Supporting Information

Nano-hetero-architectures of two-dimensional (2D) MoS₂@ one-dimensional (1D) brookite TiO_2 nanorods: prominent electron emitters for displays

Rupesh S. Devan,^a* Vishal P. Thakare,^b Vivek V. Antad,^{b,c} Parameshwar R. Chikate,^a Ruchita T. Khare,^d Mahendra A. More,^d Rajendra S. Dhayal,^e Shankar I. Patil,^d Yuan-Ron Ma^f and Lukas Schmidt-Mende^g

- ^{a.} Discipline of Metallurgy Engineering & Materials Science, Indian Institute of Technology Indore, Simrol 453552, India; E-mail: devan_rs@yahoo.co.in & rupesh@iiti.ac.in
- ^{b.} Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- ^{c.} Nowrosjee Wadia College of Arts and Science, 19, Late Prin. V. K. Joag Path, Pune 411001, India.
- ^{d.} Department of Physics, Savitribai Phule Pune University, (Formerly, University of Pune), Pune 411007, India
- ^{e.} Centre for Chemical Sciences, School of Basics and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
- ^{f.} Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C.
- ^{g.} Department of Physics, University of Konstanz, Constance 78457, Germany

(A) Pure 2D MoS₂ layers and 2D MoS₂@1D β-TiO₂ nanorods

Figure S1. FESEM images showing the cross-sectional view of the large-area array of (a) ~ 20 (± 3) and (b) 40 (± 3) nm thick MoS₂ layers deposited over Si substrate at deposition rate of 500 and 1000 shots, respectively, and (c) 40 (± 3) nm thick MoS₂ layer loaded over 1D β -TiO₂ nanorods. The inset shows the high magnification FESEM image of the portion of 2D MoS₂@1D β -TiO₂ nanorods.

2D MoS₂ layers were deposited over pure Si substrate utilizing PLD technique at optimized conditions. The thickness of MoS₂ was calibrated and confirmed at these optimized conditions before subjected over 1D β -TiO₂ nanorods. High magnification FESEM images in Figure S1 (a and b) shows the cross-sectional views of the MoS₂ thin film produced over Si substrate at deposited rate of ~ 500 and 1000 shots, respectively. The thickness of ~40 (\pm 3) nm calibrated at 1000 shots (Figure S1 (b)) was further reduced to the $\sim 20 (\pm 3)$ nm when the deposition was carried out at 500 shots. However, at a deposition rate of 100 shots, the thickness of MoS_2 layer over Si substrate was not clearly distinguishable in FESEM. Therefore, from the calibration of 1000 and 500 shots, it has unanimously been considered that the \sim 4 (± 2 nm) nm thick layers of MoS₂ might have produced over Si substrate at the deposition of 100 shots. After these calibrations, 2D MoS₂ layers of ~40 (\pm 3), 20 (\pm 3) and 4 (\pm 2) nm were subjected over 1D β -TiO₂ nanorods at their optimized conditions. Figure S1 (c) shows a cross-sectional view of the ~40 (± 3) nm thick MoS₂ loaded 1D β -TiO₂ nanorods. The 2D MoS₂ layers are formed along the textural boundaries of 1D β -TiO₂ nanorods to fill up the gaps present in between the 1D nanorods (observed in Figure 1(a)). The dense film of 2D MoS₂(α)1D β -TiO₂ nanorods was observed.

(B) Raman analysis of MoS₂@TiO₂

Raman spectroscopic analysis was employed to study the structural properties of the large area array of 2D MoS₂@1D β -TiO₂ nanorods. Figure S2 shows the Raman spectra for the array of 1D β -TiO₂ nanorods loaded with 40 nm thick layer of 2D MoS₂. There were three Raman bands observed at 218.6, 380.0 and 406.28 cm⁻¹. The existence of the brookite TiO₂ phase is confirmed from the peak observed at 218.6 cm⁻¹, which is assigned to the B_{1g} mode of brookite phase with the space group of D¹⁵_{2h} (Pbca) in previous Raman studies of pristine TiO₂ thin films and nanoparticles.¹⁻³ Furthermore, no peak observed at 513 cm⁻¹ assigned to the anatase phase confirm the formation 1D TiO₂ nanorods of pure brookite phase.⁴ The appearance of two prominent peaks at 380 and 406.28 cm⁻¹ corresponds to the in-plane E_{2g} and out-of-plane A_{1g} vibration modes, respectively, of the 2D MoS₂.⁵⁻⁷ The peak frequency difference (Δk) of 26.28 cm⁻¹ observed between E_{2g} and A_{1g} confirm the single crystalline multilayer MoS₂ formation over 1D TiO₂ nanorods. These observations are akin to the results for single crystalline monolayer and multilayer of MoS₂ over a sapphire substrate⁶ and MoS₂ multilayers exfoliated with various organolithium compounds.⁷ This confirms that the 40 nm thick layer of 2D has been loaded over 1D TiO₂ nanorods to form nano-hetero-architecture of 2D MoS₂@1D β -TiO₂ nanorods.

Figure S2. Raman spectrum of the large area array of 2D MoS₂@1D β -TiO₂ nanorods with 40 nm layer of MoS₂.

(C) XPS Analysis:

Figure S3. The deconvoluted XPS spectra of Mo (3*d*) core levels of (a) ~ 20 nm and (b) ~ 40 nm thick MoS₂ loaded β -TiO₂ nanorods. The XPS spectra are deconvoluted *via* Voigt curve function fitting.

Figure S4. The deconvoluted XPS spectra of S (2*p*) core levels of (a) ~ 20 nm and (b) ~ 40 nm thick MoS₂ loaded β -TiO₂ nanorods. The XPS spectra are deconvoluted *via* Voigt curve function fitting.

(D) Field Emission of pure 2D MoS₂:

FE measurements on 40 nm thick layer of pristine 2D MoS₂ (\equiv 2D MoS₂/Si) were performed in a planar diode configuration. The macroscopic area of the emitting device was ~0.30 cm², and values of the anode-cathode separation used were akin to that of pristine β -TiO₂ nanorods i.e. 1000, 1500 and 2000 µm. The variation in the macroscopic electron emission current density (*J*) as a function of applied electric field (*E*) shown in Figure S5(a). The emission

current increased rapidly with the gradual increase in applied voltage. The larger emission current density of ~ 30, 22 and 19 μ A/cm² was drawn at an applied field of 8.4, 6 and 4.6 V/ μ m, respectively with an increasing anode-cathode separation from 1000 to 2000 µm. Moreover, the turn-on (E_{on}) field required to extract emission current density of 10 μ A/cm² was decreased steadily from 7.2 to 4.3 V/µm with an increase in the separation from 500 to 2000 µm. These values of Eon are lower than that reported for 3D MoS2 nanoflowers (4.5-5.5 V/µm) synthesized by reducing MoO₂ thin films in the sulfur atmosphere.⁸ Figure S5(b) shows the F-N plot for 2D MoS₂/Si emitter at various separations between anode and cathode. The increase in the separation between cathode and anode commenced for variation in field enhancement factor. The values of β are estimated to be 3905, 4389, 3352, and 1476 for the cathode-anode separations of 1000, 1500 and 2000 μ m, respectively. The viability of the field enhancement factor ($\beta_{\rm FE}$) of 2D MoS₂/Si emitters was confirmed from orthodoxy text performed using spreadsheet provided by Forbes. [49*] The scaled-barrier-field (f) values obtained for all cathode-anode separations in 2D MoS₂/Si emitters are shown in Table ST1. The emission situation was found orthodox in all cathode-anode separations for both the lower (f_{low}) and highest (f_{high}) scaled-barrier-field values.

Table ST1: The Scaled-barrier-field (f) values evaluated from F-N plots for 40 (\pm 3 nm) MoS₂/Si emitters obtained using spreadsheet provided in the reference [49]*. Single asterisk on f_{high} values indicates the apparently reasonable values (i.e. $f_{\text{high}} < 0.75$).

Separation (µm)	$f_{\rm low}$	f_{high}	Orthodoxy test result
1000	0.32	0.68	Pass
1500	0.25	0.43	Pass
2000	0.21	0.32	Pass

Figure S5. Field emission (a) J-E curves of a large area array of 40 (\pm 3) nm thick layers of pristine 2D MoS₂ (\equiv 2D MoS₂/Si) measured at various vacuum separation (i.e. 1000, 1500, and 2000 µm), and their corresponding (b) F-N plots indicating the emission current.

Table ST2. Comparison of the MoS_2/β -TiO ₂ /Si	emitters with the existing Field emitters utilizing
pristine metal oxides and their composites.	

G		Turn-on field (E_{on})		Threshold field (E_{thr})			D.C
Sr. No	Materials	Observed	Defined	Observed	Defined	Orthodoxy Test	Ref
1.00.		V/µm	μ A/cm ²	V/µm	μ A/cm ²		·
1.	2D MoS ₂ @1D β -TiO ₂ nanorods	2.5	10	3.6	100	Pass	
2.	MoS ₂ protrusions	2.8	10	-	-	Not performed	⁴⁸ *
3.	MoS ₂ sheets	3.5	10	-	-	Not performed	19 *
4.	C doped TiO ₂ nanotubes	5.0	10	-	-	Not performed	¹⁴ *
5.	Fe doped TiO ₂ nanotubes	12	10			Not performed	¹³ *
6.	3.88 % N doped TiO ₂ nanotubes	10	> 33	11.76	1000	Not performed	⁶ *
7.	4.12 % N doped TiO ₂ nanotubes	9.21	> 33	14.61	1000	Not performed	⁶ *
8.	4.74 % N doped TiO ₂ nanotubes	6.54	> 33	20.43	1000	Not performed	⁶ *
9.	TiO_2 -based TiO_2 @MoS ₂ composites (flower like spheres)	3.1 - 2.5	01	7.2 - 4.5	100	Not performed	²³ *
10.	MoS_2 -based MoS_2 @TiO ₂ composites (hierarchical spheres)	4 - 2.2	01	6.1 - 3.6	100	Not performed	23 *
11.	TiO ₂ nanorods	14	10	20	100	Not performed	24 *
12.	MoS ₂ @TiO ₂ nanorods heterostructure	11	10	17	100	Not performed	24 *
13.	MoS ₂ nanoflowers	3.65	10	9.03	1000	Not performed	20 *
14.	MoS ₂ @ZnO heterojunctions	3.08	10	6.9	1000	Not performed	20 *
15.	MoS ₂ nanoflowers	4.2	01	6.2	100	Not performed	²¹ *
16.	MoS ₂ @SnO ₂ hetero-nanoflowers	3.4	01	5.2	100	Not performed	21 *

* References are cited in the main text of the manuscript

References

- Iliev, M. N.; Hadjiev, V. G.; Litvinchuk, A. P., Raman and infrared spectra of brookite (TiO²): Experiment and theory. *Vib. Spectrosc.*, **2013**, *64*, 148–152.
- Pan, H.; Qiu, X. F.; Ivanov, I. N.; Meyer, H. M.; Wang, W.; Zhu, W. G.; Paranthaman, M. P.; Zhang, Z.; Eres, G.; Gu, B. H., Fabrication and characterization of brookiterich, visible light-active TiO2 films for water splitting. *Appl. Catal. B: Environm.*, 2009, 93, 90–95.

- Hu, Y.; Tsai, H. L.; Huang, C. L., Effect of Brookite Phase on the Anatase-Rutile Transition in Titania Nanoparticles. *J. Eur. Ceram. Soc.*, 2003, 23, 691–696.
- Hu, W. B.; Li, L. P.; Li, G. S.; Tang, C. L.; Sun, L., High-Quality Brookite TiO₂ Flowers: Synthesis, Characterization, and Dielectric Performance. *Cryst. Growth Des.*, 2009, *9*, 3676–3682.
- King, L. A.; Zhao, W. J.; Chhowalla, M.; Jason Riley, D.; Eda, G.; Photoelectrochemical properties of chemically exfoliated MoS₂. J. Mater. Chem. A, 2013, 1, 8935-8941.
- Lan, F. F.; Lai, Z. P.; Yan, R.; Xu, Y. K.; Cheng, H. J.; Zhang, S.; Chen, J.; Jia, Z. Y.; Wang, Z.; Qi, C. J., Epitaxial Growth of Single-Crystalline Monolayer MoS₂ by Two-Step Method. *ECS Solid State Lett.*, **2015**, *4*, P19-P21.
- Ambrosi, A.; Sofer, Z.; Pumera, M., Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS₂. *Small*, 2015, *11*, 605-612.
- Li, Y. B.; Bando, Y.; Golberg, D., MoS₂ nanoflowers and their field-emission properties. *Appl. Phys. Lett.*, 2003, 82, 1962-1964.