.67 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 6.51 (d, J = 6.0 Hz, 2H), 5.10 (hept, J = 6.2 Hz, 2H), 4.82 (s, 1H), 3.42 – 3.25 (m, 2H), 2.20 (s, 6H), 1.53 (p, J = 7.7 Hz, 2H), 1.32 (dq, J = 15.0, 7.5 Hz, 2H), 1.26 (dd, J = 9.4, 6.3 Hz, 12H), 0.91 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.4, 154.9, 153.3, 143.5, 143.5, 124.3, 124.2, 116.8, 116.8, 69.2, 68.6, 49.3, 30.2, 21.4, 20.0, 14.88, 14.85, 13.7;

¹⁹F NMR (471 MHz, CDCl₃): δ -133.5 (s);

HRMS (ESI-TOF): calc'd for $C_{21}H_{32}FNO_4 [M+H]^+$ 382.2388; found 382.2387.

20. Diisopropyl 2-(butyl(3-chloro-5-fluoro-4-methoxyphenyl)amino)malonate (55t)

Yield: 54% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.60 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 6.57 – 6.52 (m, 1H), 6.46 (dd, J = 13.6, 3.0 Hz, 1H), 5.10 (hept, J = 6.2 Hz, 2H), 4.77 (s, 1H), 3.83 (s, 3H), 3.36 – 3.27 (m, 2H), 1.56 (p, J =

7.8 Hz, 2H), 1.35 – 1.28 (m, 2H), 1.26 (dd, *J* = 11.4, 6.3 Hz, 12H), 0.92 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 157.3, 155.7, 144.5, 144.4, 136.4, 136.3, 128.8, 128.8, 111.3, 102.4, 102.2, 69.9, 67.4, 61.56, 61.54, 50.0, 29.8, 21.55, 21.54, 20.0, 13.7;
¹⁹F NMR (471 MHz, CDCl₃): δ -126.9 - -127.6 (m)

HRMS (ESI-TOF): calc'd for $C_{20}H_{29}CIFNO_5 [M+H]^+ 418.1791$; found 418.1791.

21. Diisopropyl 2-(butyl(naphthalen-2-yl)amino)malonate (55u)

Yield: 95% (Method E)

Physical State: dark reddish brown colored oily liquid;

 $\mathbf{R}_{f} = 0.56 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.75 (t, *J* = 9.1 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.22 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 1H), 5.18 (dq, *J* = 12.6, 6.3 Hz, 2H), 5.15 (s, 1H), 3.64 – 3.53 (m, 2H), 1.72 (p, *J* = 7.8 Hz, 2H), 1.43 (h, *J* = 7.4 Hz, 2H), 1.32 (dd, *J* = 12.2, 6.3 Hz, 12H), 0.99 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.4, 145.7, 134.5, 128.7, 127.8, 127.3, 126.4, 126.1, 122.8, 117.8, 109.8, 69.5, 67.8, 49.3, 30.2, 21.6, 20.2, 13.8;

HRMS (ESI-TOF): calc'd for $C_{23}H_{31}NO_4[M+H]^+$ 386.2326; found 386.2331.

22. Diisopropyl 2-(methyl(phenethyl)amino)malonate (55v)

Yield: 39% (Method F)

Physical State: Pale yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.29 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.36 (t, J = 7.5 Hz, 2H), 7.31 – 7.26 (m, 3H), 5.20 (hept, J = 6.3 Hz, 2H), 4.21 (s, 1H), 3.02 – 2.97 (m, 2H), 2.92 (dd, J = 10.3, 5.4 Hz, 2H), 2.66 (s, 3H), 1.36 (d, J = 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 139.9, 139.2, 128.7, 128.2, 125.9, 70.2, 68.9, 56.8, 39.4, 34.8, 21.7, 21.6.

HRMS (ESI-TOF): calc'd for $C_{10}H_{17}NO_4[M+H]^+$ 322.2013; found 322.2014.

23. Diisopropyl 2-(butyl(phenethyl)amino)malonate (55w)

Yield: 60% (Method F)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.53 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.28 (t, *J* = 7.5 Hz, 2H), 7.24 – 7.17 (m, 3H), 5.11 (hept, *J* = 6.2 Hz, 2H), 4.22 (s, 1H), 3.00 – 2.94 (m, 2H), 2.83 – 2.78 (m, 2H), 2.78 – 2.73 (m, 2H), 1.47 (p, *J* = 7.5 Hz, 2H), 1.32 (dt, *J* = 15.0, 7.4 Hz, 2H), 1.28 (dd, *J* = 6.3, 1.6 Hz, 12H), 0.92 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 167.7, 140.0, 128.6, 128.0, 125.7, 68.6, 67.7, 54.3, 52.2, 35.5, 30.6, 21.6, 21.5, 20.1, 13.9;

HRMS (ESI-TOF): calc'd for $C_{21}H_{33}NO_4[M+H]^+$ 364.2482; found 364.2493.

24. Diisopropyl 2-(phenethyl(phenyl)amino)malonate (55x)

Yield: 25% (M = Li), 54% (M = MgBr) (**Method F** for M = Li and **Method E** for M = MgBr)

Physical State: dark orange colored non-viscous liquid;

 $\mathbf{R}_{f} = 0.42 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.33 – 7.25 (m, 4H), 7.25 – 7.19 (m, 3H), 6.90 (d, J = 8.0 Hz, 2H), 6.84 (t, J = 7.3 Hz, 1H), 5.10 (hept, J = 6.3 Hz, 2H), 5.02 (s, 1H), 3.73 – 3.61 (m, 2H), 3.00 – 2.86 (m, 2H), 1.26 (dd, J = 9.0, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 167.3, 147.5, 139.5, 129.2, 128.6, 128.4, 126.1, 118.9, 69.6, 67.3, 50.9, 34.3, 21.6;

HRMS (ESI-TOF): calc'd for $C_{23}H_{29}NO_4[M+H]^+$ 384.2169; found 384.2191.

25. Diisopropyl 2-((3,5-difluoro-4-methoxyphenyl)(phenethyl)amino)malonate (55y)

Yield: 43% (Method E)

Physical State: colorless viscous oily liquid;

 $\mathbf{R}_{f} = 0.35 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.30 – 7.25 (m, 2H), 7.19 (d, J = 7.1 Hz, 3H), 6.38 (d, J = 10.8 Hz, 2H), 5.08 (hept, J = 6.2 Hz, 2H), 4.82 (s, 1H), 3.85 (s, 3H), 3.61 – 3.52 (m, 2H), 2.92 – 2.84 (m, 2H), 1.25 (dd, J = 11.2, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.6, 157.3, 157.2, 155.7, 155.6, 143.5, 138.7, 128.5, 128.4, 126.3, 98.8, 98.6, 69.9, 67.2, 61.9, 51.6, 34.1, 21.5, 21.4;

¹⁹F NMR (471 MHz, CDCl₃): δ –127.7 – –128.3 (m)

HRMS (ESI-TOF): calc'd for $C_{24}H_{29}F_2NO_5[M+H]^+$ 450.2087; found 450.2110.

26. Diisopropyl 2-(cyclopentyl(phenyl)amino)malonate (55z)

Yield: 82% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.73 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.20 – 7.14 (m, 2H), 7.01 (d, J = 8.2 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 5.02 (hept, J = 6.3 Hz, 2H), 4.74 (s, 1H), 4.12 (p, J = 8.3 Hz, 1H), 2.03 – 1.94 (m, 2H), 1.77 – 1.68 (m, 2H), 1.58 (dh, J = 15.7, 7.6, 6.8 Hz, 4H), 1.22 (d, J = 6.3 Hz, 6H), 1.08 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 168.2, 148.0, 128.5, 119.8, 118.0, 69.4, 65.2, 62.1, 29.8, 23.7, 21.5, 21.3;

HRMS (ESI-TOF): calc'd for $C_{20}H_{29}NO_4[M+H]^+$ 348.2169; found 348.2180.

27. Diisopropyl 2-(cyclopentyl(p-tolyl)amino)malonate (56a)

Yield: 66% (Method E)

Physical State: orange colored crystalline solid (m.p. = 51-55.2 °C);

 $\mathbf{R}_{f} = 0.45 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.97 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 5.02 (hept, J = 6.2 Hz, 2H), 4.70 (s, 1H), 4.05 (p, J = 8.0 Hz, 1H), 2.23 (s, 3H), 1.95 (dd, J = 14.0, 5.5 Hz, 2H), 1.70 (s, 2H), 1.61 – 1.50 (m, 4H), 1.21 (d, J = 6.4 Hz, 6H), 1.11 (d, J = 6.4 Hz, 6H);

Figure S6. X-ray crystal structure of diisopropyl 2-(cyclopentyl(*p*-tolyl)amino)malonate (56a)

Table S9. X-Ray crystal data and structure refinement for 56a

Table 1. Identification code pvk225c_0m_a Empirical formula C21 H31 N O4 Formula weight 361.47 Temperature 296(2) K 0.71073 Å Wavelength Crystal system Orthorhombic Space group P212121 a = 10.048(8) Å Unit cell dimensions $\alpha = 90^{\circ}$.

	b = 10.848(8) Å $\beta = 90^{\circ}$. c = 20.346(16) Å $\gamma = 90^{\circ}$.		
Volume	2218(3) Å ³		
Z	4		
Density (calculated)	1.083 Mg/m ³		
Absorption coefficient	0.074 mm ⁻¹		
F(000)	784		
Crystal size	0.317 x 0.233 x 0.179 mm ³		
Theta range for data collection	2.002 to 28.332°.		
Index ranges	-13<=h<=13, -14<=k<=14, -27<=l<=27		
Reflections collected	23728		
Independent reflections	5507 [R(int) = 0.0396]		
Completeness to theta = 25.000°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.949 and 0.887		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5507 / 24 / 240		
Goodness-of-fit on F ²	1.034		
Final R indices [I>2sigma(I)]	R1 = 0.0684, wR2 = 0.1992		
R indices (all data)	R1 = 0.1208, wR2 = 0.2379		
Absolute structure parameter	0.5(5)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.326 and -0.258 e.Å ⁻³		

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for pvk225c_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1)	6056(3)	3980(3)	4085(1)	69(1)
O(2)	7051(3)	2140(3)	4100(2)	77(1)
O(3)	7713(3)	1668(3)	2651(2)	79(1)
O(4)	9616(3)	2513(3)	3011(2)	94(1)

N(1)	8108(3)	4759(3)	3221(2)	57(1)
C(1)	8732(4)	5182(4)	3794(2)	58(1)
C(2)	9413(4)	4390(4)	4206(2)	67(1)
C(3)	10026(5)	4806(5)	4775(3)	88(2)
C(4)	10035(7)	6039(6)	4944(3)	105(2)
C(5)	9368(8)	6833(6)	4526(3)	117(2)
C(6)	8726(6)	6422(4)	3964(3)	84(1)
C(7)	10678(11)	6482(8)	5576(4)	165(4)
C(8)	7669(4)	5633(4)	2715(2)	61(1)
C(9)	6236(5)	6129(5)	2784(3)	85(1)
C(10)	5804(6)	6505(9)	2104(3)	126(3)
C(11)	6770(10)	5972(11)	1665(4)	171(4)
C(12)	7731(5)	5146(5)	2014(2)	80(1)
C(13)	7509(4)	3545(3)	3210(2)	55(1)
C(14)	6865(4)	3129(4)	3853(2)	57(1)
C(15)	5383(6)	3740(5)	4709(2)	87(2)
C(16)	6112(11)	4361(13)	5202(4)	194(4)
C(17)	4025(8)	4215(12)	4654(4)	172(4)
C(18)	8429(4)	2520(4)	2953(2)	65(1)
C(19)	8400(5)	534(6)	2432(3)	102(2)
C(20)	8322(10)	-404(6)	2986(5)	143(3)
C(21)	7747(8)	137(10)	1837(5)	157(3)

Table 3.	Bond lengths	[Å] and	angles [°]	for pvl	x225c_0n	n_a.

O(1)-C(14)	1.317(5)
O(1)-C(15)	1.463(5)
O(2)-C(14)	1.199(5)
O(3)-C(18)	1.322(5)
O(3)-C(19)	1.479(6)
O(4)-C(18)	1.199(5)
N(1)-C(1)	1.402(5)
N(1)-C(13)	1.448(5)
N(1)-C(8)	1.467(5)
C(1)-C(2)	1.382(6)
C(1)-C(6)	1.389(6)

C(2)-C(3)	1.386(6)
C(2)-H(2)	0.9300
C(3)-C(4)	1.381(8)
C(3)-H(3)	0.9300
C(4)-C(5)	1.383(9)
C(4)-C(7)	1.518(8)
C(5)-C(6)	1.387(7)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-C(12)	1.522(6)
C(8)-C(9)	1.544(7)
C(8)-H(8)	0.9800
C(9)-C(10)	1.505(8)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.441(11)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-C(12)	1.497(10)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-C(14)	1.527(5)
C(13)-C(18)	1.538(6)
C(13)-H(13)	0.9800
C(15)-C(16)	1.412(11)
C(15)-C(17)	1.463(11)
C(15)-H(15)	0.9800
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17)-H(17A)	0.9600

C(17)-H(17B)	0.9600
C(17)-H(17C)	0.9600
C(19)-C(21)	1.443(10)
C(19)-C(20)	1.522(10)
C(19)-H(19)	0.9800
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(14)-O(1)-C(15)	118.1(3)
C(18)-O(3)-C(19)	117.9(3)
C(1)-N(1)-C(13)	119.7(3)
C(1)-N(1)-C(8)	120.4(3)
C(13)-N(1)-C(8)	116.9(3)
C(2)-C(1)-C(6)	116.9(4)
C(2)-C(1)-N(1)	121.5(4)
C(6)-C(1)-N(1)	121.5(4)
C(1)-C(2)-C(3)	121.6(4)
C(1)-C(2)-H(2)	119.2
C(3)-C(2)-H(2)	119.2
C(4)-C(3)-C(2)	121.7(5)
C(4)-C(3)-H(3)	119.1
C(2)-C(3)-H(3)	119.1
C(3)-C(4)-C(5)	116.6(5)
C(3)-C(4)-C(7)	121.4(6)
C(5)-C(4)-C(7)	121.9(6)
C(4)-C(5)-C(6)	122.1(5)
C(4)-C(5)-H(5)	118.9
C(6)-C(5)-H(5)	118.9
C(5)-C(6)-C(1)	121.0(5)
C(5)-C(6)-H(6)	119.5
C(1)-C(6)-H(6)	119.5
C(4)-C(7)-H(7A)	109.5

C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
N(1)-C(8)-C(12)	114.8(4)
N(1)-C(8)-C(9)	116.3(3)
C(12)-C(8)-C(9)	104.1(4)
N(1)-C(8)-H(8)	107.0
C(12)-C(8)-H(8)	107.0
C(9)-C(8)-H(8)	107.0
C(10)-C(9)-C(8)	106.3(4)
C(10)-C(9)-H(9A)	110.5
C(8)-C(9)-H(9A)	110.5
C(10)-C(9)-H(9B)	110.5
C(8)-C(9)-H(9B)	110.5
H(9A)-C(9)-H(9B)	108.7
C(11)-C(10)-C(9)	105.5(5)
C(11)-C(10)-H(10A)	110.6
C(9)-C(10)-H(10A)	110.6
C(11)-C(10)-H(10B)	110.6
C(9)-C(10)-H(10B)	110.6
H(10A)-C(10)-H(10B)	108.8
C(10)-C(11)-C(12)	112.3(6)
C(10)-C(11)-H(11A)	109.1
C(12)-C(11)-H(11A)	109.1
C(10)-C(11)-H(11B)	109.1
C(12)-C(11)-H(11B)	109.1
H(11A)-C(11)-H(11B)	107.9
C(11)-C(12)-C(8)	102.2(5)
C(11)-C(12)-H(12A)	111.3
C(8)-C(12)-H(12A)	111.3
C(11)-C(12)-H(12B)	111.3
C(8)-C(12)-H(12B)	111.3
H(12A)-C(12)-H(12B)	109.2
N(1)-C(13)-C(14)	115.6(3)

N(1)-C(13)-C(18)	114.4(3)
C(14)-C(13)-C(18)	109.4(3)
N(1)-C(13)-H(13)	105.5
C(14)-C(13)-H(13)	105.5
C(18)-C(13)-H(13)	105.5
O(2)-C(14)-O(1)	125.0(4)
O(2)-C(14)-C(13)	123.9(4)
O(1)-C(14)-C(13)	111.1(3)
C(16)-C(15)-O(1)	107.0(6)
C(16)-C(15)-C(17)	111.7(8)
O(1)-C(15)-C(17)	107.6(5)
C(16)-C(15)-H(15)	110.2
O(1)-C(15)-H(15)	110.2
C(17)-C(15)-H(15)	110.2
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(15)-C(17)-H(17A)	109.5
C(15)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(15)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
O(4)-C(18)-O(3)	125.6(4)
O(4)-C(18)-C(13)	124.7(4)
O(3)-C(18)-C(13)	109.7(3)
C(21)-C(19)-O(3)	106.8(6)
C(21)-C(19)-C(20)	113.5(7)
O(3)-C(19)-C(20)	108.0(5)
C(21)-C(19)-H(19)	109.5
O(3)-C(19)-H(19)	109.5
C(20)-C(19)-H(19)	109.5
C(19)-C(20)-H(20A)	109.5

C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(19)-C(21)-H(21A)	109.5
C(19)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(19)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for pvk225c_0m_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U11	U ²²	U ³³	U ²³	U13	U ¹²	
O(1)	82(2)	64(2)	61(2)	8(1)	19(2)	8(1)	
O(2)	91(2)	62(2)	78(2)	11(2)	10(2)	8(2)	
O(3)	58(2)	80(2)	99(2)	-35(2)	9(2)	-5(1)	
O(4)	58(2)	92(2)	134(3)	-35(2)	5(2)	-1(2)	
N(1)	60(2)	58(2)	54(2)	5(1)	-5(2)	-6(2)	
C(1)	56(2)	58(2)	61(2)	2(2)	-7(2)	-7(2)	
C(2)	68(2)	60(2)	73(2)	3(2)	-14(2)	-9(2)	
C(3)	88(3)	86(3)	89(3)	15(3)	-33(3)	-17(3)	
C(4)	123(5)	100(4)	91(4)	-7(3)	-45(4)	-31(4)	
C(5)	165(7)	74(3)	111(4)	-13(3)	-57(5)	-9(4)	
C(6)	102(4)	61(3)	89(3)	-6(2)	-32(3)	2(3)	
C(7)	235(11)	131(6)	129(6)	-21(5)	-99(7)	-33(7)	
C(8)	59(2)	66(2)	60(2)	11(2)	0(2)	-4(2)	
C(9)	68(3)	95(3)	92(3)	17(3)	-1(2)	13(3)	
C(10)	79(3)	190(7)	111(5)	18(5)	-16(3)	29(4)	
C(11)	160(7)	259(9)	93(4)	-6(5)	-48(5)	50(7)	

C(12)	87(3)	96(3)	59(2)	7(2)	0(2)	-3(3)
C(13)	52(2)	58(2)	56(2)	-2(2)	0(2)	-6(2)
C(14)	55(2)	56(2)	60(2)	2(2)	-3(2)	-2(2)
C(15)	115(4)	89(3)	57(3)	6(2)	25(3)	23(3)
C(16)	169(6)	312(8)	100(4)	-41(6)	8(5)	-12(6)
C(17)	105(5)	303(12)	109(5)	12(7)	40(4)	-8(7)
C(18)	54(2)	70(3)	72(3)	-11(2)	9(2)	-6(2)
C(19)	64(3)	110(4)	132(5)	-61(4)	25(3)	-7(3)
C(20)	166(7)	76(4)	187(8)	16(5)	66(6)	13(4)
C(21)	108(5)	186(7)	177(7)	-98(6)	15(5)	11(5)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for pvk225c_0m_a.

H(2)946235584099H(3)1044242395050H(5)934976694626H(6)828569853697H(7A)1144269775473H(7B)1094857855834H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	80 105 140 101 247 247 247	
H(3)1044242395050H(5)934976694626H(6)828569853697H(7A)1144269775473H(7B)1094857855834H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	105 140 101 247 247 247	
H(5)934976694626H(6)828569853697H(7A)1144269775473H(7B)1094857855834H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	140 101 247 247 247	
H(6)828569853697H(7A)1144269775473H(7B)1094857855834H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	101 247 247 247	
H(7A)1144269775473H(7B)1094857855834H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	247 247 247	
H(7B)1094857855834H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	247 247	
H(7C)1005069665821H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	247	
H(8)826763462738H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	271	
H(9A)565154952956H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	74	
H(9B)621568323079H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	102	
H(10A)492061922009H(10B)579473952062H(11A)725866281448H(11B)631055011328	102	
H(10B)579473952062H(11A)725866281448H(11B)631055011328	152	
H(11A)725866281448H(11B)631055011328	152	
H(11B) 6310 5501 1328	205	
	205	
H(12A) 8621 5222 1834	96	
H(12B) 7453 4291 1992	96	
H(13) 6779 3598 2892	66	
H(15) 5367 2853 4799	104	
H(16A) 6094 3886 5600	290	
H(16B) 5721 5155 5280	290	

H(16C)	7016	4464	5060	290	
H(17A)	4026	5088	4732	258	
H(17B)	3468	3816	4973	258	
H(17C)	3690	4054	4221	258	
H(19)	9335	722	2337	123	
H(20A)	8724	-66	3375	215	
H(20B)	8786	-1140	2860	215	
H(20C)	7407	-597	3074	215	
H(21A)	6853	-115	1937	236	
H(21B)	8226	-544	1650	236	
H(21C)	7726	806	1528	236	

Table 6. Torsion angles [°] for pvk225c_0m_a.

28. Diisopropyl 2-(cyclopentyl(4-methoxy-3,5-dimethylphenyl)amino)malonate (56b)

Yield: 70% (Method E)

Physical State: off white waxy solid;

 $\mathbf{R}_{f} = 0.47 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.66 (s, 2H), 5.06 – 4.93 (m, 2H), 4.63 (s, 1H), 4.05 – 3.92 (m, 1H), 3.60 (s, 3H), 2.18 (s, 6H), 1.91 (s, 2H), 1.66 (s, 2H), 1.60 – 1.41 (m, 4H), 1.18 (d, J = 6.5 Hz, 6H), 1.09 (d, J = 6.5 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 168.2, 150.8, 143.8, 130.0, 119.5, 68.8, 65.8, 62.0, 59.5, 30.0, 23.5, 21.3, 21.1, 16.1;

HRMS (ESI-TOF): calc'd for $C_{23}H_{35}NO_5[M+H]^+$ 406.2588; found 406.2644.

29. Diisopropyl 2-(cyclohexyl(phenyl)amino)malonate (56c)

Yield: 83% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.60 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR** (600 MHz, CDCl₃): δ 7.14 (dd, J = 8.8, 7.1 Hz, 2H), 6.92 (d, J = 8.2 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 5.02 (hept, J = 6.2 Hz, 2H), 4.78 (s, 1H), 3.60 (td, J = 11.2, 3.2 Hz, 1H), 1.97 (d, J = 11.5 Hz, 2H), 1.84 (d, J = 12.7 Hz, 2H), 1.68 (d, J = 13.4 Hz, 1H), 1.36 (dp, J = 23.6, 12.6 Hz, 4H), 1.23 (d, J = 6.3 Hz, 6H), 1.18 – 1.10 (m, 1H), 1.05 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 168.3, 147.5, 128.4, 118.7, 116.2, 63.8, 59.0, 31.0, 25.9, 25.6, 21.4, 21.1;

HRMS (ESI-TOF): calc'd for $C_{21}H_{31}NO_4[M+H]^+$ 362.2326; found 362.2335.

30. Diisopropyl 2-((1-(*tert*-butoxycarbonyl)piperidin-4-yl)(phenyl)amino)malonate (56d)

Yield: 48% (Method E)

Physical State: dark brownish yellow waxy solid;

 $\mathbf{R}_{f} = 0.47$ (4:1 EtOAc : hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.16 (t, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 5.01 (hept, *J* = 6.1 Hz, 2H), 4.70 (s, 1H), 4.20 (s, 2H), 3.70 (t, *J* = 10.0 Hz, 1H), 2.77 (s, 2H), 1.90 (d, *J* = 12.2 Hz, 2H), 1.59 – 1.49 (m, 2H), 1.45 (s, 9H), 1.22 (d, *J* = 6.3 Hz, 6H), 1.07 (d, *J* = 6.1 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 168.1, 154.6, 147.2, 128.6, 120.0, 117.8, 79.5, 69.4, 64.5, 57.8, 43.5, 30.4, 28.3, 21.5, 21.3;

HRMS (ESI-TOF): calc'd for $C_{25}H_{38}N_2O_6[M+H]^+$ 463.2803; found 463.2812.

31. Diisopropyl 2-((1-(*tert*-butoxycarbonyl)piperidin-4-yl)(2,3-dihydrobenzofuran-5-yl)amino)malonate (56e)

Yield: 32% (Method E)

Physical State: pale yellow colored gummy substance;

 $\mathbf{R}_{f} = 0.30 \ (20\% \ \text{EtOAc/hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 7.00 (d, J = 2.4 Hz, 1H), 6.85 (dd, J = 8.6, 2.4 Hz, 1H), 6.57 (d, J = 8.5 Hz, 1H), 4.99 (hept, J = 6.2 Hz, 2H), 4.57 (s, 1H), 4.47 (t, J = 8.6 Hz, 2H), 4.24 – 3.87 (m, 2H), 3.37 (tt, J = 11.4, 3.4 Hz, 1H), 3.09 (t, J = 8.6 Hz, 2H), 2.69 (s, 2H), 1.84 (d, J = 11.8 Hz, 2H), 1.39 (s, 11H), 1.15 (dd, J = 14.0, 6.3 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃): δ 168.2, 156.2, 154.5, 139.8, 126.8, 124.6, 122.1, 108.4, 79.3, 71.1, 69.0, 67.6, 58.3, 31.3, 29.8, 28.2, 21.41, 21.40;

HRMS (ESI-TOF): calc'd for $C_{27}H_{40}N_2O_7 [M+H]^+$ 505.2908; found 505.2928.

32. Tetraisopropyl 2,2'-(decane-1,10-diylbis((4-fluorophenyl)azanediyl))dimalonate (56f)

Yield: 96% (Method E)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.55$ (20% EtOAc/hexanes);

¹**H** NMR (600 MHz, CDCl₃): δ 6.92 (t, J = 8.6 Hz, 4H), 6.79 (dd, J = 9.0, 4.4 Hz, 4H), 5.09 (hept, J = 6.2 Hz, 4H), 4.81 (s, 2H), 3.40 – 3.27 (m, 4H), 1.54 (s, 4H), 1.24 (dd, J = 8.6, 6.4 Hz, 36H);

¹³C NMR (151 MHz, CDCl₃): δ 167.3, 157.9, 155.5, 144.43, 144.41, 117.5, 117.4, 115.5, 115.2, 69.4, 68.5, 50.0, 29.5, 29.4, 28.0, 26.9, 21.6, 21.5;

¹⁹F NMR (471 MHz, CDCl₃): δ –125.6 (s);

HRMS (ESI-TOF): calc'd for $C_{40}H_{58}F_2N_2O_8[M+H]^+$ 733.4234; found 733.4249.

33. Tetraisopropyl 2,2'-(decane-1,10-diylbis((4-methoxyphenyl)azanediyl)) dimalonate (56g)

Yield: 89% (Method E)

Physical State: dark brown oily liquid;

 $\mathbf{R}_{f} = 0.30 \ (20\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.93 – 6.72 (m, 8H), 5.08 (hept, *J* = 6.2 Hz, 4H), 4.79 (s, 2H), 3.75 (s, 6H), 3.37 – 3.28 (m, 4H), 1.51 (s, 4H), 1.24 (t, *J* = 6.3 Hz, 36H);

¹³C NMR (151 MHz, CDCl₃): δ 167.6, 153.4, 142.1, 118.6, 114.3, 69.2, 69.1, 55.5, 49.8, 29.5, 29.4, 28.2, 27.0, 21.63, 21.61;

HRMS (ESI-TOF): calc'd for $C_{42}H_{64}N_2O_{10}[M+H]^+$ 757.4634; found 757.4641.

34. Diisopropyl 2-((10-((1,3-diisopropoxy-1,3-dioxopropan-2-yl)(4-fluorophenyl) amino)decyl)(4-methoxyphenyl)amino)malonate (56h)

Yield: 27% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.50 \ (20\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 6.91 (t, J = 8.7 Hz, 2H), 6.86 (d, J = 9.1 Hz, 2H), 6.79 (dd, J = 9.2, 3.4 Hz, 4H), 5.08 (dtt, J = 12.5, 6.2, 3.1 Hz, 4H), 4.80 (d, J = 11.3 Hz, 2H), 3.74 (s, 3H), 3.33 (q, J = 6.9 Hz, 4H), 1.56 – 1.48 (m, 4H), 1.30 – 1.18 (m, 36H);

¹³C NMR (151 MHz, CDCl₃): δ 167.6, 167.3, 157.8, 155.5, 153.4, 144.4, 144.3, 142.1, 118.7, 117.47, 117.40, 115.4, 115.2, 114.3, 69.4, 69.2, 69.1, 68.5, 55.5, 50.0, 49.8, 29.5, 29.4, 29.3, 28.2, 28.0, 26.98, 26.92, 21.6, 21.5;

¹⁹F NMR (471 MHz, CDCl₃): δ –125.6 (s);

HRMS (ESI-TOF): calc'd for $C_{41}H_{61}FN_2O_9[M+H]^+$ 745.4434; found 745.4441.

35. Diisopropyl 2-(benzyl(phenyl)amino)malonate (56i)

Yield: 49% (Method E) Physical State: yellow colored solid (m.p. = 76-81°C); $\mathbf{R}_f = 0.43$ (10% EtOAc/hexanes);

¹**H** NMR (600 MHz, CDCl₃): δ 7.41 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.25 (dt, J = 26.0, 7.3 Hz, 3H), 6.83 (dd, J = 12.8, 8.0 Hz, 3H), 5.24 (s, 1H), 5.09 (hept, J = 6.2 Hz, 2H), 4.80 (s, 2H), 1.26 (d, J = 6.4 Hz, 6H), 1.20 (d, J = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 148.3, 139.0, 128.9, 128.1, 126.55, 126.51, 118.9, 114.2, 69.7, 66.4, 54.0, 21.4, 21.3;

HRMS (ESI-TOF): calc'd for $C_{22}H_{27}NO_4[M+H]^+$ 370.2013; found 370.2052.

36. Diisopropyl 2-(phenyl(p-tolyl)amino)malonate (56j)

Yield: 59% (Method E)

Physical State: colorless viscous oily liquid;

 $\mathbf{R}_{f} = 0.23 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.22 (t, *J* = 8.0 Hz, 2H), 7.13 (s, 4H), 6.92 (dd, *J* = 12.2, 7.6 Hz, 3H), 5.35 (s, 1H), 5.04 (hept, *J* = 6.2 Hz, 2H), 2.34 (s, 3H), 1.19 (d, *J* = 6.4 Hz, 6H), 1.15 (d, *J* = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 146.8, 143.0, 133.5, 129.7, 128.8, 124.7, 120.9, 119.2, 69.5, 67.9, 21.37, 21.32, 20.6;

HRMS (ESI-TOF): calc'd for $C_{22}H_{27}NO_4 [M+H]^+ 370.2013$; found 370.2033.

37. Diisopropyl 2-((4-(methylthio)phenyl)(phenyl)amino)malonate (56k)

Yield: 52% (Method E)

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.46 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.16 (td, J = 7.2, 1.9 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.6 Hz, 5H), 5.22 (s, 1H), 4.93 (hept, J = 6.3 Hz, 2H), 2.35 (s, 3H), 1.08 (d, J = 6.3 Hz, 6H), 1.04 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.5, 146.2, 143.8, 131.8, 129.1, 123.1, 122.5, 121.6, 69.7, 67.9, 21.4, 21.3, 17.0;

HRMS (ESI-TOF): calc'd for $C_{22}H_{27}NO_4S [M+H]^+ 402.1734$; found 402.1739.

38. Diisopropyl 2-((4-phenoxyphenyl)(phenyl)amino)malonate (56l)

Yield: 43% (Method E)

Physical State: pale yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.37 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.38 (t, *J* = 7.8 Hz, 2H), 7.32 – 7.24 (m, 4H), 7.14 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.97 (t, *J* = 7.3 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 2H), 5.39 (s, 1H), 5.10 (hept, *J* = 6.0 Hz, 2H), 1.25 (d, *J* = 6.4 Hz, 6H), 1.21 (d, *J* = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.5, 157.2, 153.8, 147.0, 140.5, 129.5, 128.9, 127.0, 123.0, 120.8, 119.5, 118.48, 118.45, 69.6, 67.9, 21.37, 21.34;

HRMS (ESI-TOF): calc'd for $C_{27}H_{29}NO_5[M+H]^+$ 448.2118; found 448.2185.

39. Diisopropyl 2-([1,1'-biphenyl]-4-yl(phenyl)amino)malonate (56m)

Yield: 60% (Method E)Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.40 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.60 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.34 (q, J = 7.6, 7.0 Hz, 3H), 7.21 (d, J = 7.6 Hz, 2H), 7.14 – 7.04 (m, 3H), 5.43 (s, 1H), 5.08 (hept, J = 6.3 Hz, 2H), 1.22 (d, J = 6.3 Hz, 6H), 1.17 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.6, 145.8, 145.7, 140.6, 134.8, 129.1, 128.6, 127.6, 126.6, 126.5, 123.38, 123.30, 121.2, 69.7, 67.9, 21.4, 21.3;

HRMS (ESI-TOF): calc'd for $C_{27}H_{29}NO_4[M+H]^+$ 432.2169; found 432.2218.

40. Diisopropyl 2-(*m*-tolyl(*p*-tolyl)amino)malonate (56n)

Yield: 55% (Method E)

Physical State: white solid (m.p. = 75-78 °C);

 $\mathbf{R}_{f} = 0.45 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.20 – 7.01 (m, 5H), 6.83 – 6.64 (m, 3H), 5.32 (s, 1H), 5.11 – 4.96 (m, 2H), 2.33 (s, 3H), 2.27 (s, 3H), 1.17 (dd, *J* = 24.5, 6.4 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.8, 146.9, 143.0, 138.6, 133.3, 129.6, 128.7, 124.5, 122.0, 120.1, 116.7, 116.6, 69.5, 67.9, 21.5, 21.4, 21.3, 20.7;

HRMS (ESI-TOF): calc'd for $C_{23}H_{29}NO_4[M+H]^+$ 384.2169; found 384.2195.

41. Diisopropyl 2-(thiophen-2-yl(p-tolyl)amino)malonate (560)

Yield: 61% (Method E)

Physical State: yellow-colored oily liquid;

 $\mathbf{R}_{f} = 0.46 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.44 (dd, J = 3.7, 1.1 Hz, 1H), 7.31 (dd, J = 5.1, 1.1 Hz, 1H), 7.00 (dd, J = 5.0, 3.7 Hz, 1H), 6.89 (d, J = 8.2 Hz, 2H), 6.50 (d, J = 8.4 Hz, 2H), 5.62 (s, 1H), 5.04 (hept, J = 6.2 Hz, 2H), 2.19 (s, 3H), 1.19 (d, J = 6.4 Hz, 6H), 1.08 (d, J = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.3, 141.7, 139.4, 129.2, 127.9, 127.8, 126.7, 126.5, 114.8, 70.4, 69.3, 21.13, 21.11, 20.2;

HRMS (ESI-TOF): calc'd for $C_{20}H_{25}NO_4S [M+H]^+$ 376.1577; found 376.1573.

42. Diisopropyl 2-(benzo[b]thiophen-3-yl(p-tolyl)amino)malonate (56p)

Yield: 46% (Method E)

Physical State: orange colored waxy solid;

 $\mathbf{R}_{f} = 0.42 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 8.19 (dd, J = 6.3, 2.9 Hz, 1H), 8.15 (s, 1H), 7.81 (dd, J = 5.9, 2.9 Hz, 1H), 7.30 (td, J = 6.5, 5.6, 3.7 Hz, 2H), 6.84 (d, J = 8.3 Hz, 2H), 6.56 (d, J = 8.4 Hz, 2H), 5.48 (s, 1H), 5.05 (hept, J = 6.2 Hz, 2H), 2.16 (s, 3H), 1.11 (dd, J = 15.7, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 167.4, 141.7, 140.5, 137.1, 129.9, 129.2, 128.6, 128.0, 125.2, 123.9, 123.5, 122.3, 115.6, 70.3, 69.8, 21.34, 21.33, 20.3;

HRMS (ESI-TOF): calc'd for $C_{24}H_{27}NO_4S[M+H]^+$ 426.1734; found 426.1788.

43. Diisopropyl 2-((4-chlorophenyl)(4-methoxyphenyl)amino)malonate (56q)

Yield: 36% (Method E)

Physical State: dark yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.43 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.29 (d, J = 8.9 Hz, 2H), 7.08 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 6.56 (d, J = 9.0 Hz, 2H), 5.21 (s, 1H), 5.01 (hept, J = 6.2 Hz, 2H), 3.79 (s, 3H), 1.15 (dd, J = 11.2, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.4, 157.9, 146.4, 137.2, 129.7, 128.5, 123.9, 116.6, 114.6, 69.7, 68.0, 55.3, 21.39, 21.38;

HRMS (ESI-TOF): calc'd for $C_{22}H_{26}CINO_5 [M+H]^+ 420.1572$; found 420.1576.

44. Diisopropyl 2-((4-fluoro-3,5-dimethylphenyl)(4-methoxyphenyl)amino) malonate (56r)

Yield: 49% (Method E)

Physical State: brown colored solid (m.p. = 72-78 °C);

 $\mathbf{R}_{f} = 0.31 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.13 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H), 6.49 (d, J = 6.1 Hz, 2H), 5.23 (s, 1H), 5.03 (hept, J = 6.2 Hz, 2H), 3.78 (s, 3H), 2.16 (d, J = 1.6 Hz, 6H), 1.16 (dd, J = 15.7, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.8, 156.3, 155.7, 154.2, 142.6, 138.8, 126.3, 124.4, 124.3, 119.2, 114.3, 69.5, 68.3, 55.3, 21.4, 21.3, 14.78, 14.76;

¹⁹**F** NMR (471 MHz, CDCl₃): δ –131.74 (ddq, *J* = 6.2, 4.2, 2.2 Hz);

HRMS (ESI-TOF): calc'd for $C_{24}H_{30}FNO_5 [M+H]^+ 432.2181$; found 432.2178.

45. Diisopropyl 2-((4-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)phenyl)(4-fluoro-3,5dimethylphenyl) amino)malonate (56s)

Yield: 57% (Method E)

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.48 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.06 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 6.3 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 2H), 5.26 (s, 1H), 5.03 (hept, *J* = 6.2 Hz, 2H), 3.77 (t, *J* = 7.1 Hz, 2H), 2.75 (t, *J* = 7.1 Hz, 2H), 2.20 (s, 6H), 1.17 (dd, *J* = 21.4, 6.3 Hz, 12H), 0.89 (s, 9H), 0.01 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 157.5, 155.9, 145.2, 140.76, 140.74, 131.8, 129.6, 125.08, 125.05, 124.8, 124.7, 119.3, 69.5, 68.0, 64.5, 38.7, 25.8, 21.4, 21.3, 18.2, 14.65, 14.62, -5.4;

¹⁹**F NMR (471 MHz, CDCl₃):** δ –126.5 (ddp, *J* = 6.6, 4.5, 2.2 Hz);

HRMS (ESI-TOF): calc'd for C₃₁H₄₆FNO₅Si [M+H]⁺ 560.3202; found 560.3256.

46. Diisopropyl 2-((2-bromophenyl)(p-tolyl)amino)malonate (56t)

Yield: 18% (Method E)

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.40 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.76 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.64 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.34 (td, *J* = 7.7, 1.4 Hz, 1H), 7.14 (td, *J* = 7.8, 1.6 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.50 (d, *J* = 8.6 Hz, 2H), 5.33 (s, 1H), 5.02 (hept, *J* = 6.3 Hz, 2H), 2.23 (s, 3H), 1.21 (d, *J* = 6.3 Hz, 6H), 1.10 (d, *J* = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.5, 143.8, 143.6, 133.7, 131.6, 129.3, 128.7, 128.6, 128.1, 125.6, 115.3, 69.7, 67.7, 21.4, 21.3, 20.3;

HRMS (ESI-TOF): calc'd for $C_{22}H_{26}BrNO_4$ [M+H]⁺ 448.1118 [M+Na]⁺ 470.0937; found 448.1045, 470.0877.

47. Diisopropyl 2-((4-chlorophenyl)(3,5-dimethylphenyl)amino)malonate (56u)

Yield: 33% (Method E)

Physical State: dark yellow colored solid (m.p. = 55-62 °C);

 $\mathbf{R}_{f} = 0.48 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.17 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 6.72 (d, J = 8.0 Hz, 3H), 5.26 (s, 1H), 5.03 (hept, J = 6.3 Hz, 2H), 2.25 (s, 6H), 1.19 (d, J = 6.3 Hz, 6H), 1.14 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.5, 145.8, 145.0, 138.9, 128.8, 126.7, 125.6, 121.9, 121.2, 69.7, 68.1, 21.48, 21.42;

HRMS (ESI-TOF): calc'd for $C_{23}H_{28}CINO_4 [M+H]^+ 418.1780$; found 418.1785.

48. Diisopropyl 2-((3,5-dimethylphenyl)(4-phenoxyphenyl)amino)malonate (56v)

Yield: 35% (Method E)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.42 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.34 (t, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 8.8 Hz, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.03 (d, *J* = 7.9 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.61 (s, 1H), 6.53 (s, 2H), 5.33 (s, 1H), 5.06 (hept, *J* = 6.2 Hz, 2H), 2.25 (s, 6H), 1.21 (d, *J* = 6.3 Hz, 6H), 1.18 (d, *J* = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 157.4, 153.3, 147.0, 140.7, 138.5, 129.6, 126.4, 123.1, 122.9, 119.4, 118.4, 116.9, 69.5, 68.0, 21.45, 21.42;

HRMS (ESI-TOF): calc'd for $C_{29}H_{33}NO_5[M+H]^+$ 476.2431; found 476.2465.

Yield: 48% (Method E)

Physical State: yellow colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.40 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.60 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 – 7.33 (m, 3H), 7.28 (d, J = 7.7 Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 6.83 (s, 2H), 6.76 (s, 1H), 5.45 (s, 1H), 5.10 (hept, J = 6.2 Hz, 2H), 2.32 (s, 6H), 1.23 (d, J = 6.3 Hz, 6H), 1.17 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 146.6, 146.0, 141.9, 141.0, 138.6, 129.2, 128.5, 127.1, 126.9, 124.9, 120.8, 120.5, 120.4, 120.0, 69.5, 68.1, 21.4, 21.3;

HRMS (ESI-TOF): calc'd for $C_{29}H_{33}NO_4[M+H]^+$ 460.2482; found 460.2451.

50. Diisopropyl 2-((3,5-dimethylphenyl)(4-fluoro-3,5-dimethylphenyl)amino) malonate (56x)

Yield: 33% (Method E)

Physical State: pale brown colored solid (m.p. = 65-71 °C);

 $\mathbf{R}_{f} = 0.48 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.94 (d, J = 6.3 Hz, 2H), 6.56 (s, 1H), 6.43 (s, 2H), 5.28 (s, 1H), 5.06 (hept, J = 6.2 Hz, 2H), 2.24 (s, 12H), 1.21 (d, J = 6.3 Hz, 6H), 1.18 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 157.9, 156.3, 147.3, 140.1, 140.0, 138.3, 126.7, 126.6, 124.8, 124.7, 122.4, 115.8, 69.4, 68.0, 21.42, 21.40, 21.3, 14.63, 14.61;

¹⁹F NMR (471 MHz, CDCl₃): δ –126.5 (ddp, *J* = 6.8, 4.6, 2.3 Hz);

HRMS (ESI-TOF): calc'd for $C_{25}H_{32}FNO_4 [M+H]^+ 430.2388$; found 430.2401.

51. Diisopropyl 2-(benzo[*b*]thiophen-3-yl(3,5-dimethoxyphenyl)amino)malonate (56y)

Yield: 77% (Method E)

Physical State: yellow colored waxy solid;

 $\mathbf{R}_{f} = 0.25$ (30% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 8.28 (s, 1H), 8.17 (dd, *J* = 6.7, 2.4 Hz, 1H), 7.82 (dd, *J* = 6.5, 2.4 Hz, 1H), 7.35 – 7.26 (m, 2H), 5.91 (d, *J* = 2.1 Hz, 2H), 5.87 (t, *J* = 2.1 Hz, 1H),

5.71 (s, 1H), 5.09 (hept, *J* = 6.2 Hz, 2H), 3.62 (s, 6H), 1.17 (d, *J* = 6.3 Hz, 6H), 1.12 (d, *J* = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.2, 161.0, 145.9, 140.2, 137.0, 129.6, 128.3, 124.8, 123.9, 123.5, 122.2, 93.8, 91.5, 70.4, 69.2, 54.8, 21.26, 21.22;

HRMS (ESI-TOF): calc'd for $C_{25}H_{29}NO_6S[M+H]^+$ 472.1788; found 472.1809.

52. Diisopropyl 2-(benzo[d][1,3]dioxol-5-yl(thiophen-2-yl)amino)malonate (56z)

Yield: 66% (Method E)

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.29 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.41 (dd, J = 3.6, 1.0 Hz, 1H), 7.30 (dd, J = 5.1, 1.0 Hz, 1H), 6.99 (dd, J = 5.0, 3.8 Hz, 1H), 6.52 (d, J = 8.4 Hz, 1H), 6.21 (d, J = 2.3 Hz, 1H), 5.99 (dd, J = 8.4, 2.3 Hz, 1H), 5.78 (s, 2H), 5.51 (s, 1H), 5.01 (hept, J = 6.2 Hz, 2H), 1.16 (d, J = 6.3 Hz, 6H), 1.08 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 167.2, 147.7, 140.4, 139.48, 139.46, 128.0, 126.8, 126.6, 108.1, 106.8, 100.4, 97.8, 70.5, 69.6, 21.2, 21.1;

HRMS (ESI-TOF): calc'd for $C_{20}H_{23}NO_6S[M+H]^+$ 406.1319; found 406.1320.

53. Diethyl 2-((2,6-dichlorophenyl)(2-vinylphenyl)amino)malonate (57a)

Yield: 64% (Method E)

Physical State: beige colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.48$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.44 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 7.7 Hz, 1H), 7.31 – 7.20 (m, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.08 (s, 1H), 5.61 (d, *J* = 17.3 Hz, 1H), 5.38 (d, *J* = 11.0 Hz, 1H), 4.51 – 3.95 (m, 4H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 170.0, 155.2, 138.7, 137.7, 135.8, 135.2, 134.4, 129.6, 129.3, 128.9, 128.5, 128.2, 127.7, 126.8, 126.6, 117.9, 62.4, 61.2, 61.0, 14.4, 13.9; HRMS (ESI-TOF): calc'd for C₂₁H₂₁Cl₂NO₄ [M+H]⁺ 422.0920; found 422.0858.

54. Diethyl 2-((2-allylphenyl)(2,6-dichlorophenyl)amino)malonate (57b)

Yield: 72% (Method E)

Physical State: beige colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.19 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR** (**600 MHz**, **CDCl**₃): δ 7.43 (d, *J* = 7.9 Hz, 1H), 7.26 (d, *J* = 5.1 Hz, 1H) 7.07 (d, *J* = 4.1 Hz, 2H), 7.04 – 7.01 (m, 1H), 6.99 (t, *J* = 8.0 Hz, 1H), 6.93 – 6.86 (m, 1H), 6.04 – 5.87 (m, 2H), 5.03 (d, *J* = 13.7 Hz, 2H), 4.27 – 4.07 (m, 4H), 3.71 (dd, *J* = 15.8, 6.2 Hz, 1H), 3.46 (dd, *J* = 15.8, 6.8 Hz, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 169.8, 155.1, 139.5, 137.6, 136.7, 135.7, 135.2, 130.3, 129.9, 129.5, 128.9, 128.5, 128.3, 127.7, 125.6, 116.1, 62.4, 61.2, 60.8, 37.3, 14.3, 13.9; HRMS (ESI-TOF): calc'd for C₂₂H₂₃Cl₂NO₄ [M+H]⁺ 436.1077; found 436.1076.

55. Diisopropyl 2-(diphenylamino)malonate (59a)

Yield: 75% (Method C)

Physical State: pale brown colored waxy solid;

 $\mathbf{R}_{f} = 0.42 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.17 (t, *J* = 7.8 Hz, 4H), 6.96 (d, *J* = 8.0 Hz, 4H), 6.92 (t, *J* = 7.3 Hz, 2H), 5.25 (s, 1H), 4.93 (hept, *J* = 6.2 Hz, 2H), 1.08 (d, *J* = 6.3 Hz, 6H), 1.02 (d, *J* = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.6, 146.1, 129.0, 122.5, 122.0, 69.6, 67.9, 21.3, 21.2; HRMS (ESI-TOF): calc'd for C₂₁H₂₅NO₄ [M+H]⁺ 356.1856; found 356.1856.

56. Diisopropyl 2-(di-p-tolylamino)malonate (59b)

Yield: 73% (Method C)

Physical State: off white waxy solid;

 $\mathbf{R}_{f} = 0.46 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.10 (d, J = 8.2 Hz, 4H), 6.99 (d, J = 8.4 Hz, 4H), 5.35 (s, 1H), 5.06 (hept, J = 6.1 Hz, 2H), 2.33 (s, 6H), 1.22 (d, J = 6.4 Hz, 6H), 1.17 (d, J = 6.5 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 143.9, 131.7, 129.4, 121.9, 69.3, 67.9, 21.3, 21.2, 20.4;

HRMS (ESI-TOF): calc'd for $C_{23}H_{29}NO_4[M+H]^+$ 384.2169; found 384.2218.

57. Diisopropyl 2-(bis(4-chlorophenyl)amino)malonate (59c)

Yield: 40% (Method C)

Physical State: yellow colored waxy solid;

 $\mathbf{R}_{f} = 0.50 \ (10\% \ \text{EtOAc/hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 7.21 (d, J = 8.9 Hz, 4H), 6.97 (d, J = 8.9 Hz, 4H), 5.24 (s, 1H), 5.02 (hept, J = 6.2 Hz, 2H), 1.18 (d, J = 6.4 Hz, 6H), 1.13 (d, J = 6.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 166.1, 144.5, 129.2, 128.2, 123.4, 70.0, 67.9, 21.4, 21.3; HRMS (ESI-TOF): calc'd for C₂₁H₂₃Cl₂NO₄ [M+H]⁺ 424.1077; found 424.1038.

Yield: 45% (Method C)

Physical State: brown colored oily liquid;

 $\mathbf{R}_{f} = 0.37 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.20 (d, J = 8.3 Hz, 4H), 6.98 (d, J = 8.4 Hz, 4H), 5.28 (s, 1H), 5.02 (hept, J = 6.3 Hz, 2H), 2.43 (s, 6H), 1.16 (dd, J = 25.9, 6.4 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.3, 143.7, 131.6, 128.6, 122.5, 69.7, 67.7, 21.3, 21.2, 16.9;

HRMS (ESI-TOF): calc'd for $C_{23}H_{29}NO_4S_2[M+H]^+$ 448.1611; found 448.1616.

59. Diisopropyl 2-(bis(4-phenoxyphenyl)amino)malonate (59e)

Yield: 41% (Method C)

Physical State: dark purple colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.35 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.33 (t, *J* = 7.9 Hz, 4H), 7.08 (dd, *J* = 16.6, 8.2 Hz, 6H), 7.01 (d, *J* = 8.0 Hz, 4H), 6.96 (d, *J* = 8.9 Hz, 4H), 5.32 (s, 1H), 5.08 (hept, *J* = 6.1 Hz, 2H), 1.21 (dd, *J* = 21.7, 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.6, 157.6, 152.3, 142.0, 129.5, 123.4, 122.8, 119.8, 118.2, 69.7, 68.2, 21.46, 21.44;

HRMS (ESI-TOF): calc'd for $C_{33}H_{33}NO_6[M+H]^+$ 540.2381; found 540.2389.

60. Diisopropyl 2-(di([1,1'-biphenyl]-4-yl)amino)malonate (59f)

Yield: 60% (Method C)

Physical State: pale yellow colored waxy solid;

 $\mathbf{R}_{f} = 0.38 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.65 (dd, J = 23.1, 8.0 Hz, 8H), 7.51 (t, J = 7.6 Hz, 4H), 7.39 (t, J = 7.3 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 5.53 (s, 1H), 5.16 (hept, J = 6.1 Hz, 2H), 1.29 (d, J = 6.3 Hz, 6H), 1.24 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.5, 145.3, 140.5, 135.5, 128.6, 127.7, 126.7, 126.6, 122.3, 69.8, 67.9, 21.4, 21.3;

HRMS (ESI-TOF): calc'd for $C_{33}H_{33}NO_4 [M+H]^+ 508.2482 [M+Na]^+ 530.2302$; found 508.2522, 530.2346.

61. Diisopropyl 2-(di([1,1'-biphenyl]-3-yl)amino)malonate (59g)

Yield: 65% (Method C)

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.45 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.66 (d, J = 7.7 Hz, 4H), 7.50 (dd, J = 14.6, 7.1 Hz, 6H), 7.45 (t, J = 7.8 Hz, 2H), 7.43 – 7.36 (m, 4H), 7.22 (d, J = 7.8 Hz, 2H), 5.60 (s, 1H), 5.15 (hept, J = 5.9 Hz, 2H), 1.26 (d, J = 6.4 Hz, 6H), 1.20 (d, J = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.6, 146.5, 142.1, 140.8, 129.4, 128.5, 127.2, 126.9, 121.5, 121.1, 120.7, 69.7, 68.1, 21.38, 21.30;

HRMS (ESI-TOF): calc'd for $C_{33}H_{33}NO_4[M+H]^+$ 508.2482; found 508.2525.

62. Diethyl 2-(bis(2-vinylphenyl)amino)malonate (59h)

Yield: 47% (Method C)

Physical State: beige colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.38$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.34 (dd, *J* = 20.2, 7.7 Hz, 4H), 7.22 (t, *J* = 7.4 Hz, 2H), 7.18 – 7.12 (m, 2H), 6.69 (dd, *J* = 17.1, 10.9 Hz, 2H), 6.11 (s, 1H), 5.33 (d, *J* = 17.1 Hz, 2H), 4.96 (d, *J* = 10.9 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 2H), 1.07 (t, *J* = 7.1 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 171.1, 137.8, 136.7, 136.0, 129.6, 128.4, 128.3, 127.0, 115.4, 70.0, 62.3, 60.7, 14.4, 13.6;

HRMS (ESI-TOF): calc'd for $C_{23}H_{25}NO_4[M+H]^+$ 380.1856; found 380.1860.

63. Diethyl 2-(bis(2-allylphenyl)amino)malonate (59i)

Yield: 26% (Method C)

Physical State: beige colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.41$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.41 (d, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.24 (d, *J* = 6.8 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 2H), 6.08 (s, 1H), 5.65 (s, 2H), 4.99 (d, *J* = 10.1 Hz, 2H), 4.90 (d, *J* = 17.1 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.04 (s, 2H), 3.26 (dd, *J* = 15.5, 5.0 Hz, 2H), 3.16 (dd, *J* = 15.7, 5.3 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 170.7, 138.4, 137.5, 137.3, 131.9, 129.3, 128.0, 125.7, 115.9, 70.7, 62.2, 60.7, 37.9, 13.8;

HRMS (ESI-TOF): calc'd for $C_{25}H_{29}NO_4 [M+H]^+ 408.2169$; found 408.2169.

64. Dimethyl 2-(bis(2,3-dichlorophenyl)amino)malonate (59j)

Yield: 54% (Method C)

Physical State: beige colored oily liquid;

 $\mathbf{R}_{f} = 0.24$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.53 – 7.47 (m, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 8.1 Hz, 2H), 6.56 (s, 1H), 3.79 (s, 3H), 3.60 (s, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 169.5, 136.4, 134.6, 131.4, 130.6, 130.3, 126.4, 70.2, 53.5, 52.2;

HRMS (ESI-TOF): calc'd for $C_{17}H_{13}Cl_4NO_4[M+Na]^+$ 457.9491; found 457.9428.
65. Dimethyl 2-(bis(4-chloro-2-methylphenyl)amino)malonate (59k)

Yield: 72% (Method C)

Physical State: beige colored oily liquid;

 $\mathbf{R}_{f} = 0.23$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.37 – 7.33 (m, 2H), 7.18 – 7.12 (m, 4H), 6.24 (s, 1H), 3.77 (s, 3H), 3.59 (s, 3H), 2.03 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 170.7, 138.7, 134.8, 133.7, 132.1, 130.8, 125.3, 69.4, 53.1, 52.1, 21.4;

HRMS (**ESI-TOF**): calc'd for $C_{19}H_{19}Cl_2NO_4 [M+Na]^+ 418.0583$; found 418.0588.

66. Diisopropyl 2-(bis(3-fluoro-5-methylphenyl)amino)malonate (59l)

Yield: 29% (Method C)

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.22 (5\% \text{ EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.62 (s, 2H), 6.57 (d, J = 9.4 Hz, 4H), 5.23 (s, 1H), 5.04 (hept, J = 6.2 Hz, 2H), 2.27 (s, 6H), 1.19 (d, J = 6.3 Hz, 6H), 1.15 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.2, 164.0, 162.4, 147.0, 146.9, 140.79, 140.73,

118.42, 118.40, 110.7, 110.6, 106.7, 106.5, 69.9, 67.9, 21.54, 21.52, 21.4, 21.3;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -113.0 (t, *J* = 10.1 Hz);

HRMS (ESI-TOF): calc'd for $C_{23}H_{27}F_2NO_4[M+H]^+ 420.1981$; found 420.1981.

Yield: 67% (Method C)

Physical State: brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.36 (10\% \text{ EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 6.66 (s, 4H), 5.21 (s, 1H), 5.02 (hept, J = 6.2 Hz, 2H), 3.67 (s, 6H), 2.20 (s, 12H), 1.17 (d, J = 6.3 Hz, 6H), 1.13 (d, J = 6.3 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 166.8, 152.4, 141.8, 131.0, 122.2, 69.3, 68.1, 59.6, 21.4, 21.3, 16.1;

HRMS (ESI-TOF): calc'd for $C_{27}H_{37}NO_6[M+H]^+$ 472.2694; found 472.2726.

68. Diisopropyl 2-(bis(4-fluoro-3,5-dimethylphenyl)amino)malonate (59n)

Yield: 45% (Method C)

Physical State: light yellow colored solid;

 $\mathbf{R}_{f} = 0.48 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.66 (d, *J* = 5.9 Hz, 4H), 5.21 (s, 1H), 5.04 (dt, *J* = 12.2, 6.0 Hz, 2H), 2.19 (s, 12H), 1.18 (dd, *J* = 18.1, 6.1 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 166.7, 156.7, 155.1, 141.63, 141.61, 124.7, 124.6, 122.48, 122.45, 69.5, 68.3, 21.4, 21.3, 14.73, 14.71;

¹⁹**F** NMR (471 MHz, CDCl₃): δ –129.3 (dtq, J = 6.5, 4.4, 2.2 Hz);

HRMS (ESI-TOF): calc'd for $C_{25}H_{31}F_2NO_4[M+H]^+$ 448.2294; found 448.2252.

69. Dimethyl 2-(bis(4-methoxy-2,5-dimethylphenyl)amino)malonate (590)

Yield: 55% (Method C)

Physical State: pale pink colored puffy solid;

 $\mathbf{R}_{f} = 0.23$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.14 (s, 2H), 6.60 (s, 2H), 6.12 (s, 1H), 3.80 (d, *J* = 16.0 Hz, 9H), 3.62 (s, 3H), 2.18 (s, 6H), 2.06 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 172.0, 156.7, 135.2, 131.5, 128.6, 122.6, 113.6, 69.4, 54.9, 52.6, 51.8, 21.4, 15.8;

HRMS (ESI-TOF): calc'd for $C_{23}H_{29}NO_6[M+H]^+$ 438.1887; found 438.1886.

70. Diisopropyl 2-(dibenzylamino)malonate (59p)

Yield: 53% (Method C)

Physical State: yellow-colored oily liquid;

 $\mathbf{R}_{f} = 0.69 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.51 (d, *J* = 7.2 Hz, 4H), 7.36 (t, *J* = 7.6 Hz, 4H), 7.28 (t, *J* = 7.3 Hz, 2H), 5.18 (hept, *J* = 6.2 Hz, 2H), 4.19 (s, 1H), 3.93 (s, 4H), 1.32 (dd, *J* = 6.3, 3.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 167.5, 138.9, 128.7, 128.1, 127.0, 68.7, 65.4, 55.3, 21.7, 21.6;

HRMS (ESI-TOF): calc'd for $C_{23}H_{29}NO_4[M+H]^+$ 384.2169; found 384.2173.

71. Diisopropyl 2-(dicyclobutylamino)malonate (59q)

Yield: 39% (Method C)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.51 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 5.05 (hept, J = 6.3 Hz, 2H), 4.15 (s, 1H), 3.58 (p, J = 8.5, 8.1 Hz, 2H), 2.05 – 1.95 (m, 8H), 1.57 (dq, J = 11.8, 6.9, 6.2 Hz, 2H), 1.54 – 1.46 (m, 2H), 1.25 (d, J = 6.3 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 168.5, 68.7, 63.8, 54.8, 30.0, 21.66, 21.60, 14.9; HRMS (ESI-TOF): calc'd for C₁₇H₂₉NO₄ [M+H]⁺ 312.2169; found 312.2176.

72. Diisopropyl 2-(diisopropylamino)malonate (59r)

Yield: 32% (Method D)

Physical State: light orange colored liquid;

 $\mathbf{R}_{f} = 0.59 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 5.02 (hept, J = 6.3 Hz, 2H), 4.17 (s, 1H), 3.29 (hept, J =

6.6 Hz, 2H), 1.23 (dd, *J* = 6.3, 2.1 Hz, 12H), 1.03 (d, *J* = 6.7 Hz, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 170.4, 68.3, 62.2, 46.6, 22.3, 21.6, 21.5;

HRMS (ESI-TOF): calc'd for $C_{15}H_{29}NO_4[M+H]^+$ 288.2169; found 288.2161.

Note: For this reaction to form **59r**, directly iPrMgCl·LiCl solution in THF was added on to the aminating agent **47**.

20. Characterization data of the amines formed by the addition of soft *C*-nucleophiles onto the iminomalonates in Fig. 7

1. 2,2-diisopropyl 3-methyl 1-(3-(trifluoromethyl)phenyl)aziridine-2,2,3 tricarboxylate (64a)

Yield: 49% (Method G)

Physical State: pale brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.35$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.32 (t, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.13 (s, 1H), 7.09 (d, *J* = 7.9 Hz, 1H), 5.15 (hept, *J* = 6.2 Hz, 1H), 4.82 (hept, *J* = 6.2 Hz, 1H), 3.76 (s, 1H), 3.75 (s, 3H), 1.26 (dd, *J* = 21.5, 6.3 Hz, 6H), 1.07 (d, *J* = 6.3 Hz, 3H), 0.95 (d, *J* = 6.3 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 166.1, 163.0, 162.0, 146.6, 131.3, 131.1, 129.5, 124.4, 122.62, 122.60, 120.58, 120.55, 120.53, 120.50, 116.14, 116.11, 116.09, 116.06, 71.2, 69.9, 52.7, 52.6, 45.5, 21.29, 21.21, 20.8;

¹⁹F NMR (471 MHz, CDCl₃): δ –62.8 (s);

HRMS (ESI-TOF): calc'd for $C_{19}H_{22}F_3NO_6[M+H]^+$ 418.1472; found 418.1489.

2. 2,2-diisopropyl 3-methyl 1-(4-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)phenyl) aziridine-2,2,3-tri-carboxylate (64b)

Yield: 63% (Method G)

Physical State: brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.41$ (20% EtOAc/hexanes);

¹**H NMR** (600 MHz, CDCl₃): δ 7.02 (d, J = 8.2 Hz, 2H), 6.82 (d, J = 8.3 Hz, 2H), 5.15 (hept, J = 6.2 Hz, 1H), 4.80 (hept, J = 6.2 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 1H), 3.69 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 1.28 (d, J = 6.3 Hz, 3H), 1.25 (d, J = 6.3 Hz, 3H), 1.08 (d, J = 6.3 Hz, 3H), 0.92 (d, J = 6.3 Hz, 3H), 0.81 (s, 9H), -0.09 (d, J = 2.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 166.7, 163.5, 162.2, 144.0, 134.8, 129.4, 119.0, 70.6, 69.6, 64.1, 52.9, 52.5, 45.4, 38.6, 25.7, 21.4, 21.3, 21.2, 20.9, 18.0, -5.6; HRMS (ESI-TOF): calc'd for C₂₆H₄₁NO₇Si [M+H]⁺ 508.2725; found 508.2768.

3. 2,2-diisopropyl 3-methyl 1-(pyridin-3-yl)aziridine-2,2,3-tricarboxylate (64c)

Yield: 40% (Method G)

Physical State: brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.27 (50\% \text{ EtOAc/hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 8.25 (s, 2H), 7.20 (d, J = 8.1 Hz, 1H), 7.13 (dd, J = 7.9, 4.7 Hz, 1H), 5.14 (hept, J = 6.2 Hz, 1H), 4.83 (hept, J = 6.2 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 1H), 1.25 (dd, J = 20.1, 6.3 Hz, 6H), 1.08 (d, J = 6.2 Hz, 3H), 0.96 (d, J = 6.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.1, 162.9, 161.9, 145.1, 142.2, 141.5, 126.4, 123.2, 71.3, 70.0, 52.7, 52.3, 45.0, 21.4, 21.3, 21.2, 20.9;

HRMS (ESI-TOF): calc'd for $C_{17}H_{22}N_2O_6 [M+H]^+$ 351.1551; found 351.1593.

4. Diisopropyl 2-((4-methoxyphenyl)(2-oxo-2-phenylethyl)amino)malonate (66)

Yield: 66% (Method H)

Physical State: brown waxy solid;

 $\mathbf{R}_{f} = 0.41$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.84 (d, *J* = 7.3 Hz, 2H), 7.48 (d, *J* = 14.8 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 6.66 (d, *J* = 9.0 Hz, 2H), 6.59 (d, *J* = 9.0 Hz, 2H), 5.15 - 5.05 (m, 3H), 4.02 (s, 2H), 3.65 (s, 3H), 1.19 (d, *J* = 6.4 Hz, 6H), 1.14 (d, *J* = 6.4 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 196.2, 168.8, 153.2, 137.9, 136.5, 133.1, 128.3, 127.8, 117.6, 114.4, 70.0, 66.9, 55.3, 40.8, 21.2;

HRMS (ESI-TOF): calc'd for $C_{24}H_{29}NO_6[M+H]^+$ 428.2068; found 428.2069.

21. General experimental procedures for post-functionalization of the amines (as displayed in Figs. 6 & 7)

Method I: In a thick-walled flame dried reaction vial, the malonate protected amine (**55**, **56 or 59**; 1.0 mmol, 1.0 equiv) was dissolved in anhydrous THF (10 mL, 0.1M) under argon. To this solution, NaH (60% in mineral oil; 1.0 mmol, 1.0 equiv) was added in one portion and stirred at room temperature for 10 min. Then this reaction mixture was cooled to -78 °C using a dry ice/acetone bath and N-chlorosuccinimide (NCS; 1.0 mmol, 1.0 equiv) dissolved in anhydrous THF (10 mL, 0.1M) was added dropwise over a period of 5 minutes and stirring was continued at -78 °C for 2 h. Then the reaction mixture was quenched using saturated NH₄Cl solution (3 mL) and allowed to warm to room temperature. The reaction mixture was then diluted with brine (20 mL) and extracted with ethyl acetate thrice (3 X 30 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by column chromatography.

<u>Method J:</u> This procedure was adapted from the literature with slight modifications⁸. In a thick-walled uncapped reaction vial, the malonate protected amine (1.0 mmol, 1.0 equiv) was dissolved in absolute ethanol (12.8 mL, 0.078M). To this solution aqueous KOH solution (1M) (0.5 mmol, 0.5 equiv) was added at room temperature under constant stirring. Then this reaction mixture was heated to 50 $^{\circ}$ C (bath temperature) and this temperature was maintained for 6 h. Next, the reaction was quenched with saturated Na₂SO₃ solution (3 mL). Then EtOH was evaporated and the residue was extracted with ethyl acetate thrice (3 X 30 mL) and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography.

<u>Method K:</u> This procedure is based on the Corey-Bakshi-Shibata reduction and it was not optimized for the sole substrate (**66**). In a thick-walled flame dried reaction vial, malonate protected amine (**66**; 1.0 mmol, 1.0 equiv) made using **Method H** was dissolved in anhydrous THF (5.0 mL, 0.2M) under argon. To this solution, racemic CBS catalyst (1M solution in toluene, 10 mol%) was added first at room temperature followed by the BH₃[.]THF complex (1M solution in THF) (2.0 mmol, 2.0 equiv) added in one

portion and stirred overnight (14 h). Then the reaction was quenched using saturated NH_4Cl solution (3 mL). Next, the reaction mixture was diluted with brine (10 mL) and extracted with ethyl acetate thrice (3 X 20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. The crude product was purified by column chromatography.

<u>Method L</u>: In a thick walled flamed dried reaction vial, Diisopropyl 2-((2-hydroxy-2-phenylethyl)(4-methoxyphenyl)amino)malonate (**67**) (147 mg, 0.34 mmol, 1 equiv) was taken in anhydrous toluene (1.7 mL, 0.2M) under argon and to this $ZnCl_2$ (46.6 mg, 0.34 mmol, 1 equiv) was added in one portion at room temperature and this vial was capped with a screw cap. This reaction mixture was then heated at 50 °C overnight under constant stirring. Nextday morning when the progress was checked using TLC, the starting material got totally consumed. Then the reaction mixture was diluted with water (4 mL) and extracted with ethyl acetate thrice (3 X 4 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography.

<u>Method M</u>: This procedure was adapted from the literature and it was unoptimized⁹. *N*,*N*-diaryl amine (**61k**; 141 mg, 0.60 mmol), $Pd(OAc)_2$ (13.66 mg, 0.06 mmol, 10 mol%), K_2CO_3 (8.41 mg, 0.06 mmol, 10 mol%), pivalic acid (540 mg, 3.90 mmol, 6.4 equiv) were weighed open to air and transferred to a reaction vial and heated to 110 °C in an open vial overnight (14 h). The solution was then cooled to room temperature and diluted with DCM (10 mL). This mixture was washed with saturated solution of aqueous Na₂CO₃ twice (2 X 10 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography.

<u>Method N:</u> This procedure was adapted from the literature with slight modifications¹⁰. In a 25 mL flame dried round bottom flask, malonate protected amine **57b** (1.0 mmol, 1.0 equiv) was dissolved in anhydrous DCM (10 mL, 0.1M). To this, a solution of NaOH in MeOH (2.5M) (5.0 mmol, 5.0 equiv) was added and stirred at -78 °C as ozone was passed through the solution. After 45 min, the initial yellow colored reaction mixture turned blue and a yellow precipitate has formed at the bottom. Then, ozone bubbling was stopped and oxygen flow was continued for 5 min to remove any excess ozone. The reaction mixture was diluted with water (20 mL) and extracted with DCM thrice (3 X 30 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by column chromatography.

<u>Method O:</u> In a thick-walled flame dried reaction vial, malonate protected amine (1.0 mmol, 1.0 equiv) was taken in anhydrous toluene (20 mL, 0.05M) under argon. To this solution Grubbs 2^{nd} generation catalyst (10 or 15 mol%) was added and the reaction vial was sealed with the septum. This reaction mixture was heated to target temperature **T** for target time *t* under constant stirring. After confirming the completion of reaction by thin layer chromatography, the reaction was allowed to cool to room temperature. The reaction mixture was then filtered through celite pad. Toluene was evaporated and the crude product was purified by column chromatography. (The exact temperature and reaction times were presented along with the data for each substrate)

22. Characterization data of the post-functionalized amines (as displayed in Fig. 6)

1. N-methylaniline (60a)

Yield: 53% (Method I)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.52 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, J = 7.9 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 6.65 (d,

J = 7.8 Hz, 2H), 3.55 (s, 1H), 2.86 (s, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 149.2, 129.1, 117.2, 112.3, 30.6;

HRMS (**ESI-TOF**): calc'd for $C_7H_9N[M+H]^+$ 108.0808; found 108.0812.

Spectral data was consistent with the data reported in the literature ¹¹⁻¹⁴.

2. *N*-(2,2,2-trifluoroethyl)aniline (60b)

N^{CF3}

60b

Yield: 86% (Method I)

Physical State: wine red colored oily liquid;

 $\mathbf{R}_{f} = 0.67 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.14 – 7.09 (m, 2H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.57 (d, *J* = 7.8 Hz, 2H), 3.78 (s, 1H), 3.63 (q, *J* = 9.0 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 146.2, 129.3, 127.8, 125.9, 124.1, 122.2, 119.0, 113.0, 46.2, 46.0, 45.8, 45.6;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -72.3 (t, *J* = 8.9 Hz);

HRMS (ESI-TOF): calc'd for $C_8H_8F_3N[M+H]^+$ 176.0682; found 176.0680.

Spectral data was consistent with the data reported in the literature ¹⁵.

3. N-(2-((tert-butyldimethylsilyl)oxy)ethyl)aniline (60c)

Yield: 90% (Method I)

Physical State: dark brownish yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.73 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, *J* = 7.9 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 2H), 4.06 (s, 1H), 3.87 (t, *J* = 5.4 Hz, 2H), 3.27 (t, *J* = 5.4 Hz, 2H), 0.97 (s, 9H), 0.13 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 148.3, 129.1, 117.4, 113.1, 61.5, 45.9, 25.8, 18.2; HRMS (ESI-TOF): calc'd for C₁₄H₂₅NOSi [M+H]⁺ 252.1778; found 252.1772.

4. *N*-(4-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)phenyl)-4-fluoro-3,5-dimethylaniline (60d)

Me OTBDMS 60d

Yield: 82% (Method I)

Physical State: dark reddish brown viscous oily liquid;

 $\mathbf{R}_{f} = 0.50 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.11 (d, *J* = 8.2 Hz, 2H), 6.93 (d, *J* = 7.9 Hz, 2H), 6.70 (d, *J* = 6.0 Hz, 2H), 5.41 (s, 1H), 3.81 (t, *J* = 7.2 Hz, 2H), 2.83 – 2.75 (m, 2H), 2.23 (s, 6H), 0.92 (s, 9H), 0.04 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 155.8, 154.2, 142.1, 138.5, 131.2, 129.9, 125.0, 124.9, 118.7, 117.4, 64.7, 38.8, 25.9, 18.3, 14.78, 14.75, -5.37;

¹⁹F NMR (471 MHz, CDCl₃): δ –130.0 (s);

HRMS (ESI-TOF): calc'd for C₂₂H₃₂FNO₅Si [M+H]⁺ 374.2310; found 374.2271.

5. *N*-butylaniline (60e)

Yield: 84% (Method I)

Physical State: dark yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.69 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (dd, *J* = 8.6, 7.1 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 2H), 3.58 (s, 1H), 3.16 (t, *J* = 7.2 Hz, 2H), 1.66 (p, *J* = 7.3 Hz, 2H), 1.49 (h, *J* = 7.4 Hz, 2H), 1.03 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 148.4, 129.1, 117.0, 112.6, 43.6, 31.6, 20.2, 13.8;

HRMS (ESI-TOF): calc'd for $C_{10}H_{15}N[M+H]^+$ 150.1277; found 150.1282.

Spectral data was consistent with the data reported in the literature¹⁶.

6. N-butyl-2-methylaniline (60f)

Me Me 60f

Yield: 76% (Method I)

Physical State: dark yellow non-viscous liquid;

 $\mathbf{R}_{f} = 0.65 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.28 (t, *J* = 7.7 Hz, 1H), 7.20 (d, *J* = 7.3 Hz, 1H), 6.80 (t, *J* = 7.3 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 3.58 (s, 1H), 3.30 (t, *J* = 7.1 Hz, 2H), 2.27 (s, 3H), 1.80 (p, *J* = 7.3 Hz, 2H), 1.61 (dq, *J* = 14.7, 7.4 Hz, 2H), 1.13 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 146.3, 129.8, 127.0, 121.5, 116.5, 109.4, 43.5, 31.6, 20.3, 17.3, 13.8;

HRMS (**ESI-TOF**): calc'd for $C_{11}H_{17}N[M+H]^+$ 164.1434; found 164.1459.

Spectral data was consistent with the data reported in the literature¹⁷.

Note: For this substrate, the reaction did not go to completion at -78 °C even after stirring for 4 hours. Then it was allowed to warm to room temperature and stirred

overnight (14 hours) and some starting material was still remaining. Then an additional 1 equiv of NaH and NCS were added at room temperature and stirred at 50 °C for 3 hours and then reaction was totally finished.

7. *N*-butyl-2-vinylaniline (60g)

Yield: 79% (Method I)

Physical State: dark yellow non-viscous liquid;

 $\mathbf{R}_{f} = 0.60 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.37 (d, J = 7.5 Hz, 1H), 7.32 – 7.26 (m, 1H), 6.91 – 6.80 (m, 2H), 6.75 (d, J = 8.1 Hz, 1H), 5.72 (dd, J = 17.3, 1.5 Hz, 1H), 5.42 (dd, J = 11.0, 1.5 Hz, 1H), 3.85 (s, 1H), 3.23 (t, J = 7.1 Hz, 2H), 1.74 (p, J = 7.3 Hz, 2H), 1.56 (h, J = 7.4 Hz, 2H), 1.09 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 145.4, 132.9, 128.8, 127.3, 123.9, 116.8, 115.8, 110.5, 43.6, 31.5, 20.3, 13.8;

HRMS (ESI-TOF): calc'd for $C_{12}H_{17}N[M+H]^+$ 176.1434; found 176.1471.

Spectral data was consistent with the data reported in the literature¹⁸.

Note: For this substrate, the reaction did not go to completion at -78 °C even after stirring for 4 hours. Then it was allowed to warm to room temperature and stirred overnight (14 hours) and the reaction was finished.

8. *N*-butyl-4-methylaniline (60h)

Yield: 59% (Method I)Physical State: dark yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.68 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.02 (d, J = 8.2 Hz, 2H), 6.58 (d, J = 8.3 Hz, 2H), 3.37 (s, 1H), 3.12 (t, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.63 (p, J = 7.2 Hz, 2H), 1.46 (h, J = 7.3 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 146.1, 129.6, 126.3, 112.9, 44.0, 31.6, 20.3, 20.2, 13.8; HRMS (ESI-TOF): calc'd for C₁₁H₁₇N [M+H]⁺ 164.1434; found 164.1441.

Spectral data was consistent with the data reported in the literature¹⁹.

9. N-butyl-4-chloroaniline (60i)

Yield: 49% (Method I)

Physical State: dark brownish yellow colored liquid;

 $\mathbf{R}_{f} = 0.70 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR** (**600 MHz**, **CDCl**₃): δ 7.12 (d, *J* = 8.7 Hz, 2H), 6.52 (d, *J* = 8.7 Hz, 2H), 3.53 (s, 1H), 3.08 (t, *J* = 7.1 Hz, 2H), 1.60 (p, *J* = 7.2 Hz, 2H), 1.43 (h, *J* = 7.4 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 147.0, 128.9, 121.5, 113.6, 43.7, 31.4, 20.2, 13.8;

HRMS (ESI-TOF): calc'd for $C_{10}H_{14}ClN[M+H]^+$ 184.0888; found 184.0891.

Spectral data was consistent with the data reported in the literature 20 .

10. 3-(benzyloxy)-N-butylaniline (60j)

Yield: 41% (Method I) Physical State: dark brown colored oily liquid; $\mathbf{R}_f = 0.53$ (8:1 EtOAc : hexanes); ¹**H NMR (600 MHz, CDCl₃):** δ 7.48 (d, *J* = 7.3 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 8.0 Hz, 1H), 6.42 – 6.35 (m, 1H), 6.32 – 6.25 (m, 2H), 5.07 (s, 2H), 3.65 (s, 1H), 3.13 (t, *J* = 6.7 Hz, 2H), 1.63 (p, *J* = 7.2 Hz, 2H), 1.46 (h, *J* = 7.3 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 160.0, 149.8, 137.3, 129.8, 128.4, 127.7, 127.4, 106.2, 102.9, 99.4, 69.7, 43.6, 31.5, 20.2, 13.8;

HRMS (ESI-TOF): calc'd for $C_{17}H_{21}NO[M+H]^+$ 256.1696; found 256.1709.

11. N-butyl-3-fluoro-5-methylaniline (60k)

Yield: 92% (Method I)

Physical State: dark red colored oily liquid;

 $\mathbf{R}_{f} = 0.73$ (8:1 EtOAc : hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 6.24 (dd, *J* = 23.5, 13.9 Hz, 2H), 6.14 (d, *J* = 11.5 Hz, 1H), 3.64 (s, 1H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.28 (s, 3H), 1.61 (p, *J* = 7.2 Hz, 2H), 1.45 (h, *J* = 7.4 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 164.8, 163.2, 150.0, 149.9, 140.59, 140.52, 109.15, 109.14, 104.3, 104.1, 96.4, 96.2, 43.5, 31.4, 21.49, 21.48, 20.2, 13.8;

¹⁹**F NMR (471 MHz, CDCl₃):** δ –113.2 (dd, *J* = 11.5, 9.6 Hz);

HRMS (ESI-TOF): calc'd for $C_{11}H_{16}FN[M+H]^+$ 182.1340; found 182.1348.

12. N-butyl-3-fluoro-4-methoxyaniline (60l)

Yield: 85% (Method I)

Physical State: dark yellow-brown oily liquid;

 $\mathbf{R}_{f} = 0.46 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.82 (t, *J* = 9.1 Hz, 1H), 6.39 (dd, *J* = 13.5, 2.4 Hz, 1H), 6.29 (d, *J* = 8.5 Hz, 1H), 3.81 (s, 3H), 3.39 (s, 1H), 3.03 (t, *J* = 7.1 Hz, 2H), 1.58 (p, *J* = 7.2 Hz, 2H), 1.42 (h, *J* = 7.3 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 154.3, 152.7, 143.8, 143.7, 139.07, 139.00, 116.1, 116.0, 107.73, 107.71, 101.5, 101.3, 57.5, 44.2, 31.5, 20.1, 13.7;

¹⁹**F NMR (471 MHz, CDCl₃):** δ –133.7 (ddd, *J* = 13.5, 9.5, 1.3 Hz);

HRMS (ESI-TOF): calc'd for $C_{11}H_{16}FNO[M+H]^+$ 198.1289; found 198.1299.

13. N-butyl-4-fluoro-3,5-dimethylaniline (60m)

Yield: 60% (Method I)

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.70 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.26 (d, *J* = 6.0 Hz, 2H), 3.22 (s, 1H), 3.06 (t, *J* = 7.1 Hz, 2H), 2.21 (d, *J* = 1.9 Hz, 6H), 1.60 (p, *J* = 7.2 Hz, 2H), 1.44 (h, *J* = 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 153.7, 152.2, 144.09, 144.08, 124.7, 124.5, 112.7, 112.6, 44.3, 31.7, 20.2, 14.84, 14.81, 13.8;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -136.7 (ddq, J = 6.1, 4.1, 2.2 Hz);

HRMS (ESI-TOF): calc'd for $C_{12}H_{18}FN[M+H]^+$ 196.1496; found 196.1508.

14. N-butyl-3-chloro-5-fluoro-4-methoxyaniline (60n)

Yield: 85% (Method I) Physical State: brownish-yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.64$ (8:1 EtOAc : hexanes);

¹**H** NMR (600 MHz, CDCl₃): δ 6.40 – 6.30 (m, 1H), 6.23 (dd, J = 12.7, 2.7 Hz, 1H), 3.82 (s, 3H), 3.61 (s, 1H), 3.01 (t, J = 7.1 Hz, 2H), 1.56 (p, J = 7.2 Hz, 2H), 1.40 (h, J = 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 157.8, 156.1, 145.2, 145.1, 135.0, 134.9, 128.97, 128.93, 108.55, 108.54, 99.5, 99.4, 61.61, 61.60, 43.6, 31.2, 20.1, 13.7;

¹⁹**F NMR (471 MHz, CDCl₃):** δ –128.0 (dd, *J* = 12.6, 1.7 Hz);

HRMS (ESI-TOF): calc'd for $C_{11}H_{15}CIFNO [M+H]^+ 232.0899$; found 232.0908.

15. N-butylnaphthalen-2-amine (60o)

Yield: 59% (Method I)

Physical State: brown colored waxy solid;

 $\mathbf{R}_{f} = 0.65 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.56 (d, *J* = 8.1 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 6.9 Hz, 1H), 6.74 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.69 (d, *J* = 2.1 Hz, 1H), 3.60 (s, 1H), 3.08 (t, *J* = 7.1 Hz, 2H), 1.54 (p, *J* = 7.3 Hz, 2H), 1.35 (dq, *J* = 14.7, 7.4 Hz, 2H), 0.88 (t, *J* = 7.4 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 146.0, 135.2, 128.7, 127.5, 127.3, 126.2, 125.8, 121.7, 117.9, 104.1, 43.6, 31.4, 20.3, 13.8;

HRMS (**ESI-TOF**): calc'd for $C_{14}H_{17}N[M+H]^+$ 200.1434; found 200.1446.

Spectral data was consistent with the data reported in the literature²¹.

16. N-cyclopentylaniline (60p)

Yield: 90% (Method I)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.75 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, *J* = 7.9 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 2H), 3.85 (p, *J* = 6.2 Hz, 1H), 3.65 (s, 1H), 2.08 (dq, *J* = 12.7, 6.7, 6.2 Hz, 2H), 1.83 – 1.75 (m, 2H), 1.69 (tt, *J* = 11.6, 5.5 Hz, 2H), 1.53 (dq, *J* = 12.0, 6.3, 5.6 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 147.9, 129.0, 116.8, 113.1, 54.5, 33.5, 24.0; HRMS (ESI-TOF): calc'd for C₁₁H₁₅N [M+H]⁺ 162.1277; found 162.1283.

Spectral data was consistent with the data reported in the literature 22 .

17. N-cyclopentyl-4-methylaniline (60q)

60q

Yield: 53% (Method I)

Physical State: dark brown colored oily liquid;

 $\mathbf{R}_{f} = 0.58 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.02 (d, *J* = 7.9 Hz, 2H), 6.57 (d, *J* = 7.9 Hz, 2H), 3.80 (p, *J* = 6.1 Hz, 1H), 3.52 (s, 1H), 2.28 (s, 3H), 2.04 (dt, *J* = 12.4, 6.1 Hz, 2H), 1.81 – 1.70 (m, 2H), 1.69 – 1.60 (m, 2H), 1.50 (dt, *J* = 11.9, 5.7 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 145.7, 129.6, 126.0, 113.3, 54.9, 33.5, 24.0, 20.3;

HRMS (ESI-TOF): calc'd for $C_{12}H_{17}N[M+H]^+$ 176.1434; found 176.1425.

Spectral data was consistent with the data reported in the literature²³.

18. N-cyclopentyl-4-methoxy-3,5-dimethylaniline (60r)

Yield: 74% (Method I)

Physical State: pale orange colored solid (m.p. = 44-49 °C);

 $\mathbf{R}_{f} = 0.41 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.29 (s, 2H), 3.74 (p, *J* = 6.2 Hz, 1H), 3.68 (s, 3H), 3.34 (s, 1H), 2.25 (s, 6H), 2.02 (dq, *J* = 12.7, 5.6 Hz, 2H), 1.75 (dq, *J* = 10.4, 6.3 Hz, 2H), 1.64 (dq, *J* = 9.0, 5.8, 4.6 Hz, 2H), 1.47 (dq, *J* = 14.0, 7.3 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 148.5, 144.0, 131.1, 113.1, 59.9, 55.0, 33.6, 23.9, 16.2; HRMS (ESI-TOF): calc'd for C₁₄H₂₁NO [M+H]⁺ 220.1696; found 220.1702.

19. *N*-cyclohexylaniline (60s)

60s

Yield: 61% (Method I)

Physical State: pale yellow oily liquid;

 $\mathbf{R}_{f} = 0.63 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.20 – 7.12 (m, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.61 (d, *J* = 7.9 Hz, 2H), 3.72 (s, 1H), 3.26 (tt, *J* = 10.1, 3.7 Hz, 1H), 2.07 (dd, *J* = 13.1, 4.0 Hz, 2H), 1.77 (dt, *J* = 13.4, 3.6 Hz, 2H), 1.66 (dt, *J* = 12.8, 3.7 Hz, 1H), 1.43 – 1.33 (m, 2H), 1.24 (ddd, *J* = 16.1, 9.8, 3.4 Hz, 1H), 1.21 – 1.11 (m, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 147.1, 129.2, 116.9, 113.2, 51.8, 33.4, 25.9, 25.0;

HRMS (ESI-TOF): calc'd for $C_{12}H_{17}N[M+H]^+$ 176.1434; found 176.1440.

Spectral data was consistent with the data reported in the literature²⁴.

20. Tert-butyl 4-(phenylamino)piperidine-1-carboxylate (60t)

Yield: 88% (Method I)

Physical State: pale yellow colored flaky solid (m.p. = 130-138 °C);

 $\mathbf{R}_{f} = 0.20 \ (8:1 \ \text{EtOAc} : \text{hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.17 (t, *J* = 7.9 Hz, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 7.8 Hz, 2H), 4.05 (s, 2H), 3.43 (tt, *J* = 10.1, 3.8 Hz, 2H), 2.93 (t, *J* = 11.0 Hz, 2H), 2.03 (d, *J* = 10.9 Hz, 2H), 1.47 (s, 9H), 1.39 – 1.28 (m, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 154.7, 146.7, 129.2, 117.3, 113.2, 79.5, 50.0, 42.5, 32.3, 28.3;

HRMS (ESI-TOF): calc'd for $C_{16}H_{24}N_2O_2[M+H]^+$ 277.1911; found 277.1917.

Spectral data was consistent with the data reported in the literature²⁵.

21. Tert-butyl 4-((2,3-dihydrobenzofuran-5-yl)amino)piperidine-1-carboxylate (60u)

Yield: 80% (Method I)

Physical State: pale brown colored waxy solid;

 $\mathbf{R}_{f} = 0.28$ (30% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 6.61 (d, J = 8.4 Hz, 1H), 6.54 (s, 1H), 6.39 (dd, J = 8.7, 2.5 Hz, 1H), 4.47 (t, J = 8.6 Hz, 2H), 4.02 (s, 2H), 3.29 (dt, J = 10.1, 6.4 Hz, 1H), 3.12 (t, J = 8.5 Hz, 3H), 2.88 (s, 2H), 2.00 (d, J = 11.7 Hz, 2H), 1.45 (s, 9H), 1.32 – 1.21 (m, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 154.6, 152.6, 140.7, 127.7, 113.6, 111.5, 109.3, 79.3, 70.7, 51.5, 32.4, 30.2, 28.3;

HRMS (ESI-TOF): calc'd for $C_{18}H_{26}N_2O_3[M+H]^+$ 319.2016; found 319.2004.

22. N-benzylaniline (60v)

Yield: 34% (Method I)

Physical State: yellow colored waxy solid;

 $\mathbf{R}_{f} = 0.62 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.38 (dt, *J* = 15.1, 7.5 Hz, 4H), 7.30 (t, *J* = 7.1 Hz, 1H), 7.20 (t, *J* = 7.9 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.67 (d, *J* = 7.9 Hz, 2H), 4.36 (s, 2H), 4.06 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 148.0, 139.3, 129.2, 128.6, 127.4, 127.1, 117.5, 112.8, 48.3;

HRMS (ESI-TOF): calc'd for $C_{13}H_{13}N[M+H]^+$ 184.1121; found 184.1117.

Spectral data was consistent with the data reported in the literature¹⁶.

23. *N*-phenethylaniline (60w)

Yield: 88% (Method I)

Physical State: yellow-brown colored oily liquid;

 $\mathbf{R}_{f} = 0.49 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.24 (dd, *J* = 11.2, 7.3 Hz, 3H), 7.21 – 7.17 (m, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 2H), 3.67 (s, 1H), 3.41 (t, *J* = 6.0 Hz, 2H), 2.92 (t, *J* = 7.0 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 147.9, 139.2, 129.2, 128.7, 128.5, 126.3, 117.4, 117.3, 112.98, 112.91, 44.9, 35.4;

HRMS (**ESI-TOF**): calc'd for $C_{14}H_{15}N[M+H]^+$ 198.1277; found 198.1276.

Spectral data was consistent with the data reported in the literature 26 .

24. 3,5-difluoro-4-methoxy-*N*-phenethylaniline (60x)

Yield: 53% (Method I)

Physical State: yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.35 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, *J* = 7.5 Hz, 2H), 7.17 – 7.13 (m, 1H), 7.11 (d, *J* = 7.2 Hz, 2H), 6.01 (d, *J* = 10.5 Hz, 2H), 3.76 (s, 3H), 3.59 (s, 1H), 3.21 (t, *J* = 7.0 Hz, 2H), 2.79 (t, *J* = 7.0 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃): δ 157.7, 157.6, 156.1, 156.0, 144.1, 138.7, 128.67, 128.65, 127.3, 126.57, 126.56, 96.4, 96.2, 62.2, 45.0, 35.1;

¹⁹**F NMR (471 MHz, CDCl₃):** δ -128.6 - -129.1 (m);

HRMS (ESI-TOF): calc'd for $C_{15}H_{15}F_2NO[M+H]^+$ 264.1194; found 264.1199.

25. Diphenylamine (60y)

Yield: 90% (Method J)

Physical State: off white waxy solid;

 $\mathbf{R}_{f} = 0.55 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.29 (t, *J* = 7.9 Hz, 4H), 7.10 (d, *J* = 7.7 Hz, 4H), 6.96 (t,

J = 7.3 Hz, 2H), 5.71 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 143.0, 129.3, 120.9, 117.7;

HRMS (**ESI-TOF**): calc'd for $C_{12}H_{11}N[M+H]^+$ 170.0964; found 179.0959.

Spectral data was consistent with the data reported in the literature¹⁹.

26. Di-*p*-tolylamine (60z)

Yield: 76% (Method J)

Physical State: off white waxy solid;

 $\mathbf{R}_{f} = 0.73 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.11 (d, J = 8.2 Hz, 4H), 6.99 (d, J = 8.3 Hz, 4H), 5.54

(s, 1H), 2.35 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 141.0, 130.0, 129.7, 117.8, 20.5;

HRMS (ESI-TOF): calc'd for $C_{14}H_{15}N[M+H]^+$ 198.1277; found 198.1234.

Spectral data was consistent with the data reported in the literature²⁷.

27. Bis(4-chlorophenyl)amine (61a)

Yield: 85% (Method I)

Physical State: off white waxy solid;

 $\mathbf{R}_{f} = 0.47 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (d, J = 8.8 Hz, 4H), 6.96 (d, J = 8.8 Hz, 4H), 5.64 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 141.3, 129.3, 125.9, 119.0;

HRMS (ESI-TOF): calc'd for $C_{12}H_9Cl_2N[M+H]^+$ 238.0185; found 238.0191.

Spectral data was consistent with the data reported in the literature 28 .

28. Di([1,1'-biphenyl]-3-yl)amine (61b)

Yield: 78% (Method I)

Physical State: pale yellow colored oily liquid;

 $\mathbf{R}_{f} = 0.37 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.70 (d, *J* = 7.2 Hz, 4H), 7.54 (t, *J* = 7.7 Hz, 4H), 7.49 – 7.41 (m, 6H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.21 (dd, *J* = 8.0, 1.6 Hz, 2H), 5.92 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 143.3, 142.5, 141.0, 129.7, 128.6, 127.3, 127.0, 120.0, 116.7, 116.6;

HRMS (ESI-TOF): calc'd for $C_{24}H_{19}N[M+H]^+$ 322.1590; found 322.1640.

29. Bis(4-fluoro-3,5-dimethylphenyl)amine (61c)

Yield: 88% (Method I)

Physical State: orange colored solid;

 $\mathbf{R}_{f} = 0.54 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.64 (d, J = 6.0 Hz, 4H), 5.23 (s, 1H), 2.23 (s, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 155.7, 154.1, 139.1, 125.1, 124.9, 118.4, 118.3, 14.7, 14.7;

¹⁹F NMR (471 MHz, CDCl₃): δ –131.2 (s);

HRMS (ESI-TOF): calc'd for $C_{16}H_{17}F_2N[M+H]^+$ 262.1402; found 262.1403.

30. Bis(4-methoxy-3,5-dimethylphenyl)amine (61d)

Yield: 76% (Method J)

Physical State: off white waxy solid;

 $\mathbf{R}_{f} = 0.46 \ (10\% \ \text{EtOAc/hexanes});$

¹H NMR (600 MHz, CDCl₃): δ 6.69 (s, 4H), 5.37 (s, 1H), 3.72 (s, 6H), 2.27 (s, 12H);

¹³C NMR (151 MHz, CDCl₃): δ 151.1, 139.4, 131.4, 118.1, 59.8, 16.1;

HRMS (ESI-TOF): calc'd for $C_{18}H_{23}NO_2[M+H]^+$ 286.1802; found 286.1768.

31. 4-methyl-*N*-phenylaniline (61e)

Yield: 83% (Method I)

Physical State: grey colored waxy solid;

 $\mathbf{R}_{f} = 0.60 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.12 (t, J = 7.7 Hz, 2H), 6.97 (d, J = 7.9 Hz, 2H), 6.88 (dd, J = 7.5, 4.2 Hz, 4H), 6.77 (t, J = 7.3 Hz, 1H), 5.43 (s, 1H), 2.19 (s, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 143.8, 140.2, 130.8, 129.7, 129.2, 120.2, 118.8, 116.8, 20.6;

HRMS (ESI-TOF): calc'd for $C_{13}H_{13}N[M+H]^+$ 184.1121; found 184.1098.

Spectral data was consistent with the data reported in the literature²⁹.

32. N-phenyl-[1,1'-biphenyl]-4-amine (61f)

Yield: 61% (Method I)

Physical State: off white colored solid (m.p. = 102-109 °C);

 $\mathbf{R}_{f} = 0.71 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.64 – 7.59 (m, 2H) 7.55, (d, *J* = 8.6 Hz, 2H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.16 (dd, *J* = 10.4, 8.1 Hz, 4H), 7.00 (t, *J* = 7.3 Hz, 1H), 5.79 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 142.8, 142.5, 140.8, 133.6, 129.3, 128.7, 127.9, 126.5, 126.4, 121.1, 118.0, 117.7;

HRMS (ESI-TOF): calc'd for $C_{18}H_{15}N[M+H]^+$ 246.1277; found 246.1321.

Spectral data was consistent with the data reported in the literature³⁰.

33. 4-phenoxy-N-phenylaniline (61g)

Yield: 63% (Method I)

Physical State: off white solid (m.p. = 100-105 °C);

 $\mathbf{R}_{f} = 0.37 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.19 (d, *J* = 38.2 Hz, 4H), 7.05 – 6.73 (m, 10H), 5.51 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 158.1, 151.1, 143.8, 138.6, 129.6, 129.3, 122.6, 120.4, 120.3, 117.9, 116.8;

HRMS (ESI-TOF): calc'd for C₁₈H₁₅NO [M+H]⁺ 262.1226; found 262.1224.

Spectral data was consistent with the data reported in the literature³¹.

34. 3-methyl-*N*-(*p*-tolyl)aniline (61h)

Yield: 82% (Method I)

Physical State: pale brown colored oily liquid;

 $\mathbf{R}_{f} = 0.50 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.29 – 7.24 (m, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.99 – 6.93 (m, 2H), 6.85 (d, *J* = 7.4 Hz, 1H), 5.63 (s, 1H), 2.44 (d, *J* = 9.2 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 144.0, 140.5, 139.2, 130.8, 129.9, 129.2, 121.3, 119.0, 117.7, 114.1, 21.6, 20.8;

HRMS (ESI-TOF): calc'd for $C_{14}H_{15}N[M+H]^+$ 198.1277; found 198.1310.

Spectral data was consistent with the data reported in the literature³².

35. 4-chloro-N-(4-methoxyphenyl)aniline (61i)

Yield: 76% (Method I)

Physical State: dark brown colored waxy solid;

 $\mathbf{R}_{f} = 0.51 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.16 (d, J = 8.9 Hz, 2H), 7.05 (d, J = 6.7 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.3 Hz, 2H), 5.44 (s, 1H), 3.81 (s, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 155.5, 143.8, 135.1, 129.1, 123.9, 122.5, 116.6, 114.7, 55.5;

HRMS (ESI-TOF): calc'd for $C_{13}H_{12}CINO[M+H]^+$ 234.0680; found 234.0673.

Spectral data was consistent with the data reported in the literature³³.

36. 4-fluoro-N-(4-methoxyphenyl)-3,5-dimethylaniline (61j)

Yield: 74% (Method I)

Physical State: gray colored solid;

 $\mathbf{R}_{f} = 0.33 \ (10\% \ \text{EtOAc/hexanes});$

¹**H** NMR (600 MHz, CDCl₃): δ 7.01 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 5.9 Hz, 2H), 5.26 (s, 1H), 3.82 (s, 3H), 2.23 (s, 1H);

¹³C NMR (151 MHz, CDCl₃): δ 155.2, 154.7, 153.6, 140.0, 136.8, 124.9, 124.8, 120.9, 116.95, 116.92, 114.6, 55.5, 14.75, 14.73;

¹⁹F NMR (471 MHz, CDCl₃): δ –132.4 (s);

HRMS (ESI-TOF): calc'd for $C_{15}H_{16}FNO[M+H]^+$ 246.1289; found 246.1288.

37. *N*-(4-chlorophenyl)-3,5-dimethylaniline (61k)

Yield: 63% (Method I)

Physical State: off white, pale brown colored solid (m.p. = 56-62 °C);

 $\mathbf{R}_{f} = 0.50 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.08 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.55 (s, 2H), 6.51 (s, 1H), 5.42 (s, 1H), 2.16 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 142.5, 142.0, 139.0, 129.1, 125.1, 123.3, 118.7, 115.8, 21.3;

HRMS (ESI-TOF): calc'd for $C_{14}H_{14}ClN[M+H]^+$ 232.0888; found 232.0916.

Spectral data was consistent with the data reported in the literature³⁴.

38. N-(3,5-dimethylphenyl)-[1,1'-biphenyl]-3-amine (611)

Yield: 77% (Method I)

Physical State: Brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.49 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 7.0 Hz, 2H), 7.28 (dt, *J* = 10.4, 7.6 Hz, 2H), 7.21 (t, *J* = 1.9 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.03 – 6.98 (m, 1H), 6.70 (s, 2H), 6.57 (s, 1H), 5.61 (s, 1H), 2.23 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 143.7, 142.9, 142.4, 141.1, 139.0, 129.6, 128.6, 127.2, 127.0, 123.0, 119.6, 116.57, 116.55, 115.8, 21.3;

HRMS (ESI-TOF): calc'd for $C_{20}H_{19}N[M+H]^+$ 274.1590; found 274.1615.

39. 3,5-dimethyl-*N***-(4-phenoxyphenyl)aniline (61m)**

Yield: 82% (Method I)

Physical State: reddish brown colored viscous oily liquid

 $\mathbf{R}_{f} = 0.44 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR** (**600 MHz**, **CDCl**₃): δ 7.42 (ddd, *J* = 8.5, 5.8, 1.9 Hz, 2H), 7.15 (td, *J* = 14.9, 7.6 Hz, 5H), 7.07 (d, *J* = 8.9 Hz, 2H), 6.75 (s, 2H), 6.68 (s, 1H), 5.60 (s, 1H), 2.38 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 158.1, 150.8, 143.7, 138.9, 129.5, 122.5, 122.3, 120.3, 120.1, 117.8, 114.6, 21.3;

HRMS (ESI-TOF): calc'd for $C_{20}H_{19}NO[M+H]^+$ 290.1539; found 290.1580.

40. N-(3,5-dimethylphenyl)-4-fluoro-3,5-dimethylaniline (61n)

Yield: 80% (Method I)

Physical State: dark reddish brown viscous oily liquid;

 $\mathbf{R}_{f} = 0.51 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 6.77 (d, *J* = 6.1 Hz, 2H), 6.64 (s, 2H), 6.60 (s, 1H), 5.39 (s, 1H), 2.32 (s, 6H), 2.28 (s, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 156.0, 154.4, 144.2, 138.9, 138.09, 138.07, 125.0, 124.9, 122.1, 119.77, 119.74, 114.5, 21.3, 14.75, 14.72;

¹⁹**F NMR (471 MHz, CDCl₃):** δ –130.3 (ddq, J = 6.4, 4.3, 2.3 Hz);

HRMS (ESI-TOF): calc'd for $C_{16}H_{18}FN[M+H]^+$ 244.1496; found 244.1520.

41. 2-bromo-*N*-(*p*-tolyl)aniline (610)

Yield: 67% (Method I)

Physical State: pale purple colored oily liquid;

 $\mathbf{R}_{f} = 0.71 \ (10\% \ \text{EtOAc/hexanes});$

¹**H NMR (600 MHz, CDCl₃):** δ 7.42 (d, J = 8.4 Hz, 1H), 7.08 – 7.04 (m, 4H), 6.99 (d, J = 8.3 Hz, 2H), 6.61 (ddd, J = 8.4, 5.8, 3.0 Hz, 1H), 5.94 (s, 1H), 2.26 (s, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 142.1, 138.7, 132.8, 132.7, 129.9, 128.0, 121.3, 120.2, 120.1, 114.9, 111.4, 20.8;

HRMS (ESI-TOF): calc'd for $C_{13}H_{12}BrN[M+H]^+$ 262.0226; found 262.0207.

23. Characterization data of the post-functionalized amines in Fig. 7

5. Diisopropyl 2-((2-hydroxy-2-phenylethyl)(4-methoxyphenyl)amino)malonate (67)

Yield: 53% (Method K)

Physical State: Brown colored viscous oily liquid;

 $\mathbf{R}_{f} = 0.26$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.25 – 7.21 (m, 4H), 7.16 (td, J = 5.8, 5.2, 3.3 Hz, 1H), 6.72 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 5.07 (s, 1H), 5.01 (hept, J = 6.2 Hz, 1H), 4.86 (hept, J = 6.2 Hz, 1H), 4.76 (d, J = 8.4 Hz, 1H), 3.91 (s, 1H), 3.64 (s, 3H), 2.66 – 2.51 (m, 2H), 1.19 (d, J = 6.3 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H), 1.03 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 169.0, 168.4, 154.1, 144.1, 137.5, 128.2, 127.2, 125.4, 118.7, 114.4, 70.8, 70.1, 69.9, 68.9, 55.4, 41.7, 21.5, 21.3, 21.27, 21.24;

HRMS (ESI-TOF): calc'd for $C_{24}H_{31}NO_6[M+H]^+$ 430.2224; found 430.2262.

6. Isopropyl 4-(4-methoxyphenyl)-2-oxo-6-phenylmorpholine-3-carboxylate (68)

Yield: 55% (Method L)

Physical State: Yellow colored waxy solid;

 $\mathbf{R}_{f} = 0.31$ (20% EtOAc/hexanes);

¹**H** NMR (600 MHz, CDCl₃): δ 7.43 – 7.34 (m, 5H), 6.76 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.9 Hz, 2H), 5.70 (dd, J = 10.3, 6.1 Hz, 1H), 5.04 (hept, J = 6.2 Hz, 1H), 4.76 (s, 1H),

3.73 (s, 3H), 3.49 (dd, *J* = 13.0, 6.1 Hz, 1H), 2.56 (dd, *J* = 13.0, 10.4 Hz, 1H), 1.27 (d, *J* = 6.3 Hz, 3H), 1.05 (d, *J* = 6.2 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 172.2, 167.8, 153.8, 137.9, 137.8, 128.9, 128.8, 125.8, 117.3, 114.7, 80.0, 71.1, 68.0, 55.5, 42.7, 21.5, 21.2.

HRMS (ESI-TOF): calc'd for $C_{21}H_{23}NO_5[M+H]^+$ 370.1649; found 370.1632.

7. 6-chloro-2,4-dimethyl-9*H*-carbazole (69)

Yield: 14% (Method M)

Physical State: Brown colored waxy solid;

 $\mathbf{R}_{f} = 0.26 (10\% \text{ EtOAc/hexanes});$

¹**H NMR (600 MHz, DMSO-***d*₆): δ 11.32 (s, 1H), 8.01 (d, *J* = 2.1 Hz, 1H), 7.47 (d, *J* = 8.5 Hz, 1H), 7.35 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.14 (s, 1H), 6.80 (s, 1H), 2.73 (s, 3H), 2.44 (s, 3H);

¹³C NMR (151 MHz, DMSO-*d*₆): δ 140.8, 138.0, 135.7, 132.3, 124.1, 124.0, 122.5, 121.9, 120.7, 117.8, 111.9, 108.7, 21.5, 20.1;

HRMS (**APCI-TOF**): calc'd for $C_{14}H_{12}CIN [M+H^+] 230.0731$; found 230.0737.

8. Diethyl 2-((2,6-dichlorophenyl)(2-(2-methoxy-2-oxoethyl)phenyl)amino) malonate (70)

Yield: 50% (Method N) Physical State: white solid (m.p. = 106-113 °C); $\mathbf{R}_{f} = 0.24$ (20% EtOAc/hexanes);

¹**H NMR (600 MHz, CDCl₃):** δ 7.41 (d, J = 7.8 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.94 (ddd, J = 24.3, 16.9, 7.0 Hz, 3H), 5.90 (s, 1H), 4.10 (dtd, J = 37.6, 12.4, 10.4, 4.7 Hz, 4H), 3.95 (d, J = 15.8 Hz, 1H), 3.63 (d, J = 14.2 Hz, 4H), 1.13 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃): δ 171.1, 169.4, 154.9, 137.5, 135.5, 135.0, 133.7, 130.8, 130.7, 130.0, 129.0, 128.5, 128.3, 127.7, 126.6, 62.4, 61.2, 61.0, 51.8, 38.4, 14.2, 13.8;
HRMS (ESI-TOF): calc'd for C₂₂H₂₃Cl₂NO₆ [M+H⁺] 468.0975; found 468.0976.

9. Diethyl 2-(5*H*-dibenzo[*b*,*f*]azepin-5-yl)malonate (71)

Yield: 61% (Method O)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.23$ (20% EtOAc/hexanes);

 $T = 80 \degree C$ for 24 hours and 100 $\degree C$ for 12 hours and 120 $\degree C$ for another 12 hours;

t = 48 hours;

¹**H NMR (600 MHz, CDCl₃):** δ 7.65 (s, 2H), 7.40 (dd, J = 17.5, 7.7 Hz, 4H), 7.30 (t, J = 7.4 Hz, 2H), 7.07 (s, 2H), 6.00 (s, 1H), 4.14 (s, 4H), 1.35 – 1.07 (m, 6H);

¹³C NMR (151 MHz, CDCl₃): δ 168.9, 154.8, 136.7, 133.5, 131.2, 129.0, 128.2, 126.9, 123.0, 67.2, 61.5, 61.2, 14.4, 13.8;

HRMS (ESI-TOF): calc'd for C₂₁H₂₁NO₄ [M+Na]⁺ 374.1363; found 374.1339.

Note: For the reaction to obtain this product (**71**), the conditions were unoptimized. After 24 hours of stirring at 80 °C, additional 5 mol% of the catalyst was added and the temperature increased to 100 °C and stirred for 12 hours and again increased to 120 °C and stirred for another 12 hours. Still the starting material was not totally consumed.

10. Diethyl 2-(5,8-dihydro-13H-dibenzo[b,h]azonin-13-yl)malonate (72)

Yield: 63% (Method O)

Physical State: colorless oily liquid;

 $\mathbf{R}_{f} = 0.56 \ (20\% \ \text{EtOAc/hexanes});$

 $T = 80 \ ^{o}C;$

t = 15hours

¹H NMR (600 MHz, CDCl₃): δ 7.56 (d, J = 7.5 Hz, 1H), 7.28 – 7.19 (m, 3H), 7.18 – 7.12 (m, 2H), 7.05 (d, J = 5.4 Hz, 2H), 6.96 (d, J = 7.8 Hz, 1H), 6.08 – 5.93 (m, 2H), 4.16 (ddt, J = 18.7, 11.6, 7.1 Hz, 2H), 4.04 (s, 1H), 3.90 (p, J = 6.8 Hz, 1H), 3.73 (dd, J = 27.6, 15.3 Hz, 2H), 3.00 (dd, J = 15.2, 9.1 Hz, 2H), 1.18 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 172.8, 153.4, 139.8, 139.6, 138.5, 135.9, 132.6, 132.1, 128.3, 128.2, 127.9, 126.1, 125.7, 124.9, 70.0, 63.0, 60.5, 32.5, 31.7, 14.4, 13.4; HRMS (ESI-TOF): calc'd for C₂₃H25NO₄ [M+H]⁺ 380.1856, [M+Na]⁺ 402.1676; found

380.1790, 402.1676.

Note: For the reaction to get this product (72), 10 mol% of the catalyst was used.

24. Computational Details

Ground-state and transition-state geometries were optimized using Gaussian 09^{35} with the M06-2X^{36, 37} functional and the ultrafine integration grid. Stationary points were confirmed to be either minima or saddle-point structures by calculation and visualization of vibrational frequencies. Intrinsic reaction coordinate (IRC) calculations were used to verify key transition states. For geometries, 6-31+G(d,p) was used for all atoms expect Br where LANL2DZ was used. All optimizations were also carried out with the SMD continuum model for tetrahydrofuran (THF) or dichloromethane (DCM)³⁸. M06-2X/def2-TZVP electronic energies were calculated in THF or DCM solvent using the M06-2X/6-31+G(d,p)[LANL2DZ] geometries. The def2-TZVP basis set was obtained from EMSL

(https://bse.pnl.gov/bse/portal, accessed 8/1/2016). Free energies and enthalpies reported refer to M06-2X/def2-TZVP//M06-2X/6-31+G(d,p)[LANL2DZ] where zero-point energy, thermal, and entropy corrections are used from the M06-2X/6-31+G(d,p)[LANL2DZ] geometries. 3D structures were generated using CYLview. A dinuclear phenylmagnesium bromide model where the phenyl groups bridge between two Mg centers was adopted in all reported calculations.

Proton affinities and reduction potentials

Below reports absolute proton affinities (in kcal/mol) for a variety of ester and diester aminating reagents. THF values are nearly identical to DCM values. As expected, the highly electrophilic diester imine with an *N*-OMs group has the smallest proton affinity of 106 kcal/mol (reaction **a**). Change of the *N*-OMs group to *N*-Ph increases the proton affinity by 22 kcal/mol (c.f. reaction **d**). Similarly, the *N*-PMP type diester imines have proton affinities greater than 129 kcal/mol. Comparison of the *N*-OMs diester (reaction **a**) to the *N*-OMs monoester shows the proton affinities increases to 119 kcal/mol. These proton affinities show the importance of the *N*-OMs group and diester group on controlling the electrophilicity of the imine.

 Table S10. Proton affinities (kcal/mol) for ester and diester aminating agents in

 THF (red) and DCM (blue)

The absolute reduction potential of *N*-PMP substituted dimethyl iminomalonate is compared to *N*-PMP substituted α -keto ester (reactions **j** and **k** shown below). The dimethyl iminomalonate has a 0.3 eV greater reduction potential compared to the α -oxime ester, which provides another measure of the electrophilic impact of the diester group.

Table S11. Comparison of reduction potentials

Alkyl versus aryl Grignard reagents

Our calculations suggest a larger energy difference between transitions states for alkyltype versus aryl-type Grignard additions to α -iminoesters. Below shows that the free energy barriers for the ethyl Grignard is less than 10 kcal/mol while for the phenyl Grignard the free energy barrier is greater than 20 kcal/mol.

Table S12. Comparison of free energies of alkyl and aryl Grignard reagents

Further reaction pathway details

Our initial calculations focused on THF solvent since the Grignard reagents are prepared in this solvent. THF free energies are reported in red color below (kcal/mol). We also examined the energies in DCM solvent, including re-optimization of structures. DCM free energies are reported in blue color below. THF and DCM energies are nearly identical.

Table S13. Comparison of free energies in THF (red) and DCM (blue)

Experimentally, a mixture of *N*-attack and *C*-attack products are observed. Our calculations replicate the small the energy difference between these transition states. In THF solvent the *N*-attack transition state is slightly favored, but in DCM the *C*-attack transition state is slightly favored. We also ruled out the possibility of reaction at ester carbonyl. The C-attack transition state has a free energy barrier that is > 20 kcal/mol.

Table S14. Comparison of free energies of N-attack and C-attack

Xyz coordinates and thermochemistry in THF solvent (Hartree and Å)

1			
M06-2X/6	-31+G(d,p)[LA]	NL2DZ]	
Electronic	Energy = -2102	.859533	
Enthalpy =	-2102.46657		
Free Energ	y = -2102.5721	28	
M06-2X/d	ef2-TZVP		
Electronic	Energy = -7223	5.566095	
С	-0.15828600	2.63508300	-1.01480200
0	0.85795700	1.99439000	-1.25985700
С	-0.97915400	2.31533200	0.22355700
С	-2.16012000	3.16061500	0.65899300
0	-2.27414900	4.30878600	0.31389200
0	-2.97441200	2.50132100	1.45778700
0	-0.62379000	3.58955400	-1.75231600
С	0.07966000	3.84544500	-2.99077200
Н	0.10725200	2.93220700	-3.58807000
Н	-0.49746100	4.62156600	-3.48714900
Н	1.09131600	4.18851000	-2.77070400
С	-4.16303000	3.21320300	1.85062400
Н	-4.73394400	2.51097200	2.45415400
Н	-3.89464000	4.09580200	2.43407300
Н	-4.72708800	3.50820200	0.96321300
Ν	-0.48125800	1.29107900	0.79545200
0	-1.07966900	0.81110600	1.92339700
S	-0.24726900	-0.57789000	2.36106300

0	-0.75851200 -1.68368400 1.55664700
0	1.16306100 -0.24179800 2.21310800
С	-0.77154700 -0.69275600 4.02840500
Н	-1.85748000 -0.80406400 4.03267800
Н	-0.28448800 -1.58555100 4.43067000
Н	-0.43896800 0.20871900 4.54586800
С	-1.79284500 -0.63589500 -1.29203800
С	-1.60994000 0.22055500 -2.39953600
С	-2.95239700 -0.38224800 -0.52802800
С	-2.48137600 1.27172900 -2.70047700
Н	-0.74782800 0.08340800 -3.05304700
С	-3.84255400 0.65779800 -0.81234200
Н	-3.17224000 -1.00576200 0.34033200
С	-3.59744400 1.50741400 -1.89218000
Н	-2.29183900 1.91327200 -3.55900100
Н	-4.71515700 0.81897200 -0.18273200
Н	-4.27160100 2.33136000 -2.11217400
Mg	-0.39934900 -2.08234400 -0.57766000
Br	-0.76178100 -4.53956600 -0.52426000
Mg	1.62941800 0.62389600 0.12349400
C	1.81068600 -1.35396800 -0.71371200
С	1.75636600 -1.64808800 -2.09959800
С	2.46065600 -2.32802300 0.08286700
С	2.30795600 -2.80932400 -2.64971700
Н	1.27312600 -0.94550400 -2.77858300
С	3.02898700 -3.48613600 -0.45175000
Н	2.53252500 -2.17706000 1.15970800
С	2.95030100 -3.72877800 -1.82207900
Н	2.23546700 -2.99455200 -3.71784700
Н	3.51903600 -4.20398300 0.20020600
Н	3.37688400 -4.63522600 -2.24174700
Br	3.35485200 2.12420400 1.08849500

(PhMgBr)₂

M06-2X/6-3	1+G(d,p)[LAN	NL2DZ]		
Electronic Er	hergy = -889.6	6743563		
Enthalpy = -8	889.465265			
Free Energy	= -889.536643	3		
M06-2X/def2	<u>2-TZVP</u>			
Electronic Er	nergy = -6011	.99159		
Mg	1.80327900	-0.01194500	-0.35822200	
С	3.89456000	-0.00080700	-0.35622300	
С	4.63984300	-0.01064700	-1.55189100	
С	4.63888900	0.01881900	0.83990900	
С	6.03770000	-0.00082900	-1.55979400	
Н	4.12831900	-0.02653900	-2.51320300	

С	6.03673700	0.02821300	0.84869600
Н	4.12657500	0.02778500	1.80088700
С	6.74133900	0.01852100	-0.35532600
Н	6.57680400	-0.00861400	-2.50383100
Н	6.57507500	0.04340400	1.79308300
Н	7.82785800	0.02596900	-0.35497800
Br	0.00726600	-1.90029800	-0.43860400
Br	-0.00744500	1.86290200	-0.29172900
Mg	-1.80345500	-0.02545000	-0.37211200
С	-3.89473700	-0.03658700	-0.37411100
С	-4.63906300	-0.05625500	-1.57024400
С	-4.64002200	-0.02669800	0.82155500
С	-6.03691100	-0.06564300	-1.57903400
Н	-4.12674600	-0.06526100	-2.53122100
С	-6.03787900	-0.03651000	0.82945600
Н	-4.12849900	-0.01077100	1.78286800
С	-6.74151600	-0.05590200	-0.37501300
Н	-6.57524800	-0.08086800	-2.52342100
Н	-6.57698500	-0.02868700	1.77349100
Н	-7.82803400	-0.06334500	-0.37536200

TS1

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -2102.836453Enthalpy = -2102.445424Free Energy = -2102.550607M06-2X/def2-TZVP Electronic Energy = -7225.547959С -3.24417200 -0.63627600 4.03339700 С -3.36430300 -1.70424900 3.14523000 Η -2.46776000 1.35521500 4.32887900 С -2.55548600 0.51464400 3.64614200 С -2.79258200 -1.62486500 1.86935400 С -2.08386500 -0.47880300 1.48464200 С -1.99508400 0.58360400 2.36808900 Η -2.89631900 -2.48090400 1.20338100 Η 1.51292400 -1.49405600 2.07715900 Mg -0.57540400 -1.15693200 -0.10760300 Mg 2.38779400 -0.55066900 -0.13793000 Η -3.89918800 -2.60313500 3.44087000 Η -3.69312300 -0.69523800 5.02043900 С 4.38529100 0.08699700 -0.04326400 С 5.12352000 0.39351800 -1.20477800 С 5.07000700 0.25434000 1.17814500 С 6.44940800 0.83633000 -1.15935700 Η 4.66038700 0.28352800 -2.18565300

С	6.39502500	0.69587900	1.24431000
Н	4.56354200	0.03057800	2.11764000
С	7.09010100	0.99038800	0.07039200
Н	6.98201600	1.05926200	-2.08079900
Н	6.88601400	0.80752700	2.20815500
Н	8.12060000	1.33230100	0.11365000
Br	1.21251100	-2.38236800	1.34020400
Br	1.05194500	-1.30947600	-2.24464900
С	-2.19196900	2.95027000	-0.27121300
0	-3.37032400	2.86928000	-0.00685600
С	-1.29317400	1.76540300	-0.33287800
С	0.09697600	1.72656100	0.09458400
0	0.66686200	0.61045100	0.22974500
0	0.68240900	2.85148200	0.38009600
0	-1.55395900	4.07861600	-0.56017100
С	-2.35126000	5.27269700	-0.50589100
Н	-2.76988100	5.40067800	0.49423800
Н	-1.66967000	6.08784600	-0.74081400
Н	-3.15516400	5.22247000	-1.24281700
С	2.04728600	2.79866500	0.85290800
Н	2.29895700	3.82739400	1.10014400
Н	2.11083900	2.16385100	1.73927200
Н	2.69897200	2.42854100	0.05876500
Ν	-1.71584100	0.53922100	-0.58537200
0	-2.98048700	0.44473800	-1.10775600
S	-3.20275700	-1.06104100	-1.79859300
0	-3.18291600	-0.90779200	-3.23034600
0	-2.20973400	-1.95203600	-1.17265700
С	-4.81629700	-1.40542200	-1.19050000
Н	-5.48839400	-0.64126600	-1.58607800
Н	-5.08567600	-2.39307100	-1.57395900
Н	-4.78300300	-1.39193700	-0.10000100

2

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -2102.94382 Enthalpy = -2102.549795 Free Energy = -2102.652029M06-2X/def2-TZVP Electronic Energy = -7225.653969 -2.39769000 1.16796300 -1.55315800 С 0 -1.38289400 1.90164100 -1.61497300 С -2.57980800 0.11130200 -0.63821600 С -3.86687100 -0.42042500 -0.29171100 0 -4.96908400 0.08573100 -0.607409000 -3.82298300 -1.49337500 0.47661500

0	-3.40799200	1.39704800	-2.43956000
С	-3.14326600	2.39129600	-3.46605900
Н	-2.23081800	2.12832200	-3.99913200
Н	-4.00682500	2.34627300	-4.12729500
Н	-3.04933800	3.38396000	-3.01798100
С	-5.07887300	-2.01631800	0.94365900
Н	-4.81850400	-2.86978600	1.56663200
Н	-5.60722000	-1.26216000	1.52938200
Н	-5.69263400	-2.33291100	0.09910000
Ν	-1.41222300	-0.37164200	-0.01453700
0	-1.40151300	-0.06343300	1.39908600
S	-0.12685000	0.88753000	1.73279000
0	1.10298500	0.28722600	1.27473800
0	-0.42584800	2.24954400	1.24167900
С	-0.27474800	0.89739600	3.48666700
Н	-0.11717600	-0.12145000	3.84354800
Н	0.50706300	1.56453400	3.85707900
Н	-1.26488900	1.27185500	3.75051400
С	-1.02130200	-1.73064400	-0.22920000
С	-1.09071000	-2.21806500	-1.53934600
С	-0.53602100	-2.54427800	0.79470800
С	-0.68341200	-3.51979600	-1.81329000
Н	-1.45645800	-1.57961600	-2.33725500
С	-0.13105700	-3.84719700	0.50298000
Н	-0.47895500	-2.17958900	1.81248000
С	-0.20254900	-4.34491200	-0.79554000
Н	-0.74077300	-3.88699700	-2.83344700
Н	0.24088600	-4.47416800	1.30782200
Н	0.11381200	-5.35957700	-1.01434100
Mg	-1.31219100	3.31754200	-0.21609000
Br	0.01641300	5.22799700	-0.95168600
Mg	-5.11759400	1.96084800	-1.25828500
C	-4.03475300	3.44873200	-0.12701400
С	-4.09252400	4.80910200	-0.52136300
С	-3.35884700	3.21688300	1.09816200
С	-3.54960600	5.84874000	0.23643300
Н	-4.59111600	5.07330500	-1.45342100
С	-2.78543200	4.25087200	1.86607200
Н	-3.28566500	2.19781200	1.48463100
С	-2.89080000	5.57274900	1.43611900
Н	-3.62130500	6.87374200	-0.11606200
Н	-2.26928800	4.01975200	2.79445000
Н	-2.44806000	6.37463800	2.01839300
Br	-6.93237300	2.42353900	-2.84704100

TS2

<u>M06-2X/6</u>	<u>-31+G(d,p)[LAN</u>	[L2DZ]	
Electronic	Energy = -2102.9	918001	
Enthalpy =	-2102.525638		
Free Energ	y = -2102.62652	4	
M06-2X/d	ef2-TZVP		
Electronic	Energy = -7225 .	.629292	
С	0.97513500	1.14684100	-1.74425700
0	1.34728800	0.72575300	-2.81152700
С	1.62616500	0.91406700	-0.46002200
С	1.27329300	1.54834300	0.77726000
0	0.33014700	2.35923900	0.94861000
0	2.01839300	1.18534800	1.80873400
0	-0.15377700	1.96293200	-1.69697800
С	-0.66003100	2.37117600	-2.99305700
Н	-1.01261300	1.50047100	-3.54617200
Н	-1.47667800	3.06053400	-2.78392900
Н	0.13367800	2.87263200	-3.54589000
С	1.68618800	1.75558700	3.08533600
Н	2.39155400	1.31362200	3.78659800
Н	1.80540800	2.83999200	3.05786100
Н	0.66042500	1.50056700	3.36029100
Ν	2.56655600	-0.07250600	-0.51344300
0	1.98595000	-1.38386900	0.33924000
S	1.26705600 -	2.35483400	-0.64848600
0	0.04871100	-1.66187400	-1.17691700
0	2.13996700	-2.88516100	-1.67315500
С	0.73326100	-3.62539200	0.45975000
Н	0.11646200	-3.18074000	1.24363900
Н	0.16022800	-4.33983100	-0.13655900
Н	1.62463600	-4.09751100	0.87648400
Mg	-1.36217800	2.04356000	-0.01649500
Br	-2.93601200	3.90057700	-0.35024100
Mg	-1.83654800	-1.33669600	-0.73809000
C	-2.09040100	0.15837200	0.83669500
С	-3.47535400	0.09812100	1.12577500
С	-1.24455600	-0.53370800	1.74340400
С	-3.98013500	-0.57535200	2.23998800
Н	-4.18270300	0.60004400	0.46740700
С	-1.73583300	-1.21659200	2.85856200
Н	-0.16401100	-0.53676300	1.58255300
С	-3.10864900	-1.23579800	3.10501600
Н	-5.04947200	-0.59177400	2.42863100
Н	-1.05249800	-1.72719900	3.53156900
Н	-3.49833000	-1.76804300	3.96777300
Br	-3.05064000	-3.46200800	-0.67111600
С	3.89361600	0.06488800	-0.03018600

С	4.46130800	1.34553100	-0.00420500
С	4.68636600	-1.05180000	0.25603700
С	5.80866800	1.49952000	0.31100000
Η	3.85517500	2.21122600	-0.24896000
С	6.02816000	-0.87955800	0.58557200
Η	4.25793000	-2.04557000	0.22420100
С	6.59951400	0.39239300	0.61456600
Η	6.23659000	2.49740900	0.32151200
Η	6.63133300	-1.75339100	0.81262300
Η	7.64790400	0.51814100	0.86529600

3

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -2103.034509Enthalpy = -2102.63971Free Energy = -2102.746515M06-2X/def2-TZVP Electronic Energy = -7225.749857 С -0.35951600 -1.57376300 -1.04103800 0 -0.00960800 -2.65808700 -1.50700700 С -1.81437700 -1.31967400 -0.76689100 С -2.72790700 -2.40075000 -1.31816900 0 -2.70980000 -2.73535300 -2.49327200 0 -3.50620400 -2.92882300 -0.42094900 0 0.43972200 -0.61129500 -0.71523400 С 1.84080300 -0.80384000 -1.01966800 Η 1.96231400 -0.90794900 -2.10043800 Η 2.33609800 0.09604900 -0.66284800 Η 2.21456100 -1.68856000 -0.50195800 С -4.47318900 -3.90119300 -0.89148400 Η -4.99788000 -4.23380200 0.00047100 Η -5.15608400 -3.41523800 -1.59087300 Η -3.95760700 -4.73227200 -1.37625600 Ν -2.17109900 -0.28735000 -0.12725400 0 -0.79748200 -0.36960700 -3.43536000 S -0.34873200 -1.16407800 -4.58187900 0 0.86948100 -1.99233200 -4.26595700 0 -1.42836500 -2.05078200 -5.14706100 С 0.12261000 -0.09456900 -5.90349800 Η 0.92444900 0.54967900 -5.53978300 Η 0.46211400 -0.70906400 -6.73800800 Η -0.75300400 0.49436400 -6.18081900 Mg 0.86494200 -3.60149100 -3.07715300 3.15944800 -4.25854200 -2.45727900 Br Mg -2.25992100 -3.60302200 -4.24242400 С -0.65335200 -5.04501100 -3.66245700

С	-1.35943500	-5.74387900	-2.65221100
С	-0.55859100	-5.70952100	-4.90970700
С	-1.91347700	-7.00930700	-2.85699500
Н	-1.47117600	-5.28983700	-1.66605600
С	-1.10672900	-6.97568000	-5.13233100
Н	-0.03783400	-5.22415100	-5.73555500
С	-1.78602200	-7.62501000	-4.10259000
Н	-2.44356200	-7.51263100	-2.05290900
Н	-1.01069000	-7.45028000	-6.10472400
Н	-2.22188500	-8.60555200	-4.27139400
Br	-4.37506200	-4.33453000	-5.24998500
С	-3.52661000	0.04031400	0.07541200
С	-4.47122600	-0.02598500	-0.95730300
С	-3.88911500	0.51141700	1.34153100
С	-5.78979600	0.33921800	-0.70082500
Н	-4.16844600	-0.31005300	-1.96250000
С	-5.21653500	0.84271500	1.59392000
Н	-3.13048200	0.59075400	2.11397300
С	-6.16817700	0.75756800	0.57563300
Н	-6.52014300	0.30330700	-1.50306100
Н	-5.50578600	1.18369200	2.58291900
Н	-7.19895500	1.03550800	0.77141700

OMs anion

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -663.7396229Enthalpy = -663.682761Free Energy = -663.716914M06-2X/def2-TZVP Electronic Energy = -663.9295770 0.55132800 1.33254000 -0.52522600 S 0.15830900 0.00013500 -0.00063300 0 0.54586700 -1.12071700 -0.89433800 0 0.55900400 -0.21387300 1.41353800 С -1.63649600 0.00168200 0.00603500 Η -1.99162700 0.15840000 -1.01442200 Η -1.98512800 -0.96169000 0.38273300 Η -1.98680400 0.80743900 0.65381600

C₆H₅ anion

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -231.5909347}$ Enthalpy = -231.498287 Free Energy = -231.531018 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -231.6650036}$

С	0.00000100	-1.36495300	0.00000000
С	1.19904500	-0.64903000	-0.00000100
С	1.17735900	0.75318700	0.00000200
С	-0.00000100	1.54363000	0.00000000
С	-1.17736000	0.75318600	-0.00000200
С	-1.19904500	-0.64903200	0.00000100
Η	0.00000100	-2.45244700	0.00000000
Η	2.14836600	-1.18387700	-0.00000100
Η	2.15252000	1.24913800	-0.00000200
Η	-2.15252200	1.24913600	0.00000200
Н	-2.14836400	-1.18387900	0.00000100

TS3

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -1670.854604Enthalpy = -1670.425739Free Energy = -1670.530162M06-2X/def2-TZVP Electronic Energy = -6793.453525С 3.64517400 -2.81934100 -2.78294400 С 3.72590000 -3.19687000 -1.44091700 Η 2.80334700 -1.42702100 -4.19988300 С 2.85160800 -1.73415600 -3.15890200 С 3.00640700 -2.49071200 -0.47200800 С 2.18676900 -1.41975300 -0.85087200 С 2.14262700 -1.03015600 -2.18152700 Η 3.09411000 -2.79023500 0.57172000 Η 1.56863600 -0.14864500 -2.48492400 Mg 0.41359300 -1.18052600 0.46969100 Mg -2.50382200 -0.54899200 0.29304100 Η 4.35184800 -4.03536800 -1.14745600 Η 4.21408500 -3.36025200 -3.53352000 С -4.42129200 0.27469800 0.07850000 С 1.11484100 -4.98964800 1.05725800 С -5.20970200 0.05015100 -1.06903600 С -6.25340500 1.69528900 0.90816800 Η -4.43932400 1.32981100 1.97345300 С -6.47515500 0.62072300 -1.23593200 Η -4.83573600 -0.59412600 -1.86532300 С -7.00116700 1.44945800 -0.24378400 Η -6.65452000 2.33671800 1.68920900 Η -7.05070400 0.41813600 -2.13601500 Η -7.98414900 1.89615800 -0.36586600 -2.80530800 Br -1.45288000 -0.49597500 Br -1.10363000 -0.65198500 2.54567900 С 2.20547500 2.44632100 -1.09292400

0	3.31163000	2.19599200	-1.51833600
С	1.30219100	1.42056800	-0.48926500
С	-0.08938100	1.29466000	-0.88372000
0	-0.75218500	0.28698200	-0.50350700
0	-0.60031800	2.19863400	-1.66773300
0	1.66491900	3.66191500	-1.07648900
С	2.46281000	4.70367000	-1.66086200
Η	2.67068000	4.47637900	-2.70847700
Η	1.86650900	5.61026200	-1.57760000
Η	3.40061800	4.81070500	-1.11210600
С	-1.98111000	2.04508700	-2.06532700
Η	-2.17014700	2.86571500	-2.75350700
Η	-2.12013200	1.08456900	-2.56636300
Η	-2.62741100	2.12722500	-1.18918700
Ν	1.70066600	0.48243100	0.35228300
С	2.89459800	0.61439000	1.14001900
С	2.67669000	0.87936500	2.49549400
С	4.19049200	0.46028700	0.64565500
С	3.76440800	1.02108300	3.35519300
Η	1.65899100	0.98465400	2.86091800
С	5.26928400	0.58612200	1.51843100
Η	4.34197900	0.23800100	-0.40359500
С	5.06236100	0.87138500	2.86885300
Η	3.59181300	1.23875900	4.40449900
Η	6.27767900	0.45993100	1.13677900
Η	5.90978300	0.97020000	3.54006400

4

M06-2X	M06-2X/6-31+G(d,p)[LANL2DZ]			
Electron	ic Energy = -1902	.636148		
Enthalpy	v = -1902.108443			
Free Ene	argy = -1902.2264	55		
M06-2X	/def2-TZVP			
Electron	ic Energy = -7025	5.305301		
С	-0.41444500	-1.18691400	1.90355800	
0	-0.15332600	-1.44972500	3.12920800	
С	-1.34370600	-0.24491800	1.45019700	
С	-2.05738800	0.58102600	2.36992400	
0	-1.93364200	0.59442100	3.61252100	
0	-2.91810300	1.41995900	1.79063100	
0	0.25258800	-1.83615100	0.95092600	
С	1.34458000	-2.67756400	1.34347300	
Н	0.97728700	-3.60308900	1.79304700	
Н	1.87584500	-2.90609600	0.42022200	
Н	2.00673200	-2.15485400	2.03727200	
С	-3.67104900	2.26520700	2.66932400	

Н	-4.29083200	2.87901300	2.01706600
Н	-4.29759300	1.66408600	3.33187900
Н	-3.00608400	2.89381200	3.26511400
Ν	-1.54765000	-0.07558300	0.05733500
С	-2.68686300	-0.67524800	-0.52681000
С	-3.13108500	-1.92618100	-0.07624700
С	-3.42431900	-0.01355300	-1.52028100
С	-4.27957900	-2.50304600	-0.61498900
Н	-2.57450700	-2.44815800	0.69631300
С	-4.56350400	-0.60264300	-2.06125400
Н	-3.10792000	0.96832800	-1.85838000
С	-5.00130700	-1.85088800	-1.61437500
Н	-4.60347800	-3.47463000	-0.25267400
Н	-5.12185800	-0.07159800	-2.82704800
Н	-5.89367700	-2.30401200	-2.03461400
Mg	-0.32372000	-3.06268200	4.43548000
Mg	-0.87393100	-0.50253400	4.91503700
СŬ	1.12019900	-2.03041700	5.68557700
С	1.26214500	-2.36684500	7.05112700
С	2.14309900	-1.20925100	5.16535100
С	2.33025300	-1.93008300	7.83580400
Н	0.51282200	-2.99925900	7.52870500
C	3.21931500	-0.75050800	5.93341300
Н	2.10577500	-0.90892300	4.11696000
C	3.31447100	-1.11180600	7.27562400
H	2.39636000	-2.21895700	8.88222400
Н	3.97863300	-0.11254000	5.48688500
Н	4 14594200	-0.76094300	7.88142800
Br	-0.47293500	-5.35806300	3.51217400
Br	-0.63134400	1.22363400	6.71590400
C	-0 64050300	0 70472100	-0.68172500
C	-0.43133900	0.47670400	-2 05307100
C	0.12166100	1 69846400	-0.04654500
C	0.49265900	1 23716800	-2 76321300
н	-0.98416300	-0.30765600	-2 55950500
C C	1 04961100	2 44803000	-0 76643900
н	-0.010/13300	1 88277900	1 01/6/600
C C	1 24055400	2 23182600	-2 13054300
н	0.63762300	1.03653200	-3 82109600
и И	1 62321200	3 21230000	-0.24074000
и П	1.02321200	2 81021000	2 6881/1100
II C	2 01276400	2.01921000	674685500
C	-3.712/0400 1 87008000	-3.22707000	574262200
C	-4.0790000	-3.31113300	J.7+306200 A A581A500
C	-4.37337600	-2.03034000	4.43014300
	-3.31403300	-2.32110300	4.17103400
L	-2.30189100	-2.22083900	2.1/092000

С	-2.65321600	-2.69821600	6.45381500
Н	-4.14181200	-3.57795100	7.75101400
Н	-5.86005900	-3.72493400	5.96207400
Н	-5.32768400	-2.91483800	3.67136600
Н	-3.11472000	-1.97845500	3.17534600
Η	-1.92211100	-2.64450800	7.26133800

$S_N 2 TS$

$\underline{M06-2X/6-31+G(d,p)[LANL2DZ]}$				
Electronic H	Energy = -2102.7976	5		
Enthalpy =	-2102.407439			
Free Energy	<i>y</i> = -2102.515195			
M06-2X/de	f2-TZVP			
Electronic H	Energy = -7225.512	673		
С	2.50182600 4.49	899800	1.69513800	
С	3.40543200 3.56	5112300	1.19778800	
Η	0.42057300 5.01	128200	1.94015100	
С	1.12895700 4.28	377700	1.55218900	
С	2.92644600 2.40)437300	0.57432200	
С	1.55747300 2.18	3600600	0.38920600	
С	0.66435600 3.13	3706000	0.90393300	
Н	3.64825500 1.66	5010600	0.23492800	
Н	-0.41036400 3.00	0779600	0.78570700	
Mg	1.12029900 0.8	37362300	-1.38311700	
Mg	-2.05205400 0.2	24605300	-0.54950800	
Н	4.47464800 3.71	850500	1.31076900	
Н	2.86325800 5.39	9057100	2.19937600	
С	-4.11197800 0.09	9727600	-0.15440100	
С	-5.08120300 0.74	1096300	-0.95106600	
С	-4.61750600 -0.6	5381100	0.91997000	
С	-6.45330300 0.63	3964300	-0.70063800	
Н	-4.76745700 1.34	4621600	-1.80182500	
С	-5.98524700 -0.7	7860700	1.18768300	
Н	-3.92842400 -1.1	9380600	1.57869500	
С	-6.91063000 -0.12	2374300	0.37410500	
Н	-7.16434400 1.15	5381100	-1.34298400	
Н	-6.32927400 -1.3	7847800	2.02702600	
Н	-7.97529300 -0.2	0827800	0.57454200	
Br	-1.08950700 2.13	8019500	-2.03947900	
Br	-0.40469600 -1.3	8118300	-1.67073600	
С	1.32151800 -1.95	5377100	2.04717000	
0	2.30123900 -2.25	5797100	2.66705600	
С	1.17028800 -0.59	9168700	1.37153300	
С	0.03389900 0.27	366700	1.87447700	
0	-0.96687900 0.48	3906700	1.20586600	
0	0.21827500 0.64	4038000	3.10100400	

0	0.20640000	-2.63044700	1.88940300
С	0.17926100	-3.95457000	2.47330400
Η	0.35091000	-3.88500900	3.54845400
Η	-0.81513700	-4.33896100	2.26050600
Η	0.94333000	-4.57366600	2.00133200
С	-0.82896200	1.43986000	3.71853000
Η	-0.47271400	1.63395300	4.72663600
Η	-0.94633700	2.36761500	3.15740300
Η	-1.75719700	0.86781700	3.72917900
Ν	1.88931300	-0.18709600	0.41269100
0	2.72275600	-1.68129500	-0.14843600
S	3.38227600	-1.33093500	-1.51244900
0	3.34821800	-2.47857100	-2.39816700
0	2.76115000	-0.07901400	-2.06273500
С	5.05302700	-0.91404700	-1.11673600
Η	5.53013000	-1.80873300	-0.71396500
Η	5.54147200	-0.59264100	-2.03827300
Η	5.04181400	-0.11217600	-0.37633600

C-attack TS

M06-2X/6-2	31+G(d,p)[LAN	IL2DZ]	
Electronic E	Energy $= -2102$.	837825	
Enthalpy =	-2102.445925		
Free Energy	y = -2102.55017	6	
M06-2X/de	<u>f2-TZVP</u>		
Electronic E	Energy = -7225	.548752	
С	2.94305100	2.57766400	-2.68401200
С	3.48860900	2.64393600	-1.40413200
Н	1.35603000	1.76828000	-3.90206400
С	1.78369700	1.83057700	-2.90542000
С	2.86462600	1.97504500	-0.34672300
С	1.70243800	1.20639600	-0.54281500
С	1.17475900	1.16064800	-1.84498100
Н	3.33070900	2.05362300	0.63524700
Н	0.27203300	0.58934100	-2.05261400
Mg	2.07316700	-0.69578000	0.56660000
Mg	-1.97815000	-0.33679000	-0.05774200
Н	4.39642500	3.21277400	-1.22429800
Н	3.41834300	3.10232500	-3.50759700
Br	0.12252800	-2.00989500	-0.55593300
С	1.34468500	1.50356700	2.14347500
0	2.16591700	0.59971500	2.27729400
С	0.17133900	1.28685500	1.22879400
С	-0.51437200	2.23981200	0.29295100
0	-1.44364800	1.81355500	-0.38840800
0	-0.06837500	3.46004700	0.29555500

0	1.35848500	2.63591000	2.77197100
С	2.46860800	2.86310400	3.68170700
Н	3.40697200	2.80576100	3.12886800
Н	2.30856400	3.86312800	4.07616200
Н	2.44205400	2.11654800	4.47587200
С	-0.62483000	4.34723500	-0.70337600
Н	-0.08356200	5.28270000	-0.58508900
Н	-0.45806300	3.92143800	-1.69474500
Н	-1.69056500	4.48803500	-0.51910400
Ν	-0.68135100	0.33127300	1.50867500
0	-0.22285300	-0.62685100	2.42962000
S	-1.50159200	-1.60122600	2.84839200
0	-2.38851100	-1.63227400	1.67940400
0	-0.89415500	-2.80962000	3.33867300
С	-2.26544800	-0.66867200	4.13659500
Н	-2.52901300	0.31087900	3.73226100
Н	-3.16124800	-1.21831500	4.43623000
Н	-1.55553500	-0.59307300	4.96149700
Br	4.17846300	-1.92848500	0.65001500
С	-3.65751500	-0.53887000	-1.31478600
С	-4.25263600	-1.79144300	-1.57324200
С	-4.26773200	0.56246900	-1.95015700
С	-5.37069400	-1.94292500	-2.39920500
Н	-3.83454300	-2.69081700	-1.11952600
С	-5.38792700	0.43450600	-2.77840700
Н	-3.86007400	1.56262800	-1.80106400
С	-5.94489700	-0.82442400	-3.00561400
Н	-5.79376100	-2.93011500	-2.57038000
Н	-5.82535700	1.31364600	-3.24627200
Н	-6.81453400	-0.93331000	-3.64813500

Ester Addition TS

M06-2X	[/6-31+G(d,p)[LAN	NL2DZ]	
Electron	ic Energy $= -2102$.	.82468	
Enthalpy	y = -2102.433503		
Free Ene	ergy = -2102.53702	22	
M06-2X	/def2-TZVP		
Electron	ic Energy = -7225	5.534458	
С	-0.36525500	1.23327900	-0.45551900
0	0.50421300	0.31288500	-0.47847300
С	-1.59399500	1.17665900	-1.33291000
С	-2.09421800	2.47399300	-1.94134900
0	-1.36723300	3.19439400	-2.57742800
0	-3.37772000	2.65815900	-1.70524500
0	-0.09089700	2.45699800	-0.09984500
С	1.18257000	2.70513000	0.53370100

Н	1.97654100	2.62232000	-0.21184000
Н	1.11860000	3.72215000	0.91402500
Н	1.34175400	2.00205500	1.35404900
С	-3.95526900	3.84271200	-2.29066700
Н	-4.99835400	3.83632400	-1.98247300
Н	-3.44588700	4.73026400	-1.91170800
Н	-3.87301000	3.79641400	-3.37804500
Ν	-2.24964600	0.14255300	-1.69037200
0	-1.67546500	-1.01299600	-1.15172300
S	-2.72634800	-2.26917700	-0.80060800
0	-2.08295300	-2.65618900	0.46682200
0	-4.09022800	-1.81696600	-0.82365800
С	-2.38777900	-3.42872900	-2.08073500
Н	-1.31482400	-3.62822300	-2.07239100
Н	-2.96637600	-4.32679300	-1.84764700
Н	-2.71737100	-2.97875300	-3.01978000
С	-1.74596800	0.64086000	1.43988000
С	-3.13784700	0.70297500	1.24557600
С	-1.26540100	1.26948700	2.60994300
С	-4.00313600	1.31202100	2.15871600
Н	-3.59523100	0.28216100	0.35106800
С	-2.11142300	1.89418600	3.52740500
Н	-0.20227100	1.26204700	2.83737800
С	-3.48900400	1.91518600	3.30478800
Н	-5.07249500	1.32435800	1.96588900
Н	-1.69562800	2.35863400	4.41770200
Н	-4.15269200	2.40107200	4.01440100
Mg	-0.53512100	-1.13367400	0.77423600
Br	1.53732700	-0.95264400	2.38076300
Mg	2.33246200	-0.56312600	-0.12085500
С	4.13245500	0.44862100	-0.50881200
С	4.74423500	0.49687600	-1.77811600
С	4.79216600	1.16132800	0.51387600
С	5.92619500	1.20458500	-2.01830100
Η	4.29268300	-0.03280900	-2.61668600
С	5.97420300	1.87552800	0.29383000
Η	4.38100400	1.16639900	1.52427900
С	6.54619200	1.89887900	-0.97878900
Н	6.36349300	1.21375700	-3.01389300
Н	6.44951300	2.40983200	1.11299600
Н	7.46521600	2.45035500	-1.15783800
Br	1.11970900	-2.78943400	-0.75151800

tBu-TS1

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -2338.636561}$

Enthalpy = -2338.069629				
Free Energy	= -2338.19067	74		
M06-2X/def	2-TZVP			
Electronic E	nergy = -7461	.416665		
С	-2.65807400	-2.02882600	4.06606300	
С	-2.57532000	-3.07585400	3.14915400	
Н	-2.38610800	0.08833300	4.38169000	
С	-2.31135000	-0.73409800	3.67559100	
С	-2.14091700	-2.83187600	1.84029800	
С	-1.77402000	-1.53655600	1.45459200	
С	-1.88535800	-0.50093000	2.36564100	
Н	-2.07731000	-3.67378600	1.15187800	
Н	-1.66113100	0.52910600	2.07099900	
Mg	-0.16771800	-1.83229900	-0.19654300	
Mg	2.55885400	-0.60303500	-0.29505100	
Н	-2.84384400	-4.08589100	3.44774000	
Н	-3.00024100	-2.21807000	5.07919000	
С	4.46847000	0.27229600	-0.19027700	
Ċ	5.11531400	0.79902700	-1.32671300	
Ċ	5.16270000	0.41371700	1.02800100	
Ċ	6.36172900	1.42937000	-1.25963500	
H	4.63843800	0.72366500	-2.30463200	
C	6.41017300	1.04016100	1,11654900	
H	4.72587500	0.02505000	1.94883800	
C	7.01340800	1.55455900	-0.03182000	
H	6 82382800	1 82262000	-2 16205600	
H	6 91083600	1 12669000	2.07806300	
H	7 98167400	2 04405600	0.02862000	
Br	1 84813900	-2 64234600	1 20946200	
Br	1 36897500	-1 59009100	-2 38130600	
C	-2 73854200	1 74441800	-0 24389000	
0	-3 81/88100	1 39627600	0.19107200	
C C	-1 57427200	0.81338500	-0.32479900	
C C	-0.21855900	1 12587200	0.09785300	
	0.64014600	0.19768700	0.07705500	
0	0.04014000	2 3/07/200	0.14098400	
0	-0.01884800	2.34974200	0.48443200	
0 C	2.43031400	2.93470200	0.73534400	
C	-5.57556500	4.03800700	1 00701000	
C N	1.23942000	2.88928800	0.56120500	
N O	-1.09637700	-0.46232000	1.07561100	
U S	-2.91882900	-0.80710900	-1.0/301100	
3	-2.79000900	-2.30840000	-1./8439/00	
0	-2.80283300	-2.20023200	-3.2141/300	
C C	-1.37303300	2 00010100	-1.20331100	
	-4.23092100	-3.09918100	-1.13189/00	
Н	-5.10654200	-2.52095200	-1.50114800	

Η	-4.28886700	-4.12362600	-1.51113500
Η	-4.19398600	-3.07356500	-0.04275300
С	-3.67887300	4.37891600	0.78536500
Η	-4.25538200	5.30774400	0.83300000
Η	-4.26074800	3.58724200	1.26090900
Η	-2.74739200	4.52432400	1.34226900
С	-4.62969200	3.73874100	-1.47921600
Н	-5.22712100	4.65050600	-1.57617700
Н	-4.35843100	3.40090800	-2.48442300
Н	-5.23764200	2.97253400	-0.99673600
С	-2.59352000	5.19086200	-1.32511400
Η	-3.19857400	6.10169300	-1.32945900
Н	-1.66949700	5.38806700	-0.77382200
Н	-2.33798800	4.93680400	-2.35806600
С	1.81383300	2.00597200	2.11970100
Н	2.29993300	1.10054200	1.75733600
Н	2.56560700	2.58219100	2.66685200
Н	1.02078500	1.72559000	2.82023500
С	2.19725700	3.07154000	-0.17581400
Н	3.17696400	3.40229200	0.18198000
Н	2.34439100	2.14313100	-0.73198700
Н	1.79864000	3.82425000	-0.86199700
С	0.83145200	4.23455200	1.57654300
Н	0.32755200	4.83084800	0.81145700
Н	0.15692500	4.09915500	2.42709300
Η	1.71738000	4.77807100	1.91575600

tBu-C-attack TS

M06-2X/6	-31+G(d,p)[LAN	L2DZ	
Electronic	Energy = -2338 .	644527	
Enthalpy =	-2338.077225		
Free Energ	gy = -2338.19805	8	
M06-2X/d	ef2-TZVP		
Electronic	Energy = -7461	.42411	
С	1.54233800	2.20879000	-3.88976800
С	2.55612600	1.99262000	-2.95780400
Н	-0.52868700	1.85305200	-4.37938300
С	0.26866300	1.68508500	-3.66067500
С	2.29328900	1.24276500	-1.80715000
С	1.02485300	0.68626000	-1.55871800
С	0.01729300	0.94704000	-2.50364900
Н	3.12046200	1.07991500	-1.11671600
Н	-0.98940700	0.56156400	-2.35256300
Mg	1.36963900	-1.45798900	-1.10880700
Mg	-2.31068900	-0.33400200	0.37173100
Н	3.55099500	2.39516700	-3.12746300

Н	1.74151000	2.78512800	-4.78867200
Br	-1.12653400	-2.18921000	-1.27005400
С	1.97230100	0.24413500	1.04276400
0	2.49182200	-0.75483600	0.54518300
С	0.51082500	0.49704100	0.76273200
С	-0.21620300	1.77206500	0.43872500
0	-1.41385500	1.68580500	0.16487900
0	0.50386300	2.84216600	0.54594700
0	2.50775800	1.08139700	1.86411100
С	3.91953700	0.93641600	2.35313500
С	-0.02907600	4.19594100	0.22679400
Ν	-0.36579600	-0.33671900	1.25817400
0	0.15506000	-1.56086100	1.71220300
S	-1.05386100	-2.37525700	2.50376100
0	-2.31390900	-1.93729500	1.89050400
0	-0.65917900	-3.75817400	2.45656200
С	-0.93680200	-1.70756000	4.13165200
Н	-1.05206800	-0.62412500	4.05892900
Н	-1.74932300	-2.14831500	4.71426200
Н	0.03581200	-1.98874000	4.53739000
Br	2.90739200	-2.91884400	-2.32734800
С	-4.33737400	0.09858400	-0.00810100
С	-5.36070000	-0.86566200	0.10458300
С	-4.75753100	1.37957200	-0.42270800
С	-6.70201900	-0.58242800	-0.17126900
Н	-5.11193800	-1.88104800	0.41477100
С	-6.09338400	1.68522600	-0.70409400
Н	-4.02127400	2.17614700	-0.53509200
С	-7.07351300	0.70013500	-0.57795200
Н	-7.45620300	-1.35982900	-0.07225900
Н	-6.36995800	2.68796400	-1.02207500
Н	-8.11354300	0.92821800	-0.79562200
С	-0.42950900	4.23053900	-1.23883700
Н	-1.27863600	3.57539000	-1.44518500
Н	-0.71520500	5.25568500	-1.49314200
Н	0.41391500	3.93963500	-1.87251800
С	1.17345400	5.08551400	0.49434300
Н	0.91015900	6.12332300	0.27386300
Н	1.47957100	5.01790200	1.54236500
Н	2.01478200	4.79613400	-0.14242100
С	-1.17771600	4.51846200	1.17160600
Н	-2.06544600	3.92198800	0.95527700
Н	-0.87579600	4.35625900	2.21090900
Н	-1.43379900	5.57527800	1.05275200
С	4.86466800	1.06236500	1.16889500
Н	5.88885400	1.08487400	1.55239200

Н	4.77797900	0.21795500	0.48200300
Н	4.68355300	1.99695300	0.62929500
С	4.04866100	-0.38845500	3.08888300
Н	3.26813600	-0.48258800	3.85036800
Н	4.00129000	-1.24204700	2.41140900
Н	5.01837200	-0.40333900	3.59447500
С	4.05247100	2.11608100	3.30031500
Н	5.06025800	2.11993900	3.72345000
Н	3.89326400	3.05904200	2.76994500
Н	3.33085700	2.04066800	4.11856400

a-Et-TS1

<u>M06-2X/6-31+G(d,p)[LANL2DZ]</u> Electronic Energy = -1801.248743Enthalpy = -1800.875158Free Energy = -1800.970522M06-2X/def2-TZVP Electronic Energy = -6923.84882190.66116900 -0.96490400 0.53546400 Mg Mg 2.64833000 1.12657900 -0.42362600 Br 2.96306000 -0.52623100 1.65376400 Br 1.84763700 -0.94202500 -1.88197700 С -1.65235700 0.88248300 -0.08184000 С 1.71776400 -0.04439700 -0.48197700 Ο 0.66174000 1.20291100 0.14264300 0 -0.64861900 3.01234900 -0.18048900 С 0.53016100 3.83998400 -0.14676600 Η 0.16403900 4.86201500 -0.21651100 Η 1.06900000 3.69195600 0.79159100 Η 1.17111400 3.61244600 -1.00276600 Ν -1.26418200 -0.38662400 0.01655200 0 -2.29898500 -1.31507900 -0.00324000 S -1.66346500 -2.79527000 -0.37968100 0 -0.29934400 -2.82319800 0.17654900 С -3.04135100 1.38354100 -0.05385900 С -3.98825100 0.89265800 -0.96314200 С -3.42251800 2.36094100 0.87524800 С 1.36792700 -5.29683700 -0.93725300Η -3.69562500 0.14797600 -1.69735300 С -4.73128000 2.83607800 0.89527300 Η -2.69526000 2.73960900 1.58771700 С -5.67081000 2.34010900 -0.00906200 Η -6.02286000 0.98307700 -1.64666200 Η 3.59015500 -5.01851200 1.62139600 Η -6.69113900 2.71062500 0.00875400 С -0.76175400 -0.56442500 2.33974400

Н	-1.82914800	-0.35602400	2.28918700
С	-0.43386100	-1.73498700	3.24323700
Н	-0.97359000	-2.63796100	2.93610800
Н	0.63596100	-1.97452700	3.26311300
Н	-0.19823200	0.35650600	2.53926500
С	3.98309600	2.68737100	-0.87740100
Н	3.80379500	3.52379100	-0.18464900
Н	3.76744000	3.08394200	-1.88072000
С	5.45872100	2.26258100	-0.79884800
Н	5.71702900	1.88829500	0.19949800
Н	5.68148100	1.45052000	-1.50182700
Н	-0.72852800	-1.53183200	4.28522400
Н	6.16241000	3.07789400	-1.02316900
0	-2.63260200	-3.74767000	0.09403200
С	-1.57878700	-2.73557800	-2.14020800
Н	-1.08028500	-3.65240400	-2.46517800
Н	-2.60060000	-2.68347000	-2.51925000
Н	-0.99290000	-1.85621200	-2.41966800

α-Ph-TS1

M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic	Energy = -2106.014245		
Enthalpy =	-2105.584729		
Free Energ	y = -2105.688282		
M06-2X/d	ef2-TZVP		
Electronic	Energy = -7228.7112993		
С	-2.64033000 -1.33726900 4.18990600		
С	-2.78420700 -2.34012600 3.23229600		
Н	-1.97358300 0.67915600 4.57371600		
С	-2.08210100 -0.10807700 3.83269400		
С	-2.36825600 -2.11943600 1.91274900		
С	-1.79735200 -0.89229600 1.56440100		
С	-1.67678700 0.10570500 2.51339800		
Н	-2.47655300 -2.92784700 1.19190500		
Н	-1.27070400 1.08275800 2.23906000		
Mg	-0.22866900 -1.36929900 -0.13248400		
Mg	2.56413100 -0.28606000 -0.18706200		
Н	-3.21470100 -3.29941500 3.50743100		
Н	-2.96779400 -1.50899300 5.21090700		
С	4.47319200 0.58345300 -0.04229000		
С	5.23027400 0.92709000 -1.18093400		
С	5.06801000 0.88694000 1.19996800		
С	6.48818700 1.53274300 -1.09526800		
Н	4.83672900 0.71779100 -2.17596800		
С	6.32385700 1.49253700 1.30683400		
Н	4.54447900 0.64314000 2.12507900		

С	7.03948600	1.81916800	0.15397100
Н	7.03769300	1.77898100	-2.00073200
Н	6.74504200	1.70674500	2.28629800
Н	8.01631600	2.28924200	0.22864800
Br	1.72711800	-2.36344500	1.23671500
Br	1.33175900	-1.19612100	-2.30620800
С	-1.42754000	1.39969700	-0.21438500
С	-0.04250400	1.56312600	0.11273600
0	0.71182700	0.54706500	0.25178100
0	0.40335500	2.78541700	0.28991000
С	1.79208400	2.95167600	0.63156400
Н	1.91185200	4.01374100	0.83537500
Н	2.03847800	2.36482500	1.51935600
Н	2.42255000	2.66095300	-0.21235700
Ν	-1.66799200	0.09579300	-0.40022800
0	-2.94712000	-0.20116400	-0.85207600
S	-2.89056500	-1.62415800	-1.70233500
0	-2.83477300	-1.32994200	-3.11226400
0	-1.78499900	-2.40456600	-1.10955100
С	-4.44579300	-2.29387300	-1.22777500
Н	-5.21791600	-1.59316200	-1.55187500
Н	-4.54393100	-3.24638600	-1.75397200
Н	-4.45178500	-2.43015000	-0.14566200
С	-2.43075500	2.48697900	-0.21245400
С	-3.29056400	2.64682500	-1.30903800
С	-2.51929400	3.38645400	0.85903600
С	-4.22675500	3.67753600	-1.32537400
Н	-3.21398600	1.97307200	-2.15648100
С	-3.45201300	4.42058400	0.83593400
Н	-1.85881700	3.27800200	1.71406300
С	-4.31060800	4.56630600	-0.25343300
Н	-4.88408200	3.79181400	-2.18180800
Н	-3.50952100	5.11025300	1.67240300
Н	-5.03870800	5.37167200	-0.26922200

\mathbf{H}^+

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -0.190089936}$ Enthalpy = -0.187729 Free Energy = -0.20009 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -0.1900899}$ H 0.0000000 0.0000000 0.00000000

a

M06-2X/6-31+G(d,p)[LANL2DZ]

Electronic Energy = -1213.129368			
Enthalpy =	-1212.940984		
Free Energ	y = -1213.0045	91	
M06-2X/de	ef2-TZVP		
Electronic	Energy = -1213	3.52473	
С	-1.18652800	1.43472000	0.39145800
0	-1.27479500	1.86517000	1.51382700
С	-0.94995400	-0.03329400	0.10602400
С	-2.17459000	-0.89873600	0.01248000
0	-3.27798300	-0.40650300	0.06850700
0	-1.90087000	-2.18091900	-0.13196400
0	-1.27826200	2.12867000	-0.72702900
С	-1.51501800	3.54193200	-0.56816400
Н	-0.69180800	3.99564000	-0.01387200
Н	-1.56559500	3.94211100	-1.57831200
Н	-2.45828700	3.70141800	-0.04285200
С	-3.04322600	-3.05224100	-0.23307700
Н	-2.63296900	-4.05187000	-0.35936400
Н	-3.63767700	-2.99305500	0.68041300
Н	-3.65069800	-2.77456400	-1.09625800
Ν	0.19978200	-0.55880200	-0.01769900
0	1.19388300	0.40162600	0.10305100
S	2.70316200	-0.26837900	-0.16298100
0	2.65640000	-0.99327000	-1.41386800
0	3.57043800	0.87703700	0.00345200
С	2.84219300	-1.38476800	1.20047300
Н	3.82395700	-1.85594600	1.11435800
Н	2.76670000	-0.80793300	2.12282000
Н	2.04956800	-2.13029200	1.12167500
\mathbf{a}^+			
M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic Energy = -1213.510993			

Enthalpy = -1213.309354Free Energy = -1213.37227 M06-2X/def2-TZVP Electronic Energy = -1213.907387 С -1.01148800 1.47214600 0.24961100 0 -0.64190200 1.83657100 1.33275600 С -0.96469700 -0.00816700 -0.09451500 С -2.21297600 -0.84870000 0.10463500 0 -3.20902200 -0.33583300 0.53592800 0 -2.00034000 -2.09520600 -0.23385600 0 -1.49583000 2.16153100 -0.74421600 С -1.62649400 3.59337500 -0.52585600 Η -0.63842600 4.02311000 -0.35748200

Н	-2.06890600	3.97734700	-1.44098300
Н	-2.27972100	3.76769200	0.32958400
С	-3.11372100	-3.01367500	-0.05869700
Н	-2.73302700	-3.98095500	-0.37527800
Н	-3.40381100	-3.02860600	0.99225400
Н	-3.94370700	-2.69277300	-0.68891100
Ν	0.13269000	-0.54503900	-0.45774300
0	1.20933700	0.23565000	-0.69695000
S	2.70722400	-0.44266400	-0.07251200
0	2.46907400	-1.86673800	-0.11760400
0	3.67249100	0.21967800	-0.90040100
С	2.67729000	0.18336500	1.57574000
Н	3.60393100	-0.16498400	2.04252500
Н	2.65223400	1.27278200	1.52414200
Н	1.81138100	-0.23710100	2.09079100
Н	0.23769500	-1.55390500	-0.66301200

b

M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic Energy = -1216.308438			
Enthalpy =	-1216.081848		
Free Energ	y = -1216.1460	89	
M06-2X/de	ef2-TZVP		
Electronic	Energy = -1216	5.688528	
С	-1.47677100	-1.85424700	0.08561100
0	-1.14580400	-2.90749500	0.57185300
С	-0.60499500	-0.61280200	0.05913000
0	-2.64066200	-1.62476600	-0.51322800
С	-3.54168300	-2.74240000	-0.57066400
Н	-3.80056700	-3.06732600	0.43905500
Н	-4.42412200	-2.37833400	-1.09317700
Н	-3.08313400	-3.56716200	-1.11957000
Ν	0.63966700	-0.90067900	0.04829900
0	1.43498100	0.24187000	0.05295100
S	3.03826900	-0.19857900	0.02210800
0	3.34241300	-0.91395600	1.24608000
0	3.31095400	-0.82401800	-1.25806200
С	3.66742600	1.45060400	0.07293100
Н	3.33580400	1.92264200	0.99811100
Н	4.75584400	1.35955800	0.05536000
Н	3.31227700	1.98733600	-0.80752000
С	-1.22187300	0.73542100	0.04829000
С	-2.22142900	1.03109400	0.98171100
С	-0.83068900	1.70059500	-0.88652400
С	-2.81102800	2.29258700	0.99393100
Н	-2.53155200	0.27830700	1.70180200

С	-1.43725500	2.95413300	-0.88182100
Η	-0.06713900	1.46662900	-1.62107600
С	-2.42120800	3.25393600	0.06092800
Η	-3.57840400	2.52171400	1.72650600
Η	-1.13957500	3.69758200	-1.61458200
Н	-2.88742500	4.23445700	0.06538700

\mathbf{b}^{+}

M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic	Energy = -1216	.71261	
Enthalpy =	-1216.472358		
Free Energ	y = -1216.5358	8	
M06-2X/d	ef2-TZVP		
Electronic	Energy = -1217	7.093064	
С	-1.74830500	-1.65337000	-0.09689500
0	-1.41768700	-2.79474900	0.11111500
С	-0.69071500	-0.56714800	-0.34262400
0	-2.96344900	-1.18300600	-0.19883600
С	-4.02892100	-2.14794400	-0.01721200
Н	-3.94996700	-2.59432400	0.97485700
Н	-4.94836300	-1.57674000	-0.11713100
Н	-3.95888100	-2.91512600	-0.78972700
Ν	0.43477700	-1.11486900	-0.68507500
0	1.55242400	-0.40147800	-0.96786200
S	2.64985600	-0.39936000	0.38351000
0	2.23766500	0.68720200	1.23791100
0	2.63919300	-1.76151500	0.86546500
С	4.08035200	-0.00569400	-0.56588700
Н	3.89773300	0.93642200	-1.08620400
Н	4.89482700	0.10570600	0.15517000
Н	4.27500200	-0.83003700	-1.25268100
С	-0.93161100	0.85015400	-0.20923100
С	-1.82080100	1.27971500	0.79642400
С	-0.28262400	1.79080700	-1.03543500
С	-2.02863200	2.63742100	0.99131600
Н	-2.31295200	0.55992800	1.44087800
С	-0.53700600	3.14099400	-0.85586900
Н	0.37872500	1.46641800	-1.82953300
С	-1.39542900	3.56485100	0.16297700
Н	-2.69034200	2.97160600	1.78276100
Н	-0.06265200	3.86795400	-1.50610700
Н	-1.57526600	4.62569100	0.30754900
Н	0.52799600	-2.13400000	-0.76819000

C

M06-2X/6-31+G(d,p)[LANL2DZ]

Electronic	Energy = -1219	.492606	
Enthalpy =	-1219.227612		
Free Energ	y = -1219.2920	25	
M06-2X/de	ef2-TZVP		
Electronic I	Energy = -1219	9.858484	
С	0.52159100	-0.10918300	-0.04147800
Ν	-0.52961800	-0.84264500	-0.08602800
0	-1.70797500	-0.07460300	0.02075500
S	-3.00682000	-1.08835200	0.00334100
0	-3.09923300	-1.70498700	-1.30844500
0	-2.95398800	-1.93869800	1.17957200
С	-4.23108800	0.17190900	0.19252900
Н	-4.16433900	0.85681200	-0.65332100
Н	-5.19450100	-0.34238300	0.19576600
Н	-4.06569600	0.68393400	1.14090500
С	0.52760500	1.37774500	0.02920400
С	-0.16153500	2.14294200	-0.91829000
С	1.26267500	2.01278500	1.03575100
С	-0.11442400	3.53358900	-0.85538800
Н	-0.72079300	1.64958000	-1.70726900
С	1.28913000	3.40421100	1.10779000
Н	1.80820000	1.41678000	1.76243700
С	0.60440000	4.16551500	0.16047600
Н	-0.64010500	4.12367100	-1.59977500
Н	1.85106200	3.89239300	1.89790200
Н	0.63461100	5.24976400	0.21018400
С	1.81271900	-0.84856800	-0.06164200
С	1.89405800	-2.14880900	0.45501400
С	2.95419900	-0.25027200	-0.60873000
С	3.10035300	-2.84143700	0.41497200
Н	1.01314600	-2.60484300	0.89563700
С	4.15852700	-0.95029600	-0.65174100
Н	2.89932400	0.75700000	-1.01108700
С	4.23445100	-2.24506500	-0.13979400
Н	3.15717600	-3.84562800	0.82356700
Н	5.03686000	-0.48234900	-1.08538300
Н	5.17509900	-2.78667700	-0.16792200

\mathbf{c}^+

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -1219.909165}$ Enthalpy = -1219.630209 Free Energy = -1219.693027 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -1220.275041}$ C -0.57868700 -0.09437900 -0.16549700

Ν	0.42239300	-0.92045600	-0.33252000
0	1.65155300	-0.49082700	-0.75110500
S	2.89859600	-1.12604800	0.23210200
0	2.99863300	-0.28106700	1.40077800
0	2.58003100	-2.53097000	0.37774100
С	4.19897000	-0.82608300	-0.91664100
Н	4.22700000	0.24442900	-1.12846300
Н	5.11747000	-1.14421700	-0.41594500
Н	4.01484500	-1.42071500	-1.81194300
С	-0.39649800	1.35588600	-0.13520400
С	0.69641400	1.94862100	0.51964000
С	-1.36857700	2.15723500	-0.75796500
С	0.80747200	3.33235100	0.54744100
Н	1.42601000	1.33740700	1.03906300
С	-1.22812600	3.54019000	-0.75032200
Н	-2.21148300	1.69705200	-1.26365200
С	-0.14518700	4.12669700	-0.09511900
Н	1.63687500	3.79299300	1.07358000
Н	-1.96748100	4.15877900	-1.24771500
Н	-0.04537300	5.20750700	-0.07776600
Н	0.30218900	-1.93638700	-0.33620100
С	-1.90008300	-0.71363800	-0.03358300
С	-2.22165500	-1.87696600	-0.75323200
С	-2.84085400	-0.13444600	0.83357200
С	-3.47555300	-2.45454800	-0.60084000
Н	-1.51532400	-2.29890800	-1.46284900
С	-4.08584500	-0.73107100	0.99064900
Н	-2.58561200	0.75839200	1.39528600
С	-4.40362200	-1.88599000	0.27382100
Н	-3.73321500	-3.34035000	-1.17150600
Н	-4.80905300	-0.29465300	1.67123700
Н	-5.38187300	-2.34161200	0.39124400

d

M06-2X	/6-31+G(d,p)[LA]	NL2DZ]	
Electroni	ic Energy = -781.1	1548653	
Enthalpy	<i>y</i> = -780.928745		
Free Ene	rgy = -780.99000	1	
M06-2X	/def2-TZVP		
Electroni	ic Energy = -781 .	4360533	
С	2.26073500	-0.97828300	0.11744100
0	2.56756700	-2.12548800	0.32106400
С	0.84005900	-0.45287400	0.13617400
С	0.68155600	1.05569700	0.24009100
0	0.97803300	1.67920600	1.23128500
0	0.18884600	1.56984300	-0.87652300

40100
14900
99500
95100
52700
65300
95800
25900
17900
93300
03400
54700
63000
89300
16000
39300
011500
07800
32800
668000
57700

\mathbf{d}^+

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -781.5727389Enthalpy = -781.33285Free Energy = -781.393152M06-2X/def2-TZVP Electronic Energy = -781.8554557 С 2.21827500 -1.02042400 0.04343500 0 2.30357300 -2.22124200 -0.01680500 С 0.86166500 -0.33804600 0.10816600 С 0.77589700 1.17415400 0.19438800 0 1.13783500 1.76633100 1.17570300 0 0.30485400 1.66497600 -0.92744700 0 3.18059200 -0.13557000 0.03777500 С 4.52961600 -0.65969100 -0.03927500 Η 4.64924200 -1.21565300 -0.97011400 Η 5.17598000 0.21393100 -0.01943300 Η 0.82112300 4.71584900 -1.30400800 С 0.17354300 3.10719500 -0.98106500 Η -0.23038600 3.31926800 -1.96767500 Η -0.51235300 3.43713100 -0.19915500 Η 1.15310700 3.56940200 -0.85265600 Ν -0.15653200 -1.11301100 0.06640700 С -1.54344400 -0.78665700 0.11280300

С	-2.00485400	0.28901400	0.87407900
С	-2.40200000	-1.60356500	-0.62439700
С	-3.36529700	0.57268600	0.85324400
Н	-1.33783300	0.86153900	1.51095300
С	-3.75766300	-1.29730700	-0.63912000
Н	-2.01029500	-2.44452100	-1.18847000
С	-4.23661500	-0.20929800	0.09216500
Н	-3.74614200	1.39663000	1.44683200
Н	-4.43871500	-1.91068300	-1.21878000
Н	-5.29689500	0.02128400	0.08294700
Н	0.06460000	-2.11756900	-0.03077600

e

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -784.3386567Enthalpy = -784.074217Free Energy = -784.135249M06-2X/def2-TZVP Electronic Energy = -784.6057855С 0.01640200 1.30430500 0.19534900 0 0.19786000 1.98055500 1.18135300 С 0.53076900 -0.12320800 0.04792500 0 1.69630200 -0.88647400-0.64426500С -1.25356500 2.99619000 -0.81021800 Η 3.76130200 -0.63496000 -0.49478900Η -1.73619800 3.14899400 -1.77358700 Η 3.01125800 -1.99242800-0.00566600 Ν -0.25720000 -1.12149300 -0.05021400 С 2.00167600 -0.30528200 0.03118100 С 2.85962200 0.79101400 -0.11706000 С 2.54203200 -1.59457400 0.13895000 С 4.23965200 0.60018200 -0.16371300 Η 2.46112300 1.79823100 -0.19898600 С 3.91869600 -1.78035600 0.09745400 Η 1.87248700 -2.44013500 0.25840000 С 4.77110900 -0.68342100 -0.05530200 Η 4.89690100 1.45563000 -0.28295400Η 4.33038500 -2.78086000 0.18649200 Η 5.84627200 -0.83131000 -0.08683400 С -1.65770700 -0.96726300 0.03570300 С -2.44634900 -1.53663500 -0.97118300 С -2.26933700 -0.33383800 1.12502600 С -3.83191600 -1.42072700 -0.91619700 Η -2.05039700 -1.95966300 -1.79487400С -3.65980100 -0.24062300 1.18090500 Η -1.65990800 0.05739100 1.93490800

С	-4.44484700	-0.77199100	0.15862900
Η	-4.43687800	-1.84787600	-1.71041600
Н	-4.12764800	0.24564700	2.03180900
Н	-5.52661600	-0.69491300	0.20445000

e⁺

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -784.7685961Enthalpy = -784.489708Free Energy = -784.549452M06-2X/def2-TZVP Electronic Energy = -785.036812С 0.03198000 0.40270700 1.27308200 0 -0.452265001.54716100 1.47010200 С 0.48047000 -0.14839000 0.08577200 0 0.29590300 2.09438800 -0.59026300 С -0.07552400 3.47654300 -0.37775100Η 0.49182500 3.88323200 0.46095300 Η 0.18096000 3.98792000 -1.30243200 Η -1.14675200 3.54178000 -0.17896500 Ν -0.43186900 -1.06677000 0.00038700 С 1.90036100 -0.43422400 -0.00439100С 2.81299400 0.49818100 0.52094800 С 2.36805400 -1.62189900 -0.59828100 С 4.17447700 0.22847500 0.48093200 Η 2.46578400 1.42010200 0.97935800 С 3.73058800 -1.87445600 -0.64389000 Η 1.68140300 -2.32860600 -1.05601900 С 4.63206100 -0.95492300 -0.09944400Η 4.87739900 0.94120100 0.89805500 Η 4.09450800 -2.78197700 -1.11326500 Η 5.69739900 -1.15951000 -0.13812300Η -0.12107600 -2.04085400 -0.02182100 С -1.85023200 -0.87955100 -0.05557600 С -2.64772300 -1.75568500 0.67832700 С -2.39593200 0.12617900 -0.85194900С -4.02868600 -1.59082200 0.64077800 Η -2.19153600 -2.53967900 1.27556500 С -3.77948700 0.28026500 -0.87429800Η -1.761555000.75219300 -1.47328700С -4.59344700 -0.57110100 -0.12717100 -4.66301700 Η -2.25878500 1.21371600 Η -4.21985900 1.05597200 -1.49179200 Η -5.67121700 -0.44803800 -0.15363900

f

<u>M06-2X/6-31+G(d,p)[LANL2DZ]</u>			
Electronic Energy = -787.5170198			
Enthalpy = -787.214344			
Free Energy	y = -787.275482	2	
M06-2X/de	<u>f2-TZVP</u>		
Electronic B	Energy = -787.	7693246	
С	0.54899000	-0.35694100	-0.06495400
Ν	-0.20181300	-1.39532300	-0.09206900
С	0.04599900	1.05399100	-0.07372000
С	-0.84826600	1.47719300	-1.06302200
С	0.46496400	1.95690100	0.90934600
С	-1.32209900	2.78741800	-1.06464000
Η	-1.17045600	0.77992200	-1.83150100
С	-0.02604500	3.26142200	0.91812300
Η	1.16693900	1.63380200	1.67387300
С	-0.91791100	3.67924500	-0.07030300
Η	-2.00976300	3.11052000	-1.84015800
Η	0.29230100	3.95216100	1.69298800
Η	-1.29389600	4.69787100	-0.06799300
С	2.02640900	-0.56925300	-0.04317400
С	2.54578800	-1.77590800	0.44603400
С	2.90745400	0.41056300	-0.51776100
С	3.91892700	-1.99862300	0.45706000
Н	1.86099700	-2.53020600	0.82036400
С	4.28288800	0.18099600	-0.51643500
Н	2.52052600	1.34933700	-0.90263100
С	4.79156800	-1.02096500	-0.02657500
Н	4.31069700	-2.93355500	0.84610400
Η	4.95568100	0.94305600	-0.89760800
Η	5.86323100	-1.19609100	-0.01898000
С	-1.60617200	-1.31803500	0.01448900
С	-2.23063500	-0.71949600	1.11742700
С	-2.38760600	-1.94777800	-0.96150700
С	-3.61975200	-0.72913300	1.22157200
Η	-1.62310800	-0.25442400	1.88873600
С	-3.77702100	-1.93546300	-0.86011400
Η	-1.89424800	-2.43307900	-1.79889600
С	-4.40016000	-1.32717700	0.23091900
Н	-4.09346400	-0.26484300	2.08167200
Н	-4.37412000	-2.41274600	-1.63167100
Н	-5.48254100	-1.32820500	0.31359100

\mathbf{f}^{+}

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -787.9606211}$ Enthalpy = -787.643553

Free Energy = -787.704261 M06-2X/def2-TZVP

Electronic Energy = -788.2133491				
С	0.56006800	-0.28027700	-0.10394100	
Ν	-0.29533000	-1.26730500	-0.19840000	
С	0.11480300	1.11989100	-0.07615900	
С	-0.88599500	1.56156800	-0.95539100	
С	0.72647500	2.01889400	0.80827500	
С	-1.26993300	2.89629200	-0.94299400	
Н	-1.34163900	0.86904200	-1.65685100	
С	0.31194200	3.34718300	0.83588500	
Н	1.50517700	1.67382500	1.48168500	
С	-0.68093400	3.78558100	-0.04021300	
Н	-2.02923300	3.24444300	-1.63530500	
Н	0.76968300	4.04023000	1.53392700	
Н	-0.99330700	4.82509100	-0.02598900	
С	1.98972300	-0.60785600	-0.05301400	
С	2.42634700	-1.79166000	0.56654100	
С	2.92444100	0.26653400	-0.63123200	
С	3.78133200	-2.09699900	0.59786100	
Н	1.71462800	-2.44850100	1.05968600	
С	4.27641000	-0.05655000	-0.61015900	
Н	2.58952000	1.17741500	-1.11734400	
С	4.70501100	-1.23369800	0.00504500	
Н	4.11866800	-3.00097300	1.09391300	
Н	4.99598200	0.61118500	-1.07203600	
Н	5.76284500	-1.47634500	0.02939200	
С	-1.71972100	-1.24195300	-0.02795900	
С	-2.28836800	-0.56922600	1.05254500	
С	-2.49579500	-1.95251300	-0.93998600	
С	-3.67212000	-0.59060600	1.19878300	
Н	-1.66022400	-0.04491900	1.76610300	
С	-3.87978700	-1.96691100	-0.77956200	
Н	-2.02172000	-2.47529100	-1.76558400	
С	-4.46795700	-1.28292300	0.28393700	
Н	-4.12815800	-0.07213200	2.03580000	
Н	-4.49546500	-2.51180300	-1.48761500	
Н	-5.54611400	-1.29595400	0.40680900	
Н	0.09102300	-2.19281000	-0.38736900	

g <u>M06-2X/6-31+G(d,p)[LANL2DZ]</u> Electronic Energy = -856.3600203 Enthalpy = -856.128297Free Energy = -856.190531 M06-2X/def2-TZVP

Electronic Energy = -856.6724508				
С	-0.96644800	1.38859100	0.19285600	
0	-1.18581500	2.04671300	1.18159000	
С	-1.27942200	-0.09559200	0.09062000	
С	-2.75784200	-0.38032300	0.01712100	
0	-3.55939100	0.50900000	-0.17288000	
0	-3.05851400	-1.66088600	0.15307200	
0	-0.43016100	1.84299800	-0.93077900	
С	-0.04769000	3.22923800	-0.92681500	
Н	0.72568700	3.39905700	-0.17409000	
Н	0.34122300	3.42700300	-1.92360500	
Н	-0.91487000	3.85865600	-0.71963700	
С	-4.45419400	-1.98231900	0.04165500	
Н	-4.51794900	-3.05931100	0.18442800	
Н	-5.02383500	-1.46023800	0.81307900	
Н	-4.82648100	-1.70448400	-0.94641900	
Ν	-0.43695800	-1.04175200	0.01854600	
С	0.95558200	-0.82701000	0.06745500	
С	1.57577500	0.09176900	0.92364500	
С	1.74743500	-1.64682300	-0.74824000	
С	2.96120100	0.21520200	0.93282100	
Н	0.98899900	0.68169700	1.62115900	
С	3.12665300	-1.50402400	-0.76695700	
Н	1.26128300	-2.38375700	-1.38018000	
С	3.73672000	-0.56980700	0.07596300	
Н	3.43906900	0.91438300	1.61448900	
Н	3.74428100	-2.12005700	-1.41254800	
0	5.09045400	-0.48257900	0.03510400	
Н	5.40211500	0.18393600	0.66391600	

\mathbf{g}^+

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -856.7783108 Enthalpy = -856.532411Free Energy = -856.5943M06-2X/def2-TZVP Electronic Energy = -857.0922783 С -2.75063500 -0.45843900 0.02695000 0 -3.63230500 0.34809100 -0.11762100 С -1.31077200 -0.01390000 0.11009500 С -1.08791200 1.47999500 0.22666900 0 -1.37608000 2.07963800 1.22848700 0 -0.58693100 1.95765700 -0.88919000 0 -2.86209700 -1.76883900 0.09983500 С -4.20417600 -2.30118400 -0.02241300 Η -4.62947800 -1.99535000 -0.97879600

Н	-4.08863100	-3.38082600	0.02630900
Н	-4.81374900	-1.93510300	0.80467200
С	-0.32585900	3.38212500	-0.90700100
Н	0.09663900	3.58221400	-1.88846100
Н	-1.26109900	3.92568900	-0.76647200
Н	0.38516700	3.63188600	-0.11765800
Ν	-0.36486200	-0.88283600	0.04546600
С	1.03891100	-0.72493200	0.08446600
С	1.65959600	0.37352800	0.69118300
С	1.79352000	-1.74811400	-0.50552000
С	3.03920600	0.46347800	0.66917900
Н	1.09653200	1.12850300	1.22924500
С	3.17025100	-1.65110700	-0.53573400
Н	1.29363700	-2.60299700	-0.95253600
С	3.79763400	-0.54005000	0.04569400
Н	3.53243300	1.30096600	1.15344200
Н	3.77474300	-2.42365900	-0.99739700
0	5.13781900	-0.49893000	-0.00796300
Н	5.48047900	0.29815200	0.42529300
Н	-0.67447000	-1.85895800	-0.06569000

h

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -859.5424924Enthalpy = -859.272704Free Energy = -859.336326 M06-2X/def2-TZVP Electronic Energy = -856.6724508С -0.42955000 1.35106300 0.18444000 Ο 2.02225100 -0.63569400 1.16958500 С -0.87750300 -0.098744000.04395000 0 0.20026900 1.77356500 -0.90464600 С 0.75673000 3.09688200 -0.83210000 Η 1.50539200 3.13986000 -0.03747900 Η 1.21947800 3.27264000 -1.80128800 Η 3.82960300 -0.03015100 -0.64315900 Ν -0.05243200 -1.06636700 -0.06425400 С 1.34364900 -0.87246500 0.01182800 С 1.95707100 -0.13164800 1.02851800 С 2.14647700 -1.52285600 -0.93463300 С 3.34444300 -0.00751100 1.07266600 Η 1.35747700 0.32432000 1.81106300 С 3.52712100 -1.38354200 -0.90816600 Η 1.67104800 -2.12594000 -1.70240600 С 4.12984300 -0.62169900 0.09708500 Η 3.81321900 0.55940600 1.87343000

Η	4.15076800	-1.87066300	-1.65099200
0	5.48784100	-0.52973100	0.08520100
Н	5.79027200	0.01030200	0.82878500
С	-2.33993800	-0.34230100	0.04060900
С	-3.24428400	0.71316800	-0.12901700
С	-2.82635100	-1.64960200	0.18365700
С	-4.61528600	0.46372100	-0.16411100
Η	-2.88897200	1.73415700	-0.23790600
С	-4.19427200	-1.89382700	0.15372700
Н	-2.12167700	-2.46309500	0.32207300
С	-5.09262900	-0.83783900	-0.02169900
Н	-5.30840500	1.28777800	-0.30067800
Η	-4.56301100	-2.90825000	0.27042900
Н	-6.16087400	-1.03102000	-0.04375000

\mathbf{h}^{+}

M06-2X/6-	-31+G(d,p)[LA]	NL2DZ]		
Electronic Energy = -859.974468				
Enthalpy = -859.690192				
Free Energ	y = -859.75316	7		
M06-2X/de	ef2-TZVP			
Electronic	Energy = -860 .	2738715		
С	-0.46556600	1.38594400	0.21086000	
0	-0.74436800	2.02320700	1.19403700	
С	-0.92105700	-0.05663800	0.03237600	
0	0.21324400	1.79693600	-0.83886700	
С	0.75528800	3.13404000	-0.75357500	
Н	1.44742200	3.19118700	0.08890900	
Н	1.27719700	3.29263800	-1.69427100	
Н	-0.05401400	3.85553300	-0.63119700	
Ν	-0.02155300	-0.98019000	-0.12325800	
С	1.39657600	-0.84772600	-0.02034200	
С	1.97650400	-0.08714200	0.99415000	
С	2.18190800	-1.52441500	-0.95566200	
С	3.35908200	0.03471200	1.04566400	
Н	1.36903400	0.38025200	1.76360900	
С	3.56054800	-1.40453500	-0.90158100	
Н	1.71274600	-2.12372100	-1.73027500	
С	4.15109900	-0.61621100	0.09400400	
Н	3.82209700	0.61758800	1.83699000	
Н	4.19205500	-1.91198300	-1.62277300	
0	5.49861600	-0.53442400	0.09481400	
Н	5.80746100	0.02614800	0.82207200	
С	-2.34414400	-0.34149000	0.04430600	
С	-3.24471200	0.69496600	-0.25927700	
С	-2.82541400	-1.63252000	0.32872500	
С	-4.60719400	0.43108200	-0.31224300	
---	-------------	-------------	-------------	
Η	-2.88503900	1.69716900	-0.47278700	
С	-4.18895100	-1.88171400	0.28448900	
Η	-2.14980400	-2.43060300	0.62282500	
С	-5.07840300	-0.85407800	-0.04232500	
Η	-5.30042600	1.22768000	-0.55892900	
Η	-4.56248000	-2.87315800	0.51706300	
Η	-6.14447300	-1.05591600	-0.07438700	
Η	-0.35421300	-1.92290200	-0.34132400	

i

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -781.9226814Enthalpy = -781.705427Free Energy = -781.761285M06-2X/def2-TZVP Electronic Energy = -782.1880985 С 1.97349400 -0.70917800 -0.13146500 С 2.43040200 0.59919700 0.07187900 С 3.79074500 0.88504300 0.14581100 С 4.68344200 -0.17621300 0.01339600 С 4.22557600 -1.48802300 -0.19100100 С 2.86383900 -1.77096800 -0.26914200Η 4.13833300 1.90178200 0.29936100 Η 5.75142200 0.01021400 0.06668600 Η 4.94826900 -2.29194000 -0.28942000 Η 2.50457500 -2.78304600 -0.42774200С 1.28114600 1.53303600 0.16555500 С -0.75220800 0.48880000 -0.17585700С 0.02484500 0.68437600 0.05484400 Ν -1.124478001.21985900 0.07698300 С -2.33175700 0.49311000 0.06076200 С -2.57769800 -0.57648600 0.93028700 С -3.34648900 0.96101300 -0.78272400С -3.82389300 -1.19449500 0.92276100 Η -1.80136400-0.90483600 1.61401000 С -4.57750100 0.31140500 -0.81008000 Η -3.14990500 1.81989700 -1.41737600 С -4.82120800 -0.76432100 0.04476200 Η -2.01830100 -4.01606900 1.60334300 Η -5.35371000 0.65993700 -1.48427900Η -5.78855500 -1.25684700 0.03806000 0 1.31581400 2.73388200 0.30805200 0 -0.19882800 -1.71983300 -0.41308400

i⁺

M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic Energy = -782.3447851			
Enthalpy = \cdot	-782.113927		
Free Energy	v = -782.169294	4	
M06-2X/det	f2-TZVP		
Electronic E	energy = -782.	611715	
С	-2.45088600	0.64251400	0.06857200
С	-2.11233800	-0.71542800	-0.07787900
С	-3.09409600	-1.69265000	-0.20428500
С	-4.42301600	-1.27583700	-0.17074600
С	-4.76019900	0.08030800	-0.02335600
С	-3.77778500	1.06023800	0.09730000
Η	-2.83095500	-2.73897600	-0.32003800
Η	-5.21624600	-2.01095200	-0.26021400
Η	-5.80678700	0.36577100	-0.00436100
Η	-4.03240500	2.10931300	0.20672800
С	-0.64744000	-0.91997400	-0.09304300
С	-1.23290300	1.45748000	0.15392000
С	-0.07292700	0.47821600	0.08593000
Ν	1.11783500	0.95416200	0.08396000
С	2.40312800	0.35852700	0.05891700
С	3.43331800	1.15614100	-0.45431600
С	2.63834600	-0.92382900	0.56231200
С	4.71723800	0.63255100	-0.51489900
Η	3.22080100	2.16033400	-0.81067000
С	3.93289600	-1.42400600	0.50496300
Η	1.84188200	-1.50375200	1.00935700
С	4.96544800	-0.65728100	-0.04059600
Η	5.52331400	1.23160300	-0.92398200
Η	4.13769500	-2.41404800	0.89742800
Η	5.97172700	-1.06145200	-0.08117000
Н	1.13745900	1.98749300	0.10320200
0	-1.07472500	2.65170800	0.25040300
0	-0.03578100	-1.94499600	-0.26549700

Xyz coordinates and thermochemistry in DCM solvent (Hartree and \mathring{A}) 1

M06-2X/6-31+G(d,p)[LANL2DZ]					
Electronic Energy = -2102.863765					
Enthalpy =	Enthalpy = -2102.470988				
Free Energ	gy = -2102.57699	91			
M06-2X/d	ef2-TZVP				
Electronic	Energy = -7225.	570052			
С	-0.16069200	2.63123700	-1.01492100		
0	0.85703400	1.99088600	-1.25572300		
С	-0.98240900	2.31421200	0.22267300		

O -2.28509700 4.30444 O -2.97711800 2.50002 O -0.62659000 3.58182 C 0.08805400 3.84618 H 0.12077700 2.93664	4500 0.30157900
O -2.97711800 2.5000 O -0.62659000 3.5818 C 0.08805400 3.84618 H 0.12077700 2.93666	2500 1 45400400
O -0.62659000 3.5818 C 0.08805400 3.84618 H 0.12077700 2.9366	2300 1.43490400
C 0.08805400 3.84618 H 0.12077700 2.93664	3600 -1.75659000
Н 0.12077700 2.93664	8300 -2.98737900
	5400 -3.58994400
Н -0.48429600 4.6262	3800 -3.48304400
Н 1.09762600 4.1866	7500 -2.75436200
C -4.16878500 3.20680	0200 1.84921100
Н -4.73573100 2.50014	4400 2.45142000
Н -3.90252800 4.0887	0400 2.43451500
Н -4.73383900 3.50064	4300 0.96194400
N -0.48422000 1.2925	5500 0.79877100
O -1.08153400 0.8200	9800 1.92955000
S -0.24895100 -0.56514	4700 2.37507300
O -0.75691500 -1.6717	3600 1.56981900
O 1.16167500 -0.22924	6300 2.22466100
C -0.78037200 -0.6722	8800 4.04070400
Н -1.86918900 -0.7560	6900 4.03693700
Н -0.31562100 -1.5759	9300 4.44472300
Н -0.43166400 0.2231	9300 4.55855600
C -1.80030000 -0.6462	2800 -1.28539900
C -1.61088900 0.20850	6600 -2.39322100
C -2.96047500 -0.3862	2100 -0.52404500
C -2.47687400 1.26343	3800 -2.69774200
Н -0.74674900 0.0683	5400 -3.04326700
C -3.84652300 0.6562	8100 -0.81305900
Н -3.18283300 -1.0058	3100 0.34661800
C -3.59532800 1.50330	6500 -1.89384000
Н -2.27855700 1.9062	5600 -3.55337200
Н -4.71951800 0.8230	3700 -0.18537300
Н -4.26532200 2.3300	8200 -2.11628200
Mg -0.40271900 -2.085	78700 -0.55970900
Br -0.76745500 -4.5449	4000 -0.49065700
Mg 1.62539700 0.6164	48200 0.12659100
C 1.80772400 -1.3628	1700 -0.71359600
C 1.75859000 -1.64090	0800 -2.10307300
C = 2.45927100 = 2.2422	4800 0.07438900
C = 2.4382/100 - 2.34334	5000 -2.66493900
C 2.4582/100 -2.34334 C 2.31672000 -2.7934	0200 077446000
C 2.4582/100 -2.34334 C 2.31672000 -2.79345 H 1.27470600 -0.9316	0300 -2.//446900
C 2.45827100 -2.34334 C 2.31672000 -2.79343 H 1.27470600 -0.93160 C 3.03235200 -3.49355	5600 -2.77446900 5600 -0.47171500
C 2.45827100 -2.34334 C 2.31672000 -2.79343 H 1.27470600 -0.93160 C 3.03235200 -3.49353 H 2.52475000 -2.20400	5600 - 0.47171500 9400 1.15333800
C 2.45827100 -2.34334 C 2.31672000 -2.79343 H 1.27470600 -0.93160 C 3.03235200 -3.49353 H 2.52475000 -2.20409 C 2.95961700 -3.72017	0300 -2.77446900 5600 -0.47171500 9400 1.15333800 7300 -1.84533500
C 2.43827100 -2.34334 C 2.31672000 -2.79344 H 1.27470600 -0.93166 C 3.03235200 -3.49355 H 2.52475000 -2.20409 C 2.95961700 -3.72017 H 2.24967100 -2.96609	0300 -2.77446900 5600 -0.47171500 9400 1.15333800 7300 -1.84533500 9500 -3.73557600
C 2.43827100 -2.34334 C 2.31672000 -2.79344 H 1.27470600 -0.93166 C 3.03235200 -3.49355 H 2.52475000 -2.20400 C 2.95961700 -3.72017 H 2.24967100 -2.96600 H 3.52286500 -4.2174	0300 -2.77446900 5600 -0.47171500 9400 1.15333800 7300 -1.84533500 9500 -3.73557600 1800 0.17326700

(PhMgBr)₂ M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -889.6841435 Enthalpy = -889.481631Free Energy = -889.550929M06-2X/def2-TZVP Electronic Energy = -6012.0047221.81200500 0.04983700 -0.17222800 Mg Br 0.06546400 -1.78725000 -0.87624700 Mg -1.36714100 0.34118700 -0.34523300 С -3.46851100 0.36448300 -0.36341700 С -4.22486400 -0.77340700 -0.71004500 С -4.21039100 1.52689400 -0.06693400 С -5.62251400 -0.75990800 -0.76234100 Η -3.72000300 -1.70850000 -0.95274200 С -5.60748900 1.55925600 -0.11314900 Η 2.44511400 -3.69197700 0.20880200 С -6.31958200 0.41105600 -0.46284800 Η -6.16641500 -1.66066800 -1.03638100 Η 2.47766700 -6.13997000 0.12229300 Η -7.40533600 0.42901500 -0.50191500 Br 3.99538300 -0.87251300 0.43020000 С 0.45164800 1.71947300 -0.16913700 С -0.00008400 2.25944700 -1.40184800 С 0.07876100 2.44162200 0.99120100 С -0.75086100 3.43941900 -1.47534300 Η 0.24507000 1.75422400 -2.33733900 С -0.66420500 3.62275700 0.93031500 Η 0.37945500 2.07412400 1.97037200 С 4.12250800 -0.30570600 -1.07988700 Η -1.07552800 3.81952700 -2.43952000 Η 4.14931000 -0.92437100 1.84422000 Η -1.66540700 5.03578600 -0.35440000

TS1

M06-2X/6-31+G(d,p)[LANL2DZ]					
Electronic	Electronic Energy = -2102.841188				
Enthalpy	= -2102.450158				
Free Ener	gy = -2102.55422	25			
M06-2X/	def2-TZVP				
Electronic	Electronic Energy = -7225.552801				
С	-3.49347500	-0.53317900	4.01059800		
С	-3.62356600	-1.60514500	3.12848000		
Η	-2.61413500	1.41118300	4.33336000		

Br

С	-2.70633600	0.56511000	3.65788300
С	-2.95965400	-1.58539600	1.89567700
С	-2.14656200	-0.49830800	1.54979600
С	-2.05437200	0.57591400	2.42203700
Н	-3.08143900	-2.43659000	1.22731900
Н	-1.48056300	1.47032600	2.15609800
Mg	-0.60950300	-1.19095000	0.03214800
Mg	2.36119000	-0.48930800	-0.02577100
Н	-4.24272800	-2.45839700	3.39300200
Н	-4.01529500	-0.54462400	4.96297600
С	4.36081800	0.14704700	0.04731800
С	5.10428200	0.42413300	-1.11841700
С	5.04248500	0.33923200	1.26702900
С	6.43218500	0.86188700	-1.07859300
Н	4.64401300	0.29325000	-2.09807300
С	6.36949600	0.77613000	1.32771500
Н	4.53194400	0.13932500	2.20968300
С	7.06962000	1.04125900	0.14967000
Н	6.96906600	1.06132700	-2.00294500
Н	6.85781000	0.90741800	2.29043400
Н	8.10154300	1.37932200	0.18871700
Br	1.23023900	-2.31980000	1.48963700
Br	1.05352800	-1.37187900	-2.11720400
C	-2.29632000	2.88481300	-0.32291000
0	-3.47685600	2.77828600	-0.08027100
Č	-1.36952100	1.71864900	-0.34871200
Č	0.02231200	1.72109500	0.09253900
0	0.60183700	0.61984500	0.28463300
Ő	0.59122100	2.86498700	0.32174500
Ő	-1.67795900	4.02170500	-0.61665300
Č	-2 50202000	5 19981800	-0 59461600
н	-2 94086100	5 33161700	0.39621800
Н	-1 83293300	6.02513100	-0.82969500
H	-3.29129600	5.12048900	-1.34484300
C	1 94601500	2 85370000	0.82826800
Н	2 17668500	3 89623300	1.03382100
н	1 99377100	2 25985600	1 74355700
н	2 62017600	2.25705000	0.06665400
N	-1 75840500	0.48011300	-0 57089900
0	-3 02530000	0.32093200	-1 07861100
S	-3 13006600	-1 17391500	-1 81102200
0	-2 17188400	-2 04634400	-1 11229800
C	-2 54877400	_0 83380100	-3 43910000
н	-2.5+077400 -2.50711400	-1 79085300	-3 96531800
н	-3.36711400	_0 15003300	-3 00566300
и П	1 55261000	0.10090000	-3.30300300
11	-1.55501000	-0.57050200	-2.22407000

2

0

4			
M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic H	Energy = -2102	.947961	
Enthalpy =	-2102.554244		
Free Energy	y = -2102.65692	23	
M06-2X/de	f2-TZVP		
Electronic I	Energy = -7225	.657763	
С	-2.41170700	1.16559800	-1.57165300
0	-1.39783700	1.90056100	-1.64264500
С	-2.58366700	0.10480800	-0.66060500
С	-3.86691500	-0.44220500	-0.32240400
0	-4.97146100	0.05793200	-0.63848400
0	-3.81737200	-1.52175700	0.43601000
0	-3.43659000	1.40634500	-2.43777400
С	-3.17971800	2.39902700	-3.46714200
Н	-2.28465600	2.12119800	-4.02194700
Н	-4.05950100	2.37052800	-4.10743600
Н	-3.05727300	3.38813600	-3.01832500
С	-5.07073200	-2.05527200	0.89908500
Н	-4.80509300	-2.91399200	1.51251600
Н	-5.60074300	-1.30852400	1.49291800
Н	-5.68353400	-2.36469400	0.05120600
Ν	-1.41461700	-0.36625100	-0.02913300
0	-1.41953400	-0.04717400	1.38341200
S	-0.13751400	0.88925600	1.72661100
0	1.09097900	0.25176500	1.31482800
0	-0.39208800	2.24138400	1.18896600
С	-0.32682800	0.94630500	3.47501900
Н	-0.17835700	-0.06323500	3.86129100
Н	0.44592500	1.62407100	3.84538800
Н	-1.32391400	1.32655500	3.70219000
С	-1.01908300	-1.72697900	-0.22937800
С	-1.06484000	-2.21851900	-1.53898900
С	-0.55300700	-2.53692900	0.80647200
С	-0.65271300	-3.52128300	-1.80131200
Н	-1.41680700	-1.58186100	-2.34453200
С	-0.14327100	-3.84119000	0.52635200
Н	-0.51356100	-2.16896400	1.82401700
С	-0.19095300	-4.34314600	-0.77181200
Н	-0.69116800	-3.89193000	-2.82108900
Н	0.21341500	-4.46557800	1.34005100
Н	0.12919400	-5.35861000	-0.98128400
Mg	-1.32452000	3.31059600	-0.23991000
Br	0.02073500	5.19757000	-1.01461000

Mg	-5.12131400	1.96091000	-1.20732900
С	-4.01785400	3.44916500	-0.09114300
С	-4.06972300	4.80856600	-0.49137000
С	-3.33421700	3.21899400	1.13033000
С	-3.51377400	5.84815000	0.25729100
Н	-4.57338100	5.07189200	-1.42092800
С	-2.74387300	4.25196400	1.88647000
Н	-3.26267700	2.20046800	1.51785700
С	-2.84437300	5.57276900	1.45151000
Н	-3.58214300	6.87208700	-0.09895100
Н	-2.21724800	4.02027200	2.80885300
Н	-2.38961300	6.37414000	2.02518700
Br	-6.96816600	2.43861300	-2.76332100

TS2

M06-2X/6-31+G(d,p)[LANL2DZ]			
Electronic Energy = -2102.924036			
Enthalpy =	-2102.531883		
Free Energy	y = -2102.63302	16	
M06-2X/de	f2-TZVP		
Electronic H	Energy = -7225	.634964	
С	0.92590800	1.16293300	-1.76379300
0	1.28483400	0.72401300	-2.82971600
С	1.59006900	0.94439200	-0.48374200
С	1.22821700	1.57338800	0.75494600
0	0.27963700	2.37669500	0.92358400
0	1.97060400	1.20981100	1.78806100
0	-0.19952200	1.98466000	-1.71822500
С	-0.69645400	2.40945300	-3.01250200
Н	-1.04881800	1.54756300	-3.57890600
Н	-1.51185600	3.09909800	-2.79908400
Н	0.10278900	2.91635500	-3.55263800
С	1.63157800	1.77319500	3.06613600
Н	2.33517800	1.32904400	3.76776600
Н	1.74822600	2.85806500	3.04333600
Н	0.60522500	1.51328900	3.33418900
Ν	2.55309600	-0.02164000	-0.53571300
0	2.00125700	-1.34435600	0.31435200
S	1.33706700	-2.34978900	-0.67625800
0	0.10093600	-1.71332800	-1.22868600
0	2.24806600	-2.84568700	-1.68690800
С	0.84189400	-3.63430700	0.43282800
Н	0.19871300	-3.20655700	1.20538800
Н	0.30414400	-4.37415400	-0.16525200
Н	1.74638800	-4.06728400	0.86370500
Mg	-1.40915800	2.01303800	-0.04115800

Br	-3.04611800	3.82920200	-0.32358200
Mg	-1.76570700	-1.35178900	-0.71751800
C	-2.06489600	0.13461400	0.85822400
С	-3.44600700	0.03872500	1.15670800
С	-1.19733900	-0.55410900	1.74679200
С	-3.92787700	-0.66170800	2.26415000
Н	-4.16890900	0.53523100	0.51110600
С	-1.66618800	-1.26735100	2.85359000
Н	-0.11815200	-0.53096000	1.57990600
С	-3.03596100	-1.31894100	3.11112500
Н	-4.99521400	-0.70314700	2.46061000
Н	-0.96699400	-1.77677800	3.51103800
Η	-3.40765200	-1.87472600	3.96695600
Br	-2.97611300	-3.48741900	-0.65831800
С	3.87297500	0.14320500	-0.03496700
С	4.41453000	1.43418700	0.01382500
С	4.68241800	-0.96066500	0.25589500
С	5.75154600	1.61125000	0.36143100
Η	3.79628600	2.29083200	-0.23279700
С	6.01292300	-0.76595500	0.61727200
Η	4.27525600	-1.96263300	0.20559100
С	6.55725900	0.51694100	0.67317400
Н	6.15903900	2.61715100	0.39295800
Н	6.62757800	-1.63044000	0.84931100
Н	7.59639300	0.66082300	0.95128000

3

M06-2X/6-31+G(d,p)[LANL2DZ]					
Electroni	Electronic Energy = -2103.038903				
Enthalpy	= -2102.643971				
Free Ener	gy = -2102.74963	31			
M06-2X/	def2-TZVP				
Electroni	c Energy = -7225	.75384			
С	-0.29540000	-1.77377700	-0.85591500		
0	0.65218200	-0.98406200	-0.72866400		
С	-1.70471700	-1.26333400	-0.78957000		
С	-2.82321900	-2.25033100	-1.07231600		
0	-2.97983800	-2.73509300	-2.16611500		
0	-3.53947800	-2.48204500	0.00694600		
0	-0.20194200	-3.04496200	-1.01169100		
С	1.11815300	-3.64470700	-0.95651900		
Н	1.53638400	-3.47689600	0.03861300		
Н	0.95465000	-4.70488600	-1.13142800		
Н	1.74388900	-3.20976600	-1.73602900		
С	-4.67191000	-3.35995900	-0.16338200		
Н	-5.12765100	-3.43528700	0.82120500		

Н	-5.36873000	-2.92151800	-0.88070700
Н	-4.33453500	-4.33792600	-0.51048500
Ν	-1.83071100	-0.04646900	-0.44602700
0	-0.45223700	-2.00684000	1.85179300
S	0.44212200	-0.94095200	2.31704300
0	1.87513100	-1.18388400	1.90742500
0	0.01644700	0.42523100	1.85101200
С	0.44179800	-0.88217900	4.07991700
Н	0.77623900	-1.85495200	4.44380300
Н	1.12143500	-0.08921300	4.39456100
Н	-0.57957400	-0.67577300	4.40340600
Mg	2.57796800	-0.61430500	0.13280700
Br	4.42518200	-2.00090700	-0.70738200
Mg	0.09537100	1.11578000	-0.04627300
C	2.33845100	1.50939500	-0.22130300
С	2.67791100	1.95482700	-1.51956400
С	2.71677600	2.36281800	0.83930200
С	3.33381500	3.16483500	-1.75100300
Н	2.42093700	1.33952400	-2.38300100
С	3.37925000	3.57350100	0.62952800
Н	2.48038800	2.07952700	1.86565600
С	3.68516200	3.97584900	-0.67095700
Н	3.57266200	3.47501400	-2.76465000
Н	3.65306700	4.20277500	1.47208100
Н	4.19736100	4.91865900	-0.84265200
Br	-0.89172200	3.37747100	-0.39967100
С	-3.12355800	0.52535500	-0.27731500
С	-4.09431900	0.43255300	-1.27638200
С	-3.37550300	1.19560100	0.92090300
С	-5.34510100	1.00627600	-1.05750600
Н	-3.86241100	-0.04418800	-2.22481500
С	-4.63826000	1.73621800	1.13821700
Н	-2.59341900	1.26961800	1.67037700
С	-5.62165300	1.64631500	0.15049700
Н	-6.10026000	0.95481600	-1.83535600
Н	-4.84972200	2.24335200	2.07413800
Н	-6.59903000	2.08788700	0.31777300

OMs anion

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -663.7433089}$ Enthalpy = -663.686466 Free Energy = -663.720625 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -663.9331943}$ O 0.55525700 1.35778100 -0.45034500

S	0.15494600	0.00004000	-0.00021800
0	0.55038300	-1.06908000	-0.95262100
0	0.55747300	-0.29069300	1.39988800
С	-1.63707500	0.00174800	0.00299200
Η	-1.98850200	0.21416000	-1.00829500
Η	-1.98618200	-0.98089400	0.32528600
Η	-1.98690600	0.77154500	0.69317500

C₆H₅ anion

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -231.5956457}$ Enthalpy = -231.502977 Free Energy = -231.535702 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -231.669802}$

TS3

M06-2X/6-3	31+G(d,p)[LAN	NL2DZ]			
Electronic Energy = -1670.861154					
Enthalpy = $-$	-1670.432313				
Free Energy	v = -1670.53577	77			
M06-2X/def	f2-TZVP				
Electronic E	Energy = -6793.	.459861			
С	3.60761900	-2.81903900	-2.81241400		
С	3.67106900	-3.22876600	-1.47880000		
Н	2.81088700	-1.37241800	-4.20089900		
С	2.84596400	-1.70396300	-3.16690500		
С	2.96667300	-2.52479900	-0.49689100		
С	2.17933400	-1.42237300	-0.85463100		
С	2.15234800	-1.00249400	-2.17634200		
Н	3.03892100	-2.85191400	0.53959700		
Н	1.60326900	-0.09874300	-2.46141500		
Mg	0.41493300	-1.17369100	0.48000500		
Mg	-2.49962500	-0.50784200	0.27765000		
H	4.27131500	-4.09138800	-1.20189400		
Н	4.16484700	-3.35870200	-3.57260900		
С	-4.43236200	0.28755600	0.07497100		
С	-5.00356100	1.12861000	1.05169200		
С	-5.22698700	0.04603800	-1.06508600		
С	-6.27484500	1.69428900	0.90769500		
Н	-4.44914700	1.35635900	1.96234700		
С	-6.50008600	0.60140900	-1.22703200		
Н	-4.85104600	-0.59899800	-1.85980700		
С	-7.02818600	1.43179700	-0.23716700		
Н	-6.67733500	2.33728600	1.68677200		
Н	-7.07952400	0.38632800	-2.12172600		

Н	-8.01677000	1.86700500	-0.35558600
Br	-1.46461800	-2.78354500	-0.49474200
Br	-1.11740000	-0.63089600	2.54607100
С	2.24660600	2.42636600	-1.08858900
0	3.37187000	2.16117400	-1.45243500
С	1.32572600	1.42154400	-0.48014400
С	-0.06599800	1.30101700	-0.88304700
0	-0.73321200	0.29824000	-0.49995600
0	-0.57009400	2.19986400	-1.67543500
0	1.70426000	3.63926500	-1.15227900
С	2.52711900	4.65810200	-1.74314700
Н	2.76874300	4.39477100	-2.77506900
Н	1.93199300	5.56875200	-1.71064800
Н	3.44597600	4.77982800	-1.16627900
С	-1.94674200	2.04201800	-2.08711400
Н	-2.12899900	2.85960500	-2.78049900
Н	-2.07721900	1.07845100	-2.58428900
Н	-2.60279000	2.12485500	-1.21829800
Ν	1.71233700	0.48233800	0.36456200
С	2.90094600	0.60337200	1.16291000
С	2.67246600	0.91077400	2.50790700
С	4.19835000	0.39637600	0.69272000
С	3.75141700	1.03948700	3.38073400
Н	1.65330100	1.05565000	2.85523400
С	5.26784200	0.50862800	1.57920800
Н	4.35884800	0.14622400	-0.34884100
С	5.05094600	0.83467300	2.91883500
Н	3.57044300	1.28911700	4.42150800
Н	6.27712100	0.34098800	1.21615000
Н	5.89117300	0.92233800	3.60059100

4

M06-2X/6-31+G(d,p)[LANL2DZ]				
Electronic	Energy $= -1902$.64924		
Enthalpy =	-1902.121648			
Free Energ	y = -1902.24144	46		
M06-2X/d	ef2-TZVP			
Electronic	Energy = -7025	.320058		
С	-1.13852400	0.14972300	-1.18507600	
0	0.10089300	0.15067300	-1.35236500	
С	-1.83418200	-0.21658800	-0.00697700	
С	-1.15773500	-0.64976700	1.15969300	
0	0.07796700	-0.78183000	1.31172700	
0	-1.96825000	-0.95202000	2.18402800	
0	-1.93058400	0.52565200	-2.19881500	

С	-1.26960200	0.93837900	-3.40020000
Н	-0.66844300	0.12407400	-3.81097400
Н	-2.06839600	1.20478700	-4.09131900
Н	-0.63009700	1.80346000	-3.20961800
С	-1.33257800	-1.37777500	3.39441400
Н	-2.14552300	-1.57437700	4.09218000
Н	-0.74882000	-2.28546300	3.22631600
Н	-0.67969600	-0.59283200	3.78334300
Ν	-3.25266200	-0.14363000	0.00130800
С	-4.00260200	-1.31760300	-0.19762200
С	-3.45883600	-2.39336000	-0.91781700
С	-5.28334900	-1.46692900	0.36261300
С	-4.18220600	-3.57267500	-1.08404000
Н	-2.46581900	-2.30524700	-1.34623600
С	-6.00031200	-2.64624200	0.18291200
Н	-5.71040800	-0.66051500	0.95022600
С	-5.46007800	-3.71000200	-0.54288500
Н	-3.73857400	-4.38771200	-1.64905200
Н	-6.98653100	-2.73725900	0.62954100
Н	-6.02113400	-4.62949400	-0.67633500
Mg	2.01765400	0.45500800	-1.27097500
Mg	1.99029100	-0.42101800	1.26373200
С	2.11134700	1.73832900	0.57826200
Ċ	3.31264100	2.42191600	0.86935500
C	0.92474200	2.46482600	0.82224000
C	3.33783300	3.72680400	1.36712100
Н	4.26722500	1.92012700	0.70584700
С	0.92532400	3.77084600	1.32099900
H	-0.03909900	1.99765900	0.61266600
C	2.13806600	4.40373500	1.59564100
H	4.28571700	4.21533800	1.57801200
Н	-0.01332600	4.29224100	1.49338700
Н	2.14957200	5 41866200	1.98406300
Br	2.97836800	1.27652500	-3.40597300
Br	3.06138800	-0.94075000	3.44769200
C	-3.85901500	1.12205300	0.15188700
C	-5.02298400	1 46140600	-0.55606500
C	-3.26599000	2.09032100	0.97558400
C	-5.58402000	2.72860700	-0.42473800
H	-5 47826700	0.73263900	-1 21944400
C	-3 82906100	3 35958700	1 09276800
н	-2 36153100	1 84496800	1.52393100
C	-4 99366800	3 68894500	0 39938600
й	-6 48171500	2,97082600	-0.98667600
Н	-3.35316800	4.09219500	1.73864300
Н	-5,43096200	4.67792200	0 49347600
	2112070200		5.175 17000

С	4.54593900	-3.08418900	-1.13323500
С	3.64438500	-4.09285500	-1.47968800
С	2.27309900	-3.86379000	-1.36400700
С	1.81452700	-2.62485300	-0.90596800
С	2.68715200	-1.57629600	-0.54130800
С	4.06561100	-1.85625200	-0.67241400
Н	5.61533600	-3.25713500	-1.22290500
Н	4.00962600	-5.05195800	-1.83720400
Н	1.56688300	-4.64603100	-1.63093200
Н	0.73767200	-2.46895800	-0.82750600
Н	4.79558500	-1.09010500	-0.40746000

S_N2 TS

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -2102.801248}$ Enthalpy = -2102.41131 Free Energy = -2102.517365 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -7225.516234}$

C-attack TS

M06-2X/6-3	31+G(d,p)[LAN	JL2DZ]	
Electronic E	Energy $= -2102$.	841896	
Enthalpy $=$ \cdot	-2102.450442		
Free Energy	v = -2102.55583	3	
M06-2X/det	f2-TZVP		
Electronic E	Energy = -7225.	552574	
С	2.27526700	4.00776800	-1.61924500
С	3.17112100	3.31909500	-0.80488700
Н	0.29326700	4.01802600	-2.47411500
С	0.99539800	3.49038300	-1.83478400
С	2.77948400	2.12213700	-0.19687100
С	1.50125100	1.57248000	-0.40587300
С	0.61840300	2.29202300	-1.22997100
Н	3.51546900	1.61701000	0.42828900
Н	-0.38631800	1.91821700	-1.41804900
Mg	1.88232200	-0.59688500	-0.81659400
Mg	-2.07100200	-0.14636900	0.22722100
H	4.17214500	3.70749800	-0.64043600
Н	2.57044400	4.94243100	-2.08694900
Br	-0.47610700	-1.05138200	-1.82332000
С	1.99318400	0.17951800	1.86774800
0	2.66513800	-0.58711300	1.18061000
С	0.58295900	0.48063600	1.44441100
С	-0.19581100	1.76085100	1.53673800
0	-1.33558600	1.77829900	1.07746500

0	0.40632600	2.75630000	2.11395600
0	2.37938800	0.73957100	2.96926600
С	3.74379100	0.47311400	3.39168400
Н	4.43117400	0.77537400	2.60051300
Н	3.88282000	1.07650100	4.28490700
Н	3.85125700	-0.58934100	3.61154600
С	-0.28925900	4.02551800	2.08931000
Н	0.38491200	4.72700800	2.57459800
Н	-0.47301600	4.31311300	1.05220400
Н	-1.22810900	3.94019100	2.63751900
Ν	-0.28564700	-0.49854200	1.35968300
0	0.27282800	-1.78832800	1.31349200
S	-0.95686300	-2.89776500	1.42350400
0	-2.14127800	-2.25598400	0.84014700
0	-0.41550500	-4.09749600	0.84134100
С	-1.17133400	-3.04192900	3.16760000
Н	-1.40039900	-2.04929000	3.56118100
Н	-2.00925500	-3.72534300	3.32583400
Н	-0.24762000	-3.44481000	3.58545700
Br	3.72123600	-1.49048100	-2.15695200
С	-4.02510800	0.36633000	-0.37480500
С	-4.85578700	-0.53999100	-1.06708700
С	-4.58460800	1.63961300	-0.13997100
С	-6.14642800	-0.21103700	-1.49367300
Н	-4.49024700	-1.54326000	-1.29004200
С	-5.87312600	1.99042900	-0.55760600
Н	-4.00002400	2.39530500	0.38559300
С	-6.66100900	1.06130200	-1.23826700
Н	-6.74929100	-0.94345900	-2.02564100
Н	-6.26145000	2.98594900	-0.35443500
Н	-7.66259600	1.32575400	-1.56673400

Ester Addition TS M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -2102.828153 Enthalpy = -2102.4371Free Energy = -2102.540141M06-2X/def2-TZVP Electronic Energy = -7225.537643 С -0.36992200 1.23359500 -0.44649100 Ο 0.49807700 0.31126000 -0.46002700 С -1.59286800 1.17309700 -1.33068400С -2.10713500 2.46722500 -1.93349000 0 -1.37845500 3.22708100 -2.52070400 0 -3.40605800 2.60365400 -1.75537900 0 -0.09461600 2.45764700 -0.09203700

С	1.17749300	2.70832600	0.54290100
Н	1.97262800	2.61992800	-0.20061000
Н	1.11315100	3.72772900	0.91642500
Н	1.33430400	2.01015100	1.36784200
С	-3.99309200	3.78174200	-2.34457900
Н	-5.05283700	3.72580400	-2.10626100
Н	-3.54526200	4.67559200	-1.90682800
Н	-3.83760300	3.77102400	-3.42472200
Ν	-2.23791700	0.13436500	-1.69506100
0	-1.66065000	-1.01817700	-1.15542000
S	-2.71032400	-2.27800100	-0.81776000
0	-2.08008500	-2.66438300	0.45594500
0	-4.07502000	-1.82790700	-0.85331900
С	-2.35788200	-3.43639500	-2.09455600
Н	-1.28455300	-3.63264600	-2.07560900
Н	-2.93648800	-4.33560400	-1.86580400
Н	-2.68030700	-2.98653500	-3.03614500
С	-1.76720100	0.64596400	1.43141400
С	-3.15890000	0.69120900	1.22862500
С	-1.30148600	1.27661800	2.60622600
С	-4.03722500	1.28535300	2.13943900
Н	-3.60558200	0.26914400	0.32911000
С	-2.16093100	1.88555100	3.52227800
Н	-0.23905900	1.28446900	2.83712000
С	-3.53749800	1.88887300	3.29205500
Н	-5.10548400	1.28544400	1.94018100
Н	-1.75616300	2.35166600	4.41676600
Н	-4.21162600	2.36227200	4.00024700
Mg	-0.53780700	-1.13529600	0.79453900
Br	1.55038700	-0.90477700	2.39885400
Mg	2.33286000	-0.54262300	-0.11139400
С	4.14378900	0.44615500	-0.51902000
С	4.75424000	0.47298100	-1.78981000
С	4.80611300	1.17548700	0.49066000
С	5.93648200	1.17607700	-2.04351200
Н	4.30071900	-0.06958100	-2.61905300
С	5.98871200	1.88487100	0.25736500
Н	4.39554400	1.19921700	1.50104900
С	6.55897400	1.88687500	-1.01643800
Н	6.37198300	1.16920300	-3.03994200
Н	6.46523400	2.43280200	1.06681100
Н	7.47773100	2.43527500	-1.20612800
Br	1.13527400	-2.78744900	-0.71455100

tBu-TS1

M06-2X/6-31+G(d,p)[LANL2DZ]

Electronic I	Energy $=$ -2338.	642939	
Enthalpy =	-2338.076387		
Free Energy	y = -2338.19598	37	
M06-2X/de	f2-TZVP		
Electronic H	Energy $=$ -7461.	423189	
С	-2.72287300	-1.99500300	4.16872300
С	-2.64829100	-3.05765100	3.26890800
Н	-2.37226600	0.11333900	4.47009900
С	-2.29859100	-0.72251100	3.77970900
С	-2.13872700	-2.85384100	1.98029900
С	-1.68465200	-1.58561600	1.60024000
C	-1.80114900	-0.52875500	2.48881900
Н	-2.09220200	-3.70209300	1.29930500
Н	-1.52549500	0.48789000	2.19126300
Mg	-0.06818500	-1.84571200	0.00575200
Mg	2.57363100	-0.41027700	-0.21690700
Н	-2.98743600	-4.04720400	3.56395400
Н	-3.12502900	-2.15236300	5.16523600
C	4.47431400	0.48549000	-0.25206300
Ċ	5.06819400	0.91726600	-1.45590500
Ċ	5.21864100	0.73379300	0.91901600
Č	6.31211500	1.55510200	-1.49682600
н	4 55119200	0.75633000	-2 40266300
C	6.46425800	1.37013200	0.89979800
н	4 82544000	0.42208000	1 88744600
C	7 01438000	1 78713300	-0.31315100
н	6 73247100	1 87140000	-2 44859900
Н	7 00473100	1 54008900	1 82800400
Н	7 98113400	2 28269800	-0.33629900
Br	2 03748000	-2 40684100	1 41174600
Br	1 44904800	-1 62253700	-2 23210300
C	-2 85592800	1.56957400	-0 19202000
0	-3 88834400	1.50757400	0.28480200
C C	-1 62912800	0.72044300	-0.28164500
C C	-0.28839800	1 13815700	0.11/31500
0	0.622002000	0.26660300	0.11451500
0	0.02299200	0.20000300	0.19508100
0	-0.10103000	2.36729700	0.43083100
C C	-2.049999000	2.70449000	-0.72428700
C	-3.08243100	3.81292900	-0.07483900
C N	1.07974000	0.58260200	0.94737200
N O	-1.004/1300	-0.38200200	-0.4/843000
C C	-2.00323200	-1.00/43000	1 60677200
<u>ь</u>	-2.30118/00	-2.3377/100	-1.090//200
C	-1.39131200	-3.11943100	-1.04734000
	2.0090/300	3.22284400 2.62225100	-0.23783400
п	2.90111800	5.05555100	0.10938000

Η	2.22214500	2.28426000	-0.75740000
Η	1.56450700	3.91984200	-0.95587900
С	1.68332700	2.21474100	2.08938100
Η	2.35991600	2.87079000	2.64449200
Η	0.90320800	1.87044800	2.77559400
Η	2.26690100	1.35566600	1.75769500
С	0.56306700	4.35687400	1.46942900
Η	0.01728400	4.88937700	0.68627300
Η	-0.09675800	4.20631000	2.32895800
Η	1.41191700	4.97039100	1.78289200
С	-4.00078200	4.14124900	0.77888500
Η	-4.63442700	5.03269300	0.80967500
Η	-4.52873000	3.32427800	1.27398400
Η	-3.07885000	4.35795800	1.32818200
С	-2.99768800	4.98751800	-1.35955900
Η	-3.67745000	5.84347600	-1.38619700
Η	-2.09263800	5.27656900	-0.81740000
Η	-2.72472300	4.72677100	-2.38641700
С	-4.91056000	3.37196500	-1.46275300
Η	-4.62125700	3.05826100	-2.47074900
Η	-5.43760200	2.55420200	-0.96963900
Η	-5.59329500	4.22234400	-1.55290100
С	-2.17996900	-2.04050400	-3.33806900
Η	-1.86941800	-2.93984200	-3.87614200
Η	-3.07824500	-1.60212500	-3.77588800
Η	-1.36241300	-1.31811300	-3.27747800
0	-3.83293800	-3.24469400	-1.62379600

tBu-C-attack TS

M06-2X/6-31+G(d,p)[LANL2DZ]				
Electronic E	nergy = -2338.	650186		
Enthalpy = -	2338.083019			
Free Energy	= -2338.20260)7		
M06-2X/def	2-TZVP			
Electronic E	nergy = -7461.	42953		
С	1.55705000	2.18554800	-3.89500100	
С	2.57507600	1.94592900	-2.97332000	
Η	-0.52684000	1.87795300	-4.36284500	
С	0.27399900	1.69083700	-3.65271200	
С	2.30705200	1.20072000	-1.82039700	
С	1.02909600	0.67262700	-1.55910600	
С	0.01791000	0.95830800	-2.49311400	
Η	3.13754500	1.01627200	-1.13968400	
Η	-0.99577900	0.59623400	-2.33103200	
Mg	1.33573700	-1.47596100	-1.09430500	
Mg	-2.32137200	-0.29048700	0.39273200	

Н	3.57716900	2.32563800	-3.15296400
Н	1.76004200	2.75770800	-4.79574900
Br	-1.17602700	-2.15567200	-1.28770300
С	1.97924900	0.22190200	1.04357800
0	2.47997700	-0.78897000	0.55024500
С	0.51897200	0.49109000	0.77422700
С	-0.18916500	1.77862600	0.45730000
0	-1.39013100	1.71440300	0.19280500
0	0.55244100	2.83446600	0.55535200
0	2.53509200	1.06274100	1.84718700
С	3.95078100	0.90677000	2.32207800
С	0.04716100	4.19980700	0.23933500
Ν	-0.36688700	-0.33671600	1.26081600
0	0.13897000	-1.57246500	1.69783700
S	-1.07613300	-2.37718000	2.48950700
0	-2.33179000	-1.93156800	1.87351400
0	-0.68947000	-3.76282800	2.43852700
С	-0.95844400	-1.71481200	4.11930700
Н	-1.08371200	-0.63224000	4.05182100
Н	-1.76633900	-2.16520100	4.70115200
Н	0.01760100	-1.99042400	4.52056400
Br	2.86471800	-2.95873000	-2.30334600
С	-4.34639500	0.14763200	0.00587600
С	-5.37723500	-0.80374900	0.15603300
С	-4.75864300	1.41847300	-0.44685900
С	-6.71822200	-0.51802000	-0.12003700
Н	-5.13432900	-1.81054900	0.49763300
С	-6.09385200	1.72638200	-0.72966800
Н	-4.01653700	2.20492700	-0.58891700
С	-7.08150500	0.75407700	-0.56570900
Н	-7.47832700	-1.28518900	0.00899400
Н	-6.36432700	2.72077400	-1.07763400
Н	-8.12101400	0.98414100	-0.78372300
С	-0.38129700	4.23923500	-1.21814100
Н	-1.24954100	3.60375500	-1.40532200
Н	-0.64703700	5.27035700	-1.46980300
Н	0.44284200	3.92618800	-1.86638300
С	1.27774300	5.05900400	0.47784100
Н	1.03778300	6.10186200	0.25461000
Н	1.60179800	4.99015700	1.52032300
Н	2.09799100	4.74147100	-0.17297400
С	-1.07394100	4.55273700	1.20571500
Н	-1.97713000	3.97145900	1.01262300
Н	-0.75229500	4.39287800	2.23934200
Н	-1.31227000	5.61321400	1.08276500
С	4.88436200	0.98869100	1.12494700

Н	5.91245500	1.00926500	1.49788900
Н	4.77913200	0.12739600	0.46206500
Н	4.70722500	1.91052400	0.56266100
С	4.06339600	-0.40249900	3.08750900
Н	3.29699000	-0.45612500	3.86693100
Н	3.97781500	-1.27023400	2.43173300
Н	5.04388300	-0.43055800	3.57127400
С	4.11310800	2.10716000	3.23831200
Н	5.12394000	2.10260400	3.65414100
Н	3.96716200	3.03855400	2.68405300
Н	3.39564800	2.06542100	4.06255300

a-Et-TS1

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -1801.252076Enthalpy = -1800.878633Free Energy = -1800.973569M06-2X/def2-TZVP Electronic Energy = -6923.851938Mg 0.66623900 -0.95103400 0.53733600 Mg 2.62763400 1.17592000 -0.41073900 Br 2.95705600 -0.48578400 1.66878700 Br 1.85838200 -0.91090200 -1.87455300С -1.66619400 0.87518100 -0.07829100 С -0.50351300 1.72158600 -0.04145100 0 0.64435100 1.21808900 0.15053400 0 -0.68254400 3.01342200 -0.18289200 С 0.48571000 3.85494500 -0.15066400 Η 0.10682200 4.87202700 -0.22407000 Η 1.02561900 3.71505600 0.78821300 Η 1.12916000 3.63117100 -1.00577600 Ν -1.26570900 -0.38994300 0.02110700 0 -2.29114200 -1.32872300 0.00113200 S -1.64202000 -2.79930100 -0.38703000 0 -0.27682000 -2.81687400 0.16639300 С -3.05920800 1.36437800 -0.05489300 С -4.00450100 0.84978400 -0.95315100 С -3.44590300 2.35560900 0.85760800 С -5.31695600 1.31489400 -0.93199300 Η -3.707551000.09422600 -1.67438000С -4.75861900 2.82021100 0.87273500 Η -2.71870800 2.75330800 1.55973600 С -5.69666800 2.30038100 -0.02005600 Η 0.91162900 -6.04152300 -1.63262900 Η -5.05016900 3.58504100 1.58580400 Η -0.00603200 -6.72000700 2.66267700

С	-0.76284800	-0.57491500	2.34289000
Н	-1.83059500	-0.36843100	2.29276000
С	-0.43371400	-1.75607200	3.23235100
Н	-0.96713300	-2.65752000	2.90959200
Н	0.63723800	-1.99043500	3.25348400
Н	-0.20141000	0.34474800	2.55344900
С	4.05603900	2.63864200	-0.90973200
Η	3.93627200	3.51306900	-0.25241400
Η	3.86579400	3.00685800	-1.92889300
С	5.49937200	2.11553100	-0.81261600
Η	5.73577200	1.77488800	0.20298200
Η	5.66101400	1.25523500	-1.47401200
Η	-0.73472900	-1.56929200	4.27559000
Η	6.25800400	2.86649000	-1.07907300
0	-2.60028500	-3.76362100	0.08625100
С	-1.56460500	-2.73076000	-2.14715800
Η	-1.04774200	-3.63544100	-2.47737800
Н	-2.58938800	-2.69959800	-2.52035900
Η	-1.00004500	-1.83661100	-2.42402400

a-Ph-TS1

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -2106.014245Enthalpy = -2105.584729Free Energy = -2105.688285M06-2X/def2-TZVP Electronic Energy = -7228.716757С -2.64033000 -1.33726900 4.18990600 С -2.78420700 -2.34012600 3.23229600 Η -1.97358300 0.67915600 4.57371600 С -2.08210100 -0.10807700 3.83269400 С -2.36825600 -2.11943600 1.91274900 С -1.79735200 -0.89229600 1.56440100 С -1.67678700 0.10570500 2.51339800 Η -2.47655300 -2.92784700 1.19190500 Η 1.08275800 -1.27070400 2.23906000 -0.22866900 -1.36929900 -0.13248400 Mg 2.56413100 -0.28606000 -0.18706200 Mg Η -3.21470100 -3.29941500 3.50743100 Η -2.96779400 -1.50899300 5.21090700 С 4.47319200 0.58345300 -0.04229000 С 5.23027400 0.92709000 -1.18093400 С 5.06801000 0.88694000 1.19996800 С 1.53274300 -1.09526800 6.48818700 Η 4.83672900 0.71779100 -2.17596800 С 1.49253700 1.30683400 6.32385700

Н	4.54447900	0.64314000	2.12507900
С	7.03948600	1.81916800	0.15397100
Н	7.03769300	1.77898100	-2.00073200
Н	6.74504200	1.70674500	2.28629800
Н	8.01631600	2.28924200	0.22864800
Br	1.72711800	-2.36344500	1.23671500
Br	1.33175900	-1.19612100	-2.30620800
С	-1.42754000	1.39969700	-0.21438500
С	-0.04250400	1.56312600	0.11273600
0	0.71182700	0.54706500	0.25178100
0	0.40335500	2.78541700	0.28991000
С	1.79208400	2.95167600	0.63156400
Н	1.91185200	4.01374100	0.83537500
Н	2.03847800	2.36482500	1.51935600
Н	2.42255000	2.66095300	-0.21235700
Ν	-1.66799200	0.09579300	-0.40022800
0	-2.94712000	-0.20116400	-0.85207600
S	-2.89056500	-1.62415800	-1.70233500
0	-2.83477300	-1.32994200	-3.11226400
0	-1.78499900	-2.40456600	-1.10955100
С	-4.44579300	-2.29387300	-1.22777500
Н	-5.21791600	-1.59316200	-1.55187500
Н	-4.54393100	-3.24638600	-1.75397200
Н	-4.45178500	-2.43015000	-0.14566200
С	-2.43075500	2.48697900	-0.21245400
С	-3.29056400	2.64682500	-1.30903800
С	-2.51929400	3.38645400	0.85903600
С	-4.22675500	3.67753600	-1.32537400
Н	-3.21398600	1.97307200	-2.15648100
С	-3.45201300	4.42058400	0.83593400
Н	-1.85881700	3.27800200	1.71406300
С	-4.31060800	4.56630600	-0.25343300
Н	-4.88408200	3.79181400	-2.18180800
Н	-3.50952100	5.11025300	1.67240300
Н	-5.03870800	5.37167200	-0.26922200

\mathbf{H}^{+}

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -0.195249401}$ Enthalpy = -0.192889 Free Energy = -0.205249 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -0.195249401}$ H 0.00000000 0.0000000 0.00000000

M06-2X/6-31+G(d,p)[LANL2DZ]				
Electronic Energy = -1213.126794				
Enthalpy = \cdot	1212.938546			
Free Energy	r = -1213.0024	41		
M06-2X/det	<u>12-TZVP</u>			
Electronic E	Energy = -1213	.521941		
С	-1.17020000	1.44577600	0.38788600	
0	-1.27956300	1.87281000	1.51030300	
С	-0.95823300	-0.02594900	0.10225800	
С	-2.19541900	-0.87270700	0.01008200	
0	-3.29111700	-0.36376900	0.07605600	
0	-1.94190700	-2.15674600	-0.14497500	
0	-1.21093800	2.14737000	-0.72796700	
С	-1.39583200	3.56910000	-0.56872100	
Н	-0.57807500	3.98283100	0.02355100	
Н	-1.38565300	3.97534000	-1.57741800	
Н	-2.35339800	3.76401100	-0.08278500	
С	-3.09716900	-3.01250400	-0.23857200	
Н	-2.70089700	-4.01939400	-0.35056500	
Н	-3.69305000	-2.93070000	0.67198800	
Н	-3.69603200	-2.73544300	-1.10787700	
Ν	0.18401100	-0.56784200	-0.02025700	
0	1.18962900	0.38050700	0.10296900	
S	2.69202800	-0.30293700	-0.15824600	
0	2.63781700	-1.03629200	-1.40438300	
0	3.56570600	0.83997700	-0.00462100	
С	2.83087000	-1.40838000	1.21338900	
Н	3.81219000	-1.88104800	1.12933500	
Н	2.75600700	-0.82307500	2.13068300	
Н	2.03726100	-2.15350500	1.13980900	

 \mathbf{a}^+ M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -1213.512044 Enthalpy = -1213.310541 Free Energy = -1213.374758 M06-2X/def2-TZVP Electronic Energy = -1213.907946 С -1.01390100 1.46187100 0.14074400 0 -0.28350700 1.99837200 0.93042100 С -0.92244000 -0.03777800 -0.10157100С -2.12309800 -0.92828800 0.17506600 0 -3.08296200 -0.48305500 0.74171000 -1.91202300 -2.14675800 -0.25937700 Ο 0 -1.96300500 1.97488100 -0.59106500

С	-2.17800400	3.40405600	-0.45131200
Н	-1.26760900	3.93446500	-0.73320300
Н	-2.99226300	3.63285100	-1.13361000
Н	-2.45482700	3.62521600	0.58007600
С	-2.97707400	-3.10688100	-0.02834700
Н	-2.61412400	-4.03824400	-0.45455500
Н	-3.14706800	-3.20226400	1.04439300
Н	-3.87967300	-2.76623000	-0.53669700
Ν	0.18074800	-0.57011400	-0.45667200
0	1.24148100	0.19441300	-0.78713500
S	2.74370200	-0.34263100	-0.05754300
0	2.55273300	-1.76402200	0.11347100
0	3.70206900	0.21235400	-0.97025200
С	2.68258800	0.52968000	1.47298500
Н	3.60553600	0.26931400	2.00127900
Н	2.64364800	1.59686800	1.25004600
Н	1.80999600	0.18501800	2.03003900
Н	0.28521200	-1.58953900	-0.59795700

b

M06-2X/6-31+G(d,p)[LANL2DZ]				
Electronic	Energy $= -1216$.310786		
Enthalpy =	= -1216.084303			
Free Energ	y = -1216.14913	31		
M06-2X/d	ef2-TZVP			
Electronic	Energy $= -1216$.691672		
С	0.40039200	1.62045000	0.35553800	
0	0.35388900	2.11612900	1.45510300	
С	0.57468000	0.13119500	0.12705300	
0	0.32505400	2.27388100	-0.79243600	
С	0.17380700	3.70335800	-0.69380400	
Н	1.02423700	4.13032200	-0.15879000	
Н	0.14544400	4.06222200	-1.72030600	
Н	-0.75592200	3.94409100	-0.17505600	
Ν	-0.43882800	-0.63853300	0.03052800	
0	-1.62713300	0.10628100	0.12581000	
S	-2.92395900	-0.91130000	-0.04375500	
0	-2.90926400	-1.44374400	-1.39387200	
0	-2.92968700	-1.83167100	1.07800300	
С	-4.16416600	0.33122400	0.13962700	
Н	-4.04884300	1.05899600	-0.66433700	
Н	-5.12241200	-0.18685000	0.05670500	
Н	-4.05662900	0.78951900	1.12330300	
С	1.93973600	-0.42384900	0.04819500	
С	3.03948900	0.43314500	0.16579400	
С	2.14295800	-1.79780000	-0.14838200	

С	4.33413000	-0.07791200	0.08876000
Η	2.89799700	1.49967900	0.32108000
С	3.43592200	-2.30038900	-0.22354000
Η	1.28955600	-2.46166300	-0.24152300
С	4.53376500	-1.44278300	-0.10536300
Η	5.18242800	0.59247100	0.18137300
Η	3.59025600	-3.36396300	-0.37528900
Η	5.54188000	-1.84114400	-0.16489900

 \mathbf{b}^+

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -1216.716168Enthalpy = -1216.475939 Free Energy = -1216.539067M06-2X/def2-TZVP Electronic Energy = -1217.096176С -0.57660100 -0.09445600 -0.17120000 Ν 0.41572500 -0.92681700 -0.35514800 0 1.64956400 -0.49834200 -0.76166500 S 0.22115000 2.87943700 -1.16216500 0 2.85142200 -0.45296500 1.48144000 0 2.65473500 -2.59210200 0.19423300 С 4.21696100 -0.65329200 -0.80230800Η 4.20459500 0.43642300 -0.86175400 Η 5.12327300 -1.00190000 -0.29991400 Η 4.10512800 -1.12619400 -1.77857600 С -0.38175700 1.35494100 -0.13059900 С 0.71634500 1.93850100 0.52389900 С -1.34681100 2.16483200 -0.75312000 С 0.83927500 3.32147100 0.55104900 Η 1.43970600 1.32091100 1.04466300 С 3.54678500 -1.19443600 -0.74639400 1.71167700 -1.25800000 Η -2.19394700С -0.10602600 4.12425900 -0.09230600 Η 1.67285000 3.77512900 1.07672300 Η -1.92866600 4.17122700 -1.24411500 Η 0.00385400 5.20411500 -0.07610200 Η 0.28497800 -1.94167500 -0.38508100 С -1.90382600 -0.70190700 -0.03817700 С -2.24285000 -1.85586000 -0.76497900С -2.83183500 -0.12054200 0.84129400 С -3.50117500 -2.42241800 -0.60624300 Η -1.54721100 -2.27927600 -1.48403400С -0.70623400 -4.08144800 1.00437800 Η -2.563300000.76550200 1.40755200 С -4.41641300 -1.85232900 0.28111400

Н	-3.77191100	-3.30116600	-1.18173000
Н	-4.79466300	-0.26800600	1.69429700
Н	-5.39794000	-2.29964300	0.40318800

C

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -1219.495211Enthalpy = -1219.230278Free Energy = -1219.29458M06-2X/def2-TZVP Electronic Energy = -1219.860958С 0.52166200 -0.10873400 -0.05040300 Ν -0.52789400 -0.84464400 -0.10033100 0 -1.70822900 -0.07733700 0.00233500 S -3.00332400 -1.09225800 0.00679900 0 -3.09943700 -1.73103900 -1.29483200 0 -2.93820800 -1.92766400 1.19386800 С -4.23198600 0.16427600 0.18423900 Η -4.17090400 0.83637800 -0.67238000Η -5.19311200 -0.35413800 0.20040200 Η -4.06169600 0.69030700 1.12423100 С 0.52398000 1.37799500 0.02465400 С -0.16561500 2.14541200 -0.92101600С 1.25537900 2.01070000 1.03558100 С -0.12280000 3.53601900 -0.85151100 Η -0.72185800 1.65414500 -1.71344400 С 1.27719100 3.40195400 1.11422000 Η 1.80116600 1.41305500 1.76068800 С 0.59189700 4.16554900 0.16894400 Η -0.64892600 4.12787200 -1.59416700 Η 1.83595400 3.88813600 1.90778600 Η 0.61844700 5.24963900 0.22389000 С 1.81419700 -0.84547400 -0.06666700 С 1.89954500 -2.14130200 0.46044400 С 2.95351000 -0.24781700 -0.61924900 С 3.10824900 -2.83035800 0.42582800 Η 1.02054900 -2.59643500 0.90586300 С 4.16005300 -0.94444400 -0.65727700 Η 2.89487200 0.75607800 -1.02948000 С 4.24022700 -2.23487500 -0.13456100 Η 3.16859800 -3.83071600 0.84318100 Η 5.03671700 -0.47728200 -1.09509400Η 5.18270300 -2.77349200 -0.15828300

 \mathbf{c}^+

M06-2X/6-31+G(d,p)[LANL2DZ]

Electronic E	Electronic Energy = -1219.913212				
Enthalpy =	-1219.634334				
Free Energy	v = -1219.6980	41			
M06-2X/de	f2-TZVP				
Electronic E	Energy = -1220	.279094			
С	-0.57660100	-0.09445600	-0.17120000		
Ν	0.41572500	-0.92681700	-0.35514800		
0	1.64956400	-0.49834200	-0.76166500		
S	2.87943700	-1.16216500	0.22115000		
0	2.85142200	-0.45296500	1.48144000		
0	2.65473500	-2.59210200	0.19423300		
С	4.21696100	-0.65329200	-0.80230800		
Н	4.20459500	0.43642300	-0.86175400		
Н	5.12327300	-1.00190000	-0.29991400		
Н	4.10512800	-1.12619400	-1.77857600		
С	-0.38175700	1.35494100	-0.13059900		
С	0.71634500	1.93850100	0.52389900		
С	-1.34681100	2.16483200	-0.75312000		
С	0.83927500	3.32147100	0.55104900		
Н	1.43970600	1.32091100	1.04466300		
С	-1.19443600	3.54678500	-0.74639400		
Н	-2.19394700	1.71167700	-1.25800000		
С	-0.10602600	4.12425900	-0.09230600		
Н	1.67285000	3.77512900	1.07672300		
Н	-1.92866600	4.17122700	-1.24411500		
Н	0.00385400	5.20411500	-0.07610200		
Н	0.28497800	-1.94167500	-0.38508100		
С	-1.90382600	-0.70190700	-0.03817700		
С	-2.24285000	-1.85586000	-0.76497900		
С	-2.83183500	-0.12054200	0.84129400		
С	-3.50117500	-2.42241800	-0.60624300		
Н	-1.54721100	-2.27927600	-1.48403400		
С	-4.08144800	-0.70623400	1.00437800		
Н	-2.56330000	0.76550200	1.40755200		
С	-4.41641300	-1.85232900	0.28111400		
Н	-3.77191100	-3.30116600	-1.18173000		
Н	-4.79466300	-0.26800600	1.69429700		
Н	-5.39794000	-2.29964300	0.40318800		

d

 $\frac{M06-2X/6-31+G(d,p)[LANL2DZ]}{Electronic Energy = -781.1559708}$ Enthalpy = -780.929783 Free Energy = -780.989816 $\frac{M06-2X/def2-TZVP}{Electronic Energy = -781.436967}$

С	2.26298800	-0.98000700	0.09525900
0	2.56106700	-2.14025200	0.23184500
С	0.84325200	-0.45249500	0.12229000
С	0.68411500	1.05644300	0.21946200
0	0.99500800	1.68969600	1.20033700
0	0.17045300	1.55930600	-0.89235000
0	3.11824900	0.01166600	-0.12971000
С	4.50472900	-0.35769700	-0.21419300
Н	4.65723300	-1.04080000	-1.05213200
Н	5.04612300	0.57266700	-0.37307800
Н	4.82029800	-0.83255400	0.71668400
С	-0.06980000	2.97845300	-0.88609100
Н	-0.49794300	3.20479600	-1.86030600
Н	-0.77191900	3.23098500	-0.08887100
Н	0.87010000	3.51507800	-0.74359600
Ν	-0.10204300	-1.29331500	0.05289700
С	-1.45541700	-0.88536300	0.08512400
С	-1.95545200	-0.02258700	1.06792400
С	-2.31340000	-1.43665600	-0.87276100
С	-3.30854500	0.31268900	1.06188000
Н	-1.30078400	0.35365600	1.84881000
С	-3.65637100	-1.07223100	-0.88605000
Н	-1.91149100	-2.13093000	-1.60439300
С	-4.15814900	-0.19779300	0.08059000
Н	-3.69749100	0.97264100	1.83122500
Η	-4.31603900	-1.48352400	-1.64384100
Н	-5.20970100	0.07133000	0.07763500

\mathbf{d}^+

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -781.576025 Enthalpy = -781.336339Free Energy = -781.397803 M06-2X/def2-TZVP Electronic Energy = -781.8586788 2.19955100 -1.03878400 С 0.07108600 0 2.25522000 -2.24325700 0.09780100 С 0.86234000 -0.31995900 0.12584900 С 0.81472000 1.19120000 0.22437100 Ο 1.19339300 1.75818400 1.21545800 0 0.34748700 1.71012800 -0.88519400 Ο 3.18061500 -0.18176100 -0.03673900 С 4.51164500 -0.74387900 -0.14079200 Η 4.57451800 -1.35780000 -1.04041700 Η 5.17756600 0.11275800 -0.20428200 Η 4.72171100 -1.33912000 0.74856100

С	0.23305600	3.15395500	-0.91651800
Н	-0.15354600	3.38551700	-1.90566300
Н	-0.46251100	3.47775800	-0.14024300
Н	1.21556500	3.60291300	-0.76529900
Ν	-0.16926800	-1.07685700	0.08062400
С	-1.55571200	-0.75513100	0.10447000
С	-2.03636200	0.37707700	0.76625100
С	-2.40345900	-1.64828500	-0.55412000
С	-3.40175300	0.63217400	0.72522600
Н	-1.38415500	1.01996200	1.34776500
С	-3.76487700	-1.37161800	-0.59004000
Н	-1.99527300	-2.52898700	-1.04122000
С	-4.26178200	-0.23138400	0.04276300
Н	-3.79602000	1.49970700	1.24311100
Н	-4.43601200	-2.04890100	-1.10667000
Н	-5.32625400	-0.02199300	0.01952700
Н	0.05134600	-2.08236800	-0.00142500

e

<u>M06-2X/6-31+G(d,p)[LANL2DZ]</u>				
Electronic Energy = -784.3386567				
Enthalpy =	-784.074217			
Free Energy	y = -784.13524	9		
M06-2X/de	f2-TZVP			
Electronic H	Energy = -784.6	5088932		
С	0.01640200	1.30430500	0.19534900	
0	0.19786000	1.98055500	1.18135400	
С	0.53076900	-0.12320800	0.04792500	
0	-0.64426500	1.69630200	-0.88647400	
С	-1.25356500	2.99619000	-0.81021700	
Н	-0.49478900	3.76130200	-0.63495900	
Н	-1.73619700	3.14899500	-1.77358700	
Н	-1.99242800	3.01125800	-0.00566600	
Ν	-0.25720000	-1.12149300	-0.05021400	
С	2.00167600	-0.30528200	0.03118100	
С	2.85962200	0.79101400	-0.11706000	
С	2.54203200	-1.59457400	0.13895000	
С	4.23965200	0.60018200	-0.16371400	
Н	2.46112300	1.79823100	-0.19898700	
С	3.91869600	-1.78035600	0.09745500	
Н	1.87248800	-2.44013400	0.25840200	
С	4.77110900	-0.68342100	-0.05530200	
Н	4.89690100	1.45563000	-0.28295600	
Н	4.33038500	-2.78086000	0.18649300	
Н	5.84627200	-0.83131000	-0.08683500	
С	-1.65770700	-0.96726300	0.03570300	

С	-2.44634900	-1.53663500	-0.97118400
С	-2.26933700	-0.33383800	1.12502600
С	-3.83191600	-1.42072600	-0.91619700
Н	-1.95966300	-2.05039600	-1.79487500
С	-3.65980100	-0.24062300	1.18090500
Η	-1.65990800	0.05739000	1.93490800
С	-4.44484700	-0.77199100	0.15862800
Н	-4.43687800	-1.84787600	-1.71041700
Н	-4.12764800	0.24564600	2.03180900
Н	-5.52661600	-0.69491300	0.20445000

e⁺

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -784.7685961Enthalpy = -784.489708Free Energy = -784.549452M06-2X/def2-TZVP Electronic Energy = -785.0415244 С 0.03198000 1.27308200 0.40270700 0 -0.45226500 1.54716100 1.47010200 С 0.48047000 -0.14839000 0.08577200 0 0.29590300 2.09438800 -0.59026300 С -0.07552400 3.47654300 -0.37775100Η 3.88323200 0.49182500 0.46095300 Η 0.18096000 3.98792000 -1.30243200 Η -1.146752003.54178000 -0.17896500 Ν -0.43186900 -1.06677000 0.00038700 С 1.90036100 -0.43422400 -0.00439100 С 2.81299400 0.49818100 0.52094800 С 2.36805400 -1.62189900 -0.59828100 С 4.17447700 0.22847500 0.48093200 Η 2.46578400 1.42010200 0.97935800 С 3.73058800 -1.87445600 -0.64389000 Η 1.68140300 -2.32860600 -1.05601900 С 4.63206100 -0.95492300 -0.09944400 Η 4.87739900 0.94120100 0.89805500 Η -2.78197700 -1.11326500 4.09450800 Η 5.69739900 -1.15951000 -0.13812300 Η -0.12107600 -2.04085400 -0.02182100 С -1.85023200 -0.87955100 -0.05557600 С -2.64772300 -1.75568500 0.67832700 С -2.39593200 0.12617900 -0.85194900 С -4.02868600 -1.59082200 0.64077800 Η -2.53967900 -2.19153600 1.27556500 С 0.28026500 -3.77948700 -0.87429800Η -1.76155500 0.75219300 -1.47328700

С	-4.59344700	-0.57110100	-0.12717100
Η	-4.66301700	-2.25878500	1.21371600
Н	-4.21985900	1.05597100	-1.49179200
Η	-5.67121700	-0.44803800	-0.15363900

f

M06-2X/6-31+G(d,p)[LANL2DZ]Electronic Energy = -787.5221627Enthalpy = -787.219538Free Energy = -787.280637M06-2X/def2-TZVP Electronic Energy = -787.77441140.54728400 -0.35662700 -0.06747500 С Ν -0.20556500 -1.39350700 -0.09773300 С 0.04741900 1.05543200 -0.07343600 С 1.48453800 -0.84115000 -1.06546000 С 0.46550000 1.95404400 0.91408400 С -1.31010200 2.79674400 -1.06559200 Η -1.16199600 0.79059100 -1.83751500 С -0.02072000 3.26044500 0.92430400 Η 1.16280200 1.62599200 1.68076300 С -0.90658300 3.68446000 -0.06711900 Η -1.993014003.12470900 -1.84328500Η 0.29698300 3.94783200 1.70241800 Η -1.278429004.70459900 -0.06379100 С 2.02448000 -0.57206400 -0.04488200С 2.54135900 -1.77931300 0.44591700 С 2.90801000 0.40599600 -0.51891800 С 3.91422500 -2.00452100 0.45860500 Η 1.85514900 -2.53221300 0.82041600 С 4.28314400 0.17398100 -0.51611500 Η 2.52323900 1.34546500 -0.90417100 С 4.78924000 -1.02864400 -0.02476100 Η 4.30392500 -2.939750000.84900500 Η 4.95763600 0.93476600 -0.89679500 Η 5.86059000 -1.20557900 -0.01574600С -1.60990200 -1.31500600 0.01031000 С -2.23199400 -0.72320600 1.11829100 С -2.39337800 -1.93938200 -0.96771300 С -3.62106900 -0.73391900 1.22567900 Η -1.62274800 -0.26288200 1.89107200 С -3.78270600 -1.92840300 -0.86284900Η -1.90196300 -2.41937300 -1.80933000 С -4.40358600 -1.32688400 0.23348500 Η -4.09275900 -0.27502600 2.08978100 Η -4.38151700 -2.40148300 -1.63566600 f⁺

Η

*				
M06-2X/6-31+G(d,p)[LANL2DZ]				
Electronic l	Energy = -787.9	9670298		
Enthalpy =	-787.650103			
Free Energy	y = -787.71090	2		
M06-2X/de	ef2-TZVP			
Electronic l	Energy = -788.2	2197671		
С	0.56117900	-0.27992600	-0.10158100	
Ν	-0.29348500	-1.26724700	-0.19597600	
С	0.11405200	1.12020700	-0.07500400	
С	-0.88121300	1.56046500	-0.96108000	
С	0.71749700	2.01959700	0.81460900	
С	-1.26863500	2.89444200	-0.94996000	
Η	-1.32995400	0.86731500	-1.66632600	
С	0.29990700	3.34713000	0.84034700	
Η	1.49207700	1.67553900	1.49326500	
С	-0.68798100	3.78430100	-0.04225200	
Η	-2.02398500	3.24139200	-1.64721300	
Η	0.75145200	4.04055200	1.54207400	
Η	-1.00269700	4.82313700	-0.02921800	
С	1.99138400	-0.60622400	-0.05123000	
С	2.42948500	-1.79119000	0.56520300	
С	2.92497300	0.27049600	-0.62783800	
С	3.78488600	-2.09547700	0.59468700	
Η	1.71864100	-2.45009200	1.05676700	
С	4.27743500	-0.05139600	-0.60844700	
Н	2.58905400	1.18227300	-1.11148800	
С	4.70757800	-1.22993000	0.00325200	
Η	4.12320600	-3.00065600	1.08788900	
Η	4.99599600	0.61820900	-1.06922300	
Н	5.76561000	-1.47193100	0.02613100	
С	-1.71816700	-1.24242000	-0.02709500	
С	-2.28853800	-0.57107700	1.05345900	
С	-2.49276700	-1.95350300	-0.94011700	
С	-3.67258100	-0.59408800	1.19853400	
Н	-1.66131700	-0.04688300	1.76789600	
С	-3.87699600	-1.96931000	-0.78111600	
Н	-2.01689300	-2.47563400	-1.76505100	
С	-4.46702800	-1.28665100	0.28244900	
Н	-4.12978400	-0.07681300	2.03568000	
Н	-4.49131900	-2.51444000	-1.49019900	
Н	-5.54531700	-1.30086300	0.40427900	
Н	0.09281900	-2.19305000	-0.38436600	

g

<u>M06-2X/6</u>	-31+G(d,p)[LA]	NL2DZ]		
Electronic	Energy = -856.3	3613801		
Enthalpy =	-856.129908			
Free Energ	gy = -856.19318	2		
<u>M06-2X/d</u>	ef2-TZVP			
Electronic	Energy = -856.6	5735138		
С	-0.97077300	1.39180100	0.18206800	
0	-1.22541500	2.05690800	1.15834200	
С	-1.28186600	-0.09258700	0.08199700	
С	-2.76016500	-0.37772900	0.01285300	
0	-3.56317300	0.51110500	-0.17607200	
0	-3.06051200	-1.65738900	0.15211100	
0	-0.39508400	1.83968000	-0.92369400	
С	-0.01262100	3.22657800	-0.91430400	
Н	0.72641000	3.40164900	-0.12912600	
Н	0.41926100	3.41547300	-1.89495700	
Н	-0.88907700	3.85587000	-0.75005400	
С	-4.45716200	-1.97929200	0.04683800	
Н	-4.51903200	-3.05630500	0.18862200	
Н	-5.02157900	-1.45764400	0.82239300	
Н	-4.83288500	-1.69956100	-0.93938100	
Ν	-0.44016400	-1.04004000	0.01388600	
С	0.95268200	-0.82837500	0.06644700	
С	1.57153300	0.09787400	0.91615300	
С	1.74593500	-1.65816000	-0.73784100	
С	2.95670700	0.21983100	0.92782100	
Н	0.98408200	0.69618500	1.60644900	
С	3.12575100	-1.51752800	-0.75374500	
Н	1.26076400	-2.40069800	-1.36400400	
С	3.73405300	-0.57451000	0.08077700	
Н	3.43642400	0.92445100	1.60195500	
Н	3.74491800	-2.14090800	-1.39082800	
0	5.08776500	-0.48702200	0.04332600	
Н	5.39877700	0.18808400	0.66525600	

\mathbf{g}^+			
<u>M06-2X/6-31</u>	+G(d,p)[LAN]	NL2DZ]	
Electronic En	ergy = -856.7	819569	
Enthalpy $= -8$	356.536622		
Free Energy =	856.600099)	
M06-2X/def2	2-TZVP		
Electronic En	ergy = -857.0	95568	
С	1.06676600	1.49112500	-0.19465600
0	1.39191600	2.11612600	-1.16956400
С	1.32097700	0.00185600	-0.09267000

С	2.76733400	-0.42645300	-0.03244500
0	3.64718700	0.38691100	0.08369400
0	2.88567700	-1.73632200	-0.09546800
0	0.49245600	1.93869700	0.89818700
С	0.17924100	3.35221500	0.91330800
Н	-0.52697400	3.57480000	0.11126800
Η	-0.26804400	3.53410200	1.88732200
Н	1.09537800	3.93054100	0.78813200
С	4.23101600	-2.26187800	0.01104500
Η	4.11946800	-3.34233300	-0.03143000
Η	4.82696400	-1.89668300	-0.82612400
Η	4.66726600	-1.94947000	0.96063800
Ν	0.38995900	-0.88268200	-0.03184600
С	-1.01531500	-0.74010500	-0.08175900
С	-1.63662200	0.32374100	-0.74584100
С	-1.76652900	-1.73895200	0.55201800
С	-3.01694600	0.40889800	-0.73377500
Η	-1.06937800	1.05209600	-1.31656200
С	-3.14414700	-1.64486800	0.57355400
Н	-1.26431200	-2.57022900	1.03880800
С	-3.77345900	-0.56562200	-0.06386600
Η	-3.51556100	1.21706000	-1.25959300
Η	-3.74819400	-2.39565200	1.07074400
0	-5.11424400	-0.52626900	-0.01872500
Η	-5.45827300	0.24562900	-0.49677000
Η	0.71411000	-1.85397800	0.08201400

h

M06-2X/6-31+G(d,p)[LANL2DZ]				
Electronic	Energy = -859.5	5460172		
Enthalpy =	-859.276259			
Free Energ	y = -859.339752	3		
M06-2X/d	ef2-TZVP			
Electronic	Energy $= -859.8$	8439506		
С	-0.42978900	1.35623300	0.16775900	
0	-0.67280200	2.04439200	1.13330000	
С	-0.88168000	-0.09258400	0.03033800	
0	0.24904300	1.75848700	-0.89835900	
С	0.81148200	3.07917200	-0.82370300	
Н	1.50141500	3.14029300	0.02118600	
Н	1.34314500	3.22265500	-1.76231400	
Н	0.01886100	3.82189600	-0.71373900	
Ν	-0.05842200	-1.06200400	-0.07834900	
С	1.33796700	-0.87281300	0.00472100	
С	1.94583300	-0.14069500	1.03119300	
С	2.14507000	-1.51792300	-0.94147900	

С	3.33289800	-0.01940000	1.08580500
Η	1.34004300	0.31094000	1.81203500
С	3.52613600	-1.38049200	-0.90508500
Η	1.67366600	-2.11417300	-1.71709200
С	4.12348200	-0.62726400	0.10996600
Н	3.79932100	0.53913400	1.89353000
Н	4.15454200	-1.86227100	-1.64756000
0	5.48198300	-0.53719200	0.10762100
Η	5.78195800	0.00137800	0.85489400
С	-2.34486100	-0.33528400	0.03367300
С	-3.25235100	0.71969700	-0.12482200
С	-2.82910500	-1.64389000	0.17517800
С	-4.62336700	0.46812000	-0.15050700
Η	-2.89860300	1.74130700	-0.23033800
С	-4.19692100	-1.89017600	0.15431600
Η	-2.12284300	-2.45730600	0.30532100
С	-5.09818000	-0.83473700	-0.00989100
Η	-5.31864000	1.29186100	-0.27788600
Н	-4.56307900	-2.90568300	0.26971300
Η	-6.16631000	-1.02927200	-0.02458000

\mathbf{h}^+

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -859.9779064Enthalpy = -859.695565Free Energy = -859.758441M06-2X/def2-TZVP Electronic Energy = -860.2789518С -0.47195100 1.39378000 0.20283600 Ο 2.03422500 -0.78556100 1.17408700 С -0.92306200 -0.04846900 0.01547200 0 0.24660600 1.80060200 -0.82094300 С 0.78407700 3.13816300 -0.72389100 Η 1.43227200 3.20571100 0.15197900 Η 1.35209900 3.28550500 -1.63923400 Η -0.03102300 3.85987800 -0.65124900 Ν -0.02363400 -0.97176500 -0.14159800 С 1.39458000 -0.84409400 -0.03205300 С 1.97139000 -0.08912700 0.98839900 С 2.18264500 -1.52029500 -0.96539700 С 1.04860600 3.35388200 0.02773000 Η 1.35932100 0.37865500 1.75458500 С 3.56177200 -1.40540200 -0.90266200 Η 1.71503800 -2.11554700 -1.74407500 С 4.14946600 -0.62350900 0.09980600 Η 0.60566500 3.81583600 1.84371400

Η	4.19655600	-1.91169300	-1.62185800
0	5.49765400	-0.54839200	0.11105700
Η	5.80453700	0.01238500	0.84069000
С	-2.34622900	-0.33730600	0.03152600
С	-3.25284400	0.68926800	-0.28755600
С	-2.81974700	-1.62465600	0.34334500
С	-4.61440600	0.41708000	-0.32772300
Н	-2.89898400	1.68901700	-0.52317900
С	-4.18260900	-1.88138200	0.31305100
Н	-2.13686400	-2.41232100	0.64785700
С	-5.07856900	-0.86454000	-0.02882900
Н	-5.31299500	1.20510300	-0.58674400
Н	-4.54953100	-2.86971200	0.56839400
Н	-6.14397900	-1.07139200	-0.04997700
Н	-0.35679500	-1.91383000	-0.36292300

i

1			
M06-2X/6-	31+G(d,p)[LA]	NL2DZ]	
Electronic 1	Energy $= -781.9$	9252419	
Enthalpy =	-781.708116		
Free Energ	y = -781.76417	1	
M06-2X/de	ef2-TZVP		
Electronic 1	Energy $=$ -782.	1905636	
С	1.97475400	-0.71027000	-0.12954100
С	2.43064200	0.59881000	0.07202000
С	3.79063900	0.88730500	0.14155700
С	4.68454900	-0.17271200	0.00646700
С	4.22786700	-1.48546700	-0.19621500
С	2.86622000	-1.77075200	-0.27002400
Η	4.13595900	1.90513900	0.29328400
Η	5.75241000	0.01522600	0.05623900
Η	4.95155900	-2.28819600	-0.29681700
Η	2.50749300	-2.78318400	-0.42747900
С	1.28119400	1.53027200	0.16934700
С	0.49054700	-0.75489200	-0.16903600
С	0.02517700	0.68182600	0.05709200
Ν	-1.12400700	1.21809600	0.07314400
С	-2.33228000	0.49231700	0.05611100
С	-2.58230900	-0.57056200	0.93304400
С	-3.34364000	0.95571400	-0.79390800
С	-3.82985000	-1.18626700	0.92684200
Η	-1.80796400	-0.89523000	1.62089100
С	-4.57607100	0.30832100	-0.81937000
Η	-3.14412900	1.80925800	-1.43482600
С	-4.82434000	-0.76017800	0.04337500
Н	-4.02538500	-2.00441300	1.61325800

Η	-5.34981200	0.65345400	-1.49813100
Η	-5.79291800	-1.25031700	0.03835500
0	1.31490500	2.73124500	0.31719100
0	-0.19712500	-1.72489400	-0.39761100

i⁺

M06-2X/6-31+G(d,p)[LANL2DZ] Electronic Energy = -782.3491778Enthalpy = -782.118175Free Energy = -782.173644M06-2X/def2-TZVP Electronic Energy = -782.6159735С -2.45134200 0.64735300 0.06929200 С -2.12275500 -0.71385200 -0.06450500 С -3.10972700 -1.68417900 -0.20190500 С -4.43549000 -1.25614900 -0.19524600 С -4.76336800 0.10391200 -0.06158600 С -3.77506200 1.07643900 0.07240800 Η -2.85086200 -2.73273500 -0.30689600 Η -5.23338400 -1.98477600 -0.29546800 Η -5.80763500 0.39840000 -0.06451000 Η -4.02256700 2.12826700 0.17083100 С -0.66028500 -0.93356200 -0.05215000С -1.22603600 1.44951900 0.17052200 С -0.07382900 0.46179300 0.10496500 Ν 1.11763700 0.93674800 0.08129500 С 2.40566500 0.34896100 0.04504200 С 3.43265900 1.16696700 -0.44341400С 2.65032300 -0.94470200 0.51538300 С 4.72251000 0.65811600 -0.50538200 Η 3.21370900 2.17719900 -0.77785100С 3.95054300 -1.43019400 0.45692000 Η 1.85593000 -1.54591700 0.93669000 С 4.98061000 -0.63963400 -0.05864500 Η 5.52564200 1.27499400 -0.89327900 Η 4.16144300 -2.42810400 0.82561700 Η 5.99151000 -1.03223500 -0.09835500 Η 1.13218100 1.97116400 0.08544900 Ο -1.055525002.64119200 0.27762400 Ο -0.06146400 -1.97221900 -0.18530900
25. REFERENCES

- 1. Shaw, K. N. F.; Nolan, C. J. Org. Chem. 1957, 22, 1668-1670.
- 2. May, D. A. Jr.; Lash, T. D. J. Org. Chem. 1992, 57, 4820-4828.
- 3. Peng, X.; Zhu, Y.; Ramirez, T. A.; Zhao, B.; Shi, Y. Org. Lett. 2011, 13, 5244-5247.
- 4. Nohira, H.; Sato, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1963, 36, 870-872.
- 5. Love, B. E.; Jones, E. G. J. Org. Chem. 1999, 64, 3755-3756.
- 6. Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333-3336.
- Kattamuri, P. V.; Xiong, Y.; Pan, Y.; Li, G. Org. Biomol. Chem. 2013, 11, 3400-3408.
- 8. Niwa, Y.; Takayama, K.; Shimizu, M. Tetrahedron Lett. 2001, 42, 5473-5476.
- Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022-5028.
- 10. Marshall, J. A.; Garafalo, A. W. J. Org. Chem. 1993, 58, 3675-3680.
- 11. Youn, S. W.; Kim, Y. H. Org. Lett. 2016, 18, 6140-6143.
- 12. Zhou, S.; Wang, J.; Zhang, F.; Yang, C.; Zhu, X. Org. Lett. 2016, 18, 2427-2430.
- 13. Pace, V.; De la Vega-Hernandez, K.; Urban, E.; Langer, T. Org. Lett. 2016, 18, 2750-2753.
- Wang, D.; Kuang, D.; Zhang, F.; Yang, C.; Zhu, X. Adv. Synth. Catal. 2015, 357, 714-718.
- 15. Fu, M. –C.; Shang, R.; Cheng, W. –M.; Fu, Y. Angew. Chem. Int. Ed. 2015, 54, 9042-9046.
- Yu, X.; Zhao, R.; Wan, H.; Yang, Y.; Wang, D. Tetrahedron Lett. 2016, 57, 4588-4591.
- 17. Byun, E.; Hong, B.; De Castro, K. A.; Lim, M.; Rhee, H. J. Org. Chem. 2007, 72, 9815-9817.
- Wisniewski, S. R.; Guenther, C. L.; Argintaru, O. A.; Molander, G. A. J. Org. Chem. 2014, 79, 365-378.
- Rataboul, F.; Zapf, A.; Jackstell, R.; Harkal, S.; Riermeier, T.; Monsees, A.; Dingerdissen, U.; Beller, M. Chem. Eur. J. 2004, 10, 2983-2990.

- Shankaraiah, N.; Markandeya, N.; Srinivasulu, V.; Sreekanth, K.; Sanjeevareddy, Ch.; Santos, L. S.; Kamal, A. J. Org. Chem. 2011, 76, 7017-7026.
- 21. Huang, J. -H.; Yang, L. -M. Org. Lett. 2011, 13, 3750-3753.
- Vantourout, J. C.; Law, R. P.; Isidro-Llobet, A.; Atkinson, S. J.; Watson, A. J. B. J. Org. Chem. 2016, 81, 3942-3950.
- Zhou, W.; Fan, M.; Yin, J.; Jiang, Y.; Ma, D. J. Am. Chem. Soc. 2015, 137, 11942-11945.
- 24. Yan, L.; Liu, X. –X.; Fu, Y. RSC Adv. 2016, 6, 109702-109705.
- 25. Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. J. Org. Chem. 1990, 55, 2552-2554.
- Kawahara, R.; Fujita, K. –I.; Yamaguchi, R. Adv. Synth. Catal. 2011, 353, 1161-1168.
- 27. Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66, 8677-8681.
- Cai, L.; Qian, X.; Song, W.; Liu, T.; Tao, X.; Li, W.; Xie, X. *Tetrahedron*, 2014, 70, 4754-4759.
- 29. Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 15914-15917.
- 30. Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217-7218.
- Kim, B. R.; Cho, S. –D.; Kim, E. J.; Lee, I. –H.; Sung, G. H.; Kim, J. –J.; Lee, S. –G.; Yoon, Y. –J. *Tetrahedron*, **2012**, 68, 287-293.
- 32. Hajra, A.; Wei, Y.; Yoshikai, N. Org. Lett. 2012, 14, 5488-5491.
- Altman, R. A.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2008, 73, 5167-5169.
- 34. Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Org. Lett. 2007, 9, 761-764.
- 35. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;

Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;
Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision B.01, Gaussian, Inc., Wallingford CT (2009).

- 36. Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215-241.
- 37. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157-167.
- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.

26. DSC (Differential Scanning Calorimetry) Analysis Data of the Starting Materials

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-100.001 Operator: PR Run Date: 31-Oct-2016 09:44 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-035.001 Operator: PR Run Date: 31-Oct-2016 10:22 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-127.001 Operator: PR Run Date: 29-Oct-2016 14:57 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PauIR\LK2\PVK-ii-047.003 Operator: PR Run Date: 29-Oct-2016 13:42 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-052.001 Operator: PR Run Date: 01-Nov-2016 08:51 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-030.001 Operator: PR Run Date: 01-Nov-2016 08:13 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-031.002 Operator: PR Run Date: 31-Oct-2016 12:30 Instrument: DSC Q2000 V24.11 Build 124

DSC

File: C:\TA\Data\DSC\PaulR\LK2\PVK-A-020.001 Operator: PR

File: C:\TA\Data\DSC\PauIR\LK2\PVK-A-058.001 Operator: PR Run Date: 31-Oct-2016 10:59 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-A-045.001 Operator: PR Run Date: 31-Oct-2016 09:07 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PauIR\LK2\PVK-A-057.001 Operator: PR Run Date: 31-Oct-2016 08:29 Instrument: DSC Q2000 V24.11 Build 124

File: C:\TA\Data\DSC\PaulR\LK2\PVK-II-097.001 Operator: PR Run Date: 31-Oct-2016 11:36 Instrument: DSC Q2000 V24.11 Build 124

27. ¹H-, ¹³C- and ¹⁹F-NMR Spectra of All the Compounds

S234

	1 1	1 1	1 1								1 1	1 1	1 1	1 1				1 1		
00	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	(
									S	\$235										

 1 1	1 1	1 1	· ·		· ·	1 1	- I - I				I	'	- I - I			1 1	1 1		_
190	180	170	160	150	140	130	120	110	100 f1 (ppm	90)	80	70	60	50	40	30	20	10	
									5243										

S244

S252

, , , , , , , , , , , , , , , , , , ,	1		· ·	- I I	- I - I	1 1	1 1	1 1			1 1		1 1	1 1	1 1	1 '	1 1	- I - I	- · ·	- I - I
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
f1 (ppm)																				

S283

S315

	· ·	1 1	1 1	- I - I	- I - I		· ·	· ·	- I - I	· ·	· ·	- I - I			· ·	1 1		·	- ·
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
f1 (ppm)																			

S336

S350

-130 f1 (ppm) -121 -122 -123 -126 .20 -124 -125 -127 -128 -129 -131 -132 -133 -134 -135 -136 -137 -138 -139

-110 f1 (ppm) -101 -102 -103 -106 -107 .00 -104 -105 -108 -109 -111 -112 -113 -114 -115 -116 -117 -118 -119

Т -130 f1 (ppm) L20 -121 -122 -123 -124 -125 -126 -127 -129 -131 -135 -137 -138 -128 -132 -133 -134 -136 -139 -1

								1									1 1	1 1	1 1	
L 20	-121	-122	-123	-124	-125	-126	-127	-128	-129	-130	-131	-132	-133	-134	-135	-136	-137	-138	-139	-1
										f1 (ppm)										

-130 f1 (ppm) -121 -122 -123 -124 -125 -126 -127 -131 -135 -137 ۱20 -128 -129 -132 -133 -134 -136 -138 -139 -1

S380

-130 f1 (ppm) -121 -122 -123 -124 -125 -126 -127 -128 -129 -131 -132 -133 -134 -135 -136 -137 -138 -139 .20

00

-130 f1 (ppm) -121 -122 -123 -124 -125 -126 -127 -128 -129 -131 -133 -134 -135 -136 -137 -138 .20 -132 -139 -1

S400

S411

-130 f1 (ppm) -121 -122 -123 -124 -126 -131 .20 -125 -127 -128 -129 -132 -133 -134 -135 -136 -137 -138 -139 -1

-130 f1 (ppm) .20 -121 -122 -123 -124 -125 -126 -127 -128 -129 -131 -132 -133 -134 -135 -136 -137 -138 -139

Т -130 f1 (ppm) 120 -121 -122 -124 -125 -126 -129 -123 -127 -128 -131 -132 -133 -134 -135 -136 -137 -138 -139

S439

S442

5.24 5.05 5.04 5.03 5.03 5.01 7.00

S448

(C-attack product) ¹H NMR (600 MHz, CDCI₃)

CO₂ⁱPr

ⁱPrO₂C¹

-110 f1 (ppm) -101 -102 -106 .00 -103 -104 -105 -107 -108 -109 -111 -112 -113 -114 -115 -116 -117 -118 -119

-130 f1 (ppm) -122 L20 -121 -123 -124 -125 -126 -127 -128 -129 -131 -132 -133 -134 -135 -136 -137 -138 -139

60b ¹H NMR (600 MHz, CDCl₃)

1 · · ·																		1 .	
.20	-121	-122	-123	-124	-125	-126	-127	-128	-129	-130	-131	-132	-133	-134	-135	-136	-137	-138	-139
										f1 (ppm)									

S496

Г

-110 f1 (ppm) .00 -101 -102 -103 -104 -105 -106 -107 -108 -109 -111 -112 -113 -114 -115 -116 -117 -118 -119 -1

-130 f1 (ppm) -121 -122 -123 -124 -125 -126 -127 -131 -135 L20 -128 -129 -132 -133 -134 -136 -137 -138 -139 -1

Т -130 f1 (ppm) -121 -122 -125 -126 -135 L**20** -123 -124 -127 -128 -129 -131 -132 -133 -134 -136 -137 -138 -139 -1

Т Т -130 f1 (ppm) L20 -121 -122 -123 -124 -125 -126 -127 -131 -133 -135 -137 -138 -128 -129 -132 -134 -136 -139 -1

60s ¹H NMR (600 MHz, CDCI₃)

-130 f1 (ppm) -121 -122 -123 -124 -126 -131 -135 .20 -125 -127 -128 -129 -132 -133 -134 -136 -137 -138 -139 -1

77.21 CDCl3 77.00 CDCl3 76.79 CDCl3

--- 5.64

7.26 7.23 7.23 6.97 6.95

61a ¹H NMR (600 MHz, CDCI₃)

5.92

Ĥ 61b

¹H NMR (600 MHz, CDCl₃)

67 05 05	04 72 68
27.29	20. 16.
	N Y

 $\sim \frac{143.38}{142.50}$ ~ 141.01

N 61b ¹³C NMR (151 MHz, CDCl₃)

77.21 CDCl3 77.00 CDCl3 76.79 CDCl3

Т -130 f1 (ppm) L20 -121 -122 -123 -124 -125 -126 -127 -129 -131 -135 -137 -128 -132 -133 -134 -136 -138 -139 -1

Т -130 f1 (ppm) L20 -121 -122 -123 -124 -125 -126 -127 -128 -129 -131 -135 -132 -133 -134 -136 -137 -138 -139 -1

Т -130 f1 (ppm) 120 -121 -122 -123 -124 -125 -126 -127 -129 -131 -135 -137 -138 -128 -132 -133 -134 -136 -139 -1

7.437.437.0077.0077.0077.0056.627.0077.00

---- 2.26

S574

00

