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S1.  Hencky’s Model 

In this section, we show the estimation of pressure-induced deflection and strain profiles in the 

bulging PDMS using Hencky’s model.
1
  Hencky’s model is a series of analytical solutions for 

calculating the deformation and strain of a pressurized circular diaphragm with fixed boundary at 

its edge.  In our experiments, a PDMS film is inflated with circular clamping, hence it closely 

matches with Hencky’s case.  When pressure difference is applied across the thin film, the film 

bulges up or down depending on the polarity of pressure difference.  The deformation of bulging 

can be decomposed to radial and out-of-plane displacements, which are noted as u and w, 

respectively, with respect to dimensionless loading of Yq pa E t= ∆ , where  ∆p, a, EY, and t are 

pressure difference, radius, Young’s modulus and thickness of the circular diaphragm, 

respectively.  The resulting bulging induced strains in the film are  
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where εθ is tangential strain, εr is radial stain, W is dimensionless out-of-plane displacement, U is 

dimensionless radial displacement, and ρ is dimensionless radial coordinate, respectively.  The 

dimensionless parameters are attained by normalizing each parameter using the radius of the 

diaphragm, (e.g., W=w/a).  The governing equations at equilibrium are given by balancing 

pressure loading and stresses in the diaphragm:   
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where σθ, and σr are dimensionless tangential and radial stresses normalized by EY, respectively, 

providing relationships of r rθσ νσ ε− = , and rθ θσ νσ ε− = , where ν is the Poisson’s ratio of the 

thin film.  Combining Eqs. S1-4 as a function of σr provides equations of  
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Substituting Eq. S6 in to Eq. S5 yields  
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The approximated solutions of Eq. S7 based on a series expansion proposed by Hencky is 
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and similarly, dimensionless out-of-plane displacement W(ρ), and tangential stress σθ(ρ) can be 

written as 
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Here, a2n and b2n are coefficients that depend on the Poisson’s ratio of the thin film, which can be 

calculated using boundary conditions.  The calculated a2n, and b2n up to n=20 based on Poisson’s 

ratio of PDMS, νPDMS=0.5 are summarized in Table 1.   

 

S2.  Strain Calculation 

We calculate the strain level of the pressurized PDMS using Hencky’s model based on the 

measured out-of-plane displacement (see Fig. 3a in main text).  As an example of the calculation, 

we show calculated profiles of dimensionless out-of-plane displacement W(ρ), and radial εr(ρ) 

and tangential strains εθ(ρ) based on the measured displacement at the center of the diaphragm.  

The center of the PDMS film is inflated with out-of-plane displacement of u(0)=1.2025mm when 

pressure level of 31.03kPa is applied to the sealed cavity.  This measured displacement translates 

to the dimensionless out-of-plane displacement of W(0)=w(0)/r=1.2025mm/3.175mm=0.3787.  

Using Eqs. S8-10, we calculate the profile of W(ρ), εr(ρ), and εθ(ρ) when W(0) =0.3789 (see Fig. 

S1).  For other measured out-of-plane displacements from the PDMS bulging, we use the same 

calculation protocol and estimate the strain levels.   
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Figure S1.  Calculated W(ρ), εr(ρ), and εθ(ρ) when the out-of-plane displacement at the center 

position of the PDMS film is w(0)=1.2025mm.  (a) Calculated W(ρ).  (b-c) σr(ρ) and σθ (ρ) are 

first calculated using Eqs. S8 and S10 and converted to εr(ρ), and εθ(ρ) using the relationships of 

r rθσ νσ ε− = , and rθ θσ νσ ε− = .  The strain levels of εr(0), and εθ(0) at the center of the PDMS 

film are identical εr(0)=εθ(0)≈0.0935, proving biaxial strain.   
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Table S1.  Calculated a2n and b2n for PDMS 

n 0 2 4 6 8 10 12 14 16 18 20 

an 

5.421 

×10
-1
 

4.312 

×10
-2
 

7.625 

×10
-3
 

1.668 

×10
-3
 

4.055 

×10
-4
 

1.050 

×10
-4
 

2.837 

×10
-5
 

7.900 

×10
-6
 

2.251 

×10
-6
 

6.531 

×10
-7
 

1.922 

×10
-7
 

bn 1.845 
-2.936 

×10
-1
 

-3.116 

×10
-2
 

-5.372 

×10
-3
 

-1.118 

×10
-3
 

-2.581 

×10
-4
 

-6.371 

×10
-5
 

-1.647 

×10
-5
 

-4.407 

×10
-6
 

-1.210 

×10
-6
 

-3.395 

×10
-7
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S3.  Reversible Bulging Measurement 

We perform the measurement by both increasing and decreasing the bulging at small strain 

levels, as shown in Figure S2.  During the experiment, the PDMS with MoS2 on top sequentially 

goes through zero differential pressure (∆p=0), 2.07kPa differential pressure (strain of 0.25%, at 

∆p=2.07kPa), back to zero pressure (∆p=0), then 4.83kPa pressure (strain of 1%, at 

∆p=4.83kPa), and then back to zero differential pressure again (∆p=0).  PL and Raman data in 

Figure S2 show that after small amount of bulging, the Raman and PL signatures are close to the 

initial value when the differential pressure returns to zero, which proves that using bulging to 

tune the optical signature is a reversible process when the amount of strain on MoS2 is small. 
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Figure S2.  Reversible straining measurement of the 2L MoS2 structure shown in Figure 1e.  (a) 

PL spectra recorded when the PDMS goes through the process of zero differential pressure 

(∆p=0), 2.07kPa differential pressure (strain of 0.25%, at ∆p=2.07kPa), back to zero pressure 

(∆p=0), under 4.83kPa pressure (strain of 1%, at ∆p=4.83kPa), and then back to zero differential 

pressure again (∆p=0).  (b) Raman spectra recorded during the same bulging process.  (c) & (d) 
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Summary of (c) I peak and (d) A peak energy during the measurement, showing that the peak 

positions return very close to the initial position under small strain.   
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