Table of Contents

SI-1

Mechanistic Study of SmI₂/H₂O and SmI₂/Amine/H₂O-Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals

Syed R. Huq, Shicheng Shi, Ray Diao and Michal Szostak*

Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States

michal.szostak@rutgers.edu

Supporting Information

- 100-00 0-0-00 0-00 0-00 0-00 0-00 0-0	
Summary of Relative Rates	SI-2
¹ H and ¹³ C NMR Spectra	SI-5
Corresponding Author:	
Prof. Dr. Michal Szostak	
E-mail: michal.szostak@rutgers.edu	
Department of Chemistry, Rutgers University	
73 Warren Street, Newark, NJ 07102, United States	

Chart SI-1. Electronic Influence on the Relative Rates in the Reduction of Primary Amides using SmI₂–H₂O.^a

entry	X	$k_{ m X}/k_{ m H}^a$	$\log(k_{\rm X}/k_{\rm H})$	Hammett σ constant
1	MeO	0.04	-1.35	-0.27
2	CF_3	60.7	1.78	0.54
3	F	0.64	-0.20	0.06
4	Cl	7.57	0.88	0.23
5	H	1	О	0

^aRelative reactivity values determined from product distribution by ¹H NMR and/or GC of crude reaction mixtures. Relative reactivity rates were obtained by intermolecular competition experiments using concentrations of starting materials. $k_{\rm rel}$ were determined by the following equation: $k_{\rm rel} = \ln(1/\% {\rm SM_A})/\ln(1/\% {\rm SM_B})$. Intermolecular competition experiments were carried out using an equimolar ratio of the parent amide and the 4-substituted amide.

Chart SI-2. Electronic Influence on the Relative Rates in the Reduction of Secondary Amides using SmI₂–H₂O.^a

entry	X	$k_{ m X}/k_{ m H}^a$	$\log(k_{\rm X}/k_{\rm H})$	Hammett σ constant
1	MeO	0.02	-1.74	-0.27
2	CF_3	67.0	1.83	0.54
3	F	0.32	-0.50	0.06
4	Cl	5.43	0.74	0.23
5	H	1	О	0

^aSee Chart SI-1.

Chart SI-3. Electronic Influence on the Relative Rates in the Reduction of Tertiary Amides using SmI₂–H₂O.^a

entry	X	$k_{ m X}/k_{ m H}^a$	$\log(k_{\rm X}/k_{\rm H})$	Hammett σ constant
1	MeO	0.08	-1.12	-0.27
2	CF_3	67.0	1.83	0.54
3	F	0.55	-0.26	0.06
4	Cl	6.75	0.83	0.23
5	Н	1	0	0

^aSee Chart SI-1.

Chart SI-4. Electronic Influence on the Relative Rates in the Reduction of Primary Amides using SmI₂–Et₃N–H₂O.^a

entry	X	$k_{ m X}/k_{ m H}{}^a$	$\log(k_{\mathrm{X}}/k_{\mathrm{H}})$	Hammett σ constant
1	MeO	0.24	-0.62	-0.27
2	CF_3	4.84	0.69	0.54
3	F	1.05	0.02	0.06
4	Cl	nd	nd	0.23
5	Н	1	0	0

^aSee Chart SI-1. nd = not determined, dearomatization of the aromatic ring was observed.

Chart SI-5. Electronic Influence on the Relative Rates in the Reduction of Secondary Amides using SmI₂–Et₃N–H₂O.^a

entry	X	$k_{ m X}/k_{ m H}^a$	$\log(k_{\rm X}/k_{\rm H})$	Hammett σ constant
1	MeO	0.12	-0.93	-0.27
2	CF_3	67.0	1.83	0.54
3	F	0.63	-0.20	0.06
4	Cl	7.57	0.88	0.23
5	Н	1	0	0

^aSee Chart SI-1.

Chart SI-6. Electronic Influence on the Relative Rates in the Reduction of Tertiary Amides using SmI₂–Et₃N–H₂O.^a

entry	X	$k_{ m X}/k_{ m H}^a$	$\log(k_{\rm X}/k_{\rm H})$	Hammett σ constant
1	MeO	0.17	-0.79	-0.27
2	CF_3	41.0	1.61	0.54
3	F	0.69	-0.16	0.06
4	Cl	3.24	0.51	0.23
5	Н	1	0	0

^aSee Chart SI-1.

