Supporting Information for

Enantioselective Cycloaddition of Styrenes with Aldimines
 Catalyzed by a Chiral Magnesium Potassium Binaphthyldisulfonate Cluster as a Chiral Brønsted Acid Catalyst

Manabu Hatano, Keisuke Nishikawa, and Kazuaki Ishihara*

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan.
ishihara@cc.nagoya-u.ac.jp

1. General methods. S3
2. Preparation of $(R)-3,3^{\prime}-\mathrm{Ar}_{2}$-BINSAs. S4
3. General procedure for the catalytic enantioselective cycloaddition of styrenes with aldimines (Schemes 1 and 2). S5
4. Screening of $(R)-3,3-\mathrm{Ar}_{2}$-BINSAs $\mathbf{1}$ in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$. S7
5. Screening of solvents in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$. S8
6. Screening of metal salts in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$. S9
7. Screening of reaction temperature and molecular sieves in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$. S10
8. Screening of other aldimines. S14
9. Products in Scheme 1. S15
10. Products in Scheme 2. S22
11. Product from α-methylstyrene 9 in Eq. 2. S27
12. Reaction of β-methylstyrene $\mathbf{1 1}$ for the mechanistic insights (Eq. 3). S28
13. Product from indene $\mathbf{1 3}$ in Eq. 4. S32
14. Transformation to 1,3-amino alcohols 16 (Scheme 3, Eqs. 5 and 6). S33
15. Transformation to bioactive compound 21 (Scheme 3, Eq. 7). S36
16. ${ }^{1} \mathrm{H}$ NMR analysis of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ complexes. S39
17. ESI-MS analysis of a $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$. S41
18. X-ray analysis of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ complexes. S44
19. Control experiments with the use of various $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ complexes. S48
20. Kinetics study. S50
21. Control experiments with the use of catalysts and additives (Eqs. 9 and 10). S57
22. Control experiments with the use of achiral Brønsted acids and Lewis acids. S60
23. Control experiments with the use of chiral Brønsted acids. S61
24. Re-investigation of our previous works. S63
25. Additional mechanistic consideration. S66
26. References. S67Appendix A: HPLC spectra.Appendix B: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

1. General methods.

${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL ECS400 (400 MHz) spectrometer at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity ($\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br $=$ broad), coupling constant (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS400 (100 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.00 ppm). ${ }^{19} \mathrm{~F}$ NMR spectra were measured on a JEOL ECS-400 (376 MHz) spectrometer. Chemical shifts were recorded in ppm from the solvent resonance employed as the external standard $\left(\mathrm{CFCl}_{3}\right.$ at 0 ppm$)$. Optical rotations were measured on Rudolph Autopol IV digital polarimeter. The products were purified by column chromatography on silica gel (E. Merck Art. 9385; Kanto Chemical Co., Inc. 37560). High resolution mass spectral analyses were performed at Chemical Instrument Center, Nagoya University (JEOL JMS-700 (FAB), Bruker Daltonics micrOTOF-QII (ESI)). Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ICP-OES analysis was performed with Varian Vista-Pro-AX. For ICP-OES analysis, ultrapure grade nitric acid, methanol, and water were used. High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-M20A and chiral column of Daicel CHIRALCEL, CHIRALPAK; AD-H, AD-3, OD-3, and IA-3. X-ray analysis was performed by Rigaku PILATUS-200K. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60GF254 0.25 mm) were used. Visualization was accomplished by UV light (254 nm), anisaldehyde, KMnO_{4}, and phosphomolybdic acid. Dichloroethane and dichloromethane were freshly distilled in prior to use. Other dry solvents such as acetonitrile, toluene, diethyl ether, DMSO, THF, etc. were purchased and used without further treatment.

2. Preparation of $(R)-3,3$ ' $-\mathrm{Ar}_{2}$-BINSAs.

(R)-3,3'-Di(4-tert-butylphenyl)-(1,1'-binaphthyl)-2,2'-disulfonic acid ((R)-1a): The titled compound was prepared according to our reported procedure. ${ }^{1}$ Pale brown soild. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.39(\mathrm{~s}, 18 \mathrm{H}), 7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.49 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 31.9$ (6C), 35.3 (2C), 124.9 (4C), 127.6 (2C), 128.6 (2C), 128.7 (2C), 129.1 (2C), 130.7 (4C), 133.1 (2C), 134.0 (2C), 134.6 (2C), 138.3 (2C), 138.7 (2C), 140.1 (2C), 141.3 (2C). 150.3 (2C). IR (KBr) 3421, 2962, 1698, 1511, 1363, 1165, 1095, $1033 \mathrm{~cm}^{-1}$. M.p. 171-174 ${ }^{\circ} \mathrm{C}$ (decomposition). $\quad[\alpha]_{\mathrm{D}}{ }^{26}=+66.8(c 1.0, \mathrm{MeOH},(R)) . \quad$ HRMS (FAB-) calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]^{-}$677.2032, found 677.2024.

(\boldsymbol{R})-3,3'-Di(4-biphenyl)-(1,1'-binaphthyl)-2,2'-disulfonic acid ((R)-1b): ${ }^{1}$ The titled compound was prepared in our report. ${ }^{1}$ Pale brown soild. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.10(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 8 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ Many peaks overlapped. $\delta 126.5,127.7,127.9,128.1,128.7,128.8,129.1$, $129.8,131.6,132.9,134.1,134.6,138.5,138.7,139.7,140.6,142.4,143.3$. IR (KBr) 3382, 1697, 1486, 1220, 1164, $1033 \mathrm{~cm}^{-1}$. M.p. $220-224^{\circ} \mathrm{C}$ (decomposition). $\quad[\alpha]_{\mathrm{D}}{ }^{27}=+17.2(c 1.0, \mathrm{MeOH}$, (R)). HRMS (FAB-) calcd for $\mathrm{C}_{44} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]^{-} 717.1406$, found 717.1391.

3. General procedure for the catalytic enantioselective cycloaddition of styrenes with aldimines (Schemes 1 and 2).

(R)-1a ($13.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane $(2 \mathrm{~mL})$. To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of $(R) \mathbf{- 1 a}$ was obtained in situ as pale yellow solid. Then dichloroethane (20 mL) and well-activated MS $3 \AA(50 \mathrm{mg})$ were added at $0^{\circ} \mathrm{C}$, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Styrene $\mathbf{3}(4.0 \mathrm{mmol})$ was then added to the suspension, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Aldimine $\mathbf{2}^{2}(0.20 \mathrm{mmol})$, which was dissolved in dichloroethane (2 mL) in advance when $\mathbf{2}$ is solid, was then added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for $5-20 \mathrm{~h}$. The resulting reaction mixture was quenched with triethylamine $(0.2$ mL) at $0^{\circ} \mathrm{C}$, and filtered through a pad of Celite. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane:EtOAc $=5: 1$ to $1: 15$) to give the desired product 4. (R)-1a was recovered (ca. 90-95\%) through the same chromatography using chloroform/methanol. The enantiomeric purity of $\mathbf{4}$ was determined by chiral HPLC analysis.

(4S,6R)-4,6-Diphenyl-1,3-oxazinan-2-one (syn-4a): $:^{3-5} \quad 91 \%$ yield (5 h), syn:anti $=>99:<1,96 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07(\mathrm{dt}, J=14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dm, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{br}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=11.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.48(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.2,55.7,78.5,125.8$ (2C), 126.1 (2C), 128.6 (4C), 129.1 (2C), 138.5, 140.5, 154.3. IR (KBr) 3211, 3107, 2924, 1699, 1455, 1404, 1305, 1285, 1148, $1058 \mathrm{~cm}^{-1}$. M.p. $187-188{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{25}=19.6\left(c 1.00, \mathrm{CHCl}_{3}, 96 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{nmm} t_{\mathrm{R}}=9.9 \mathrm{~min}$ (major, $4 S, 6 R$), 18.6 min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$254.1181, found
254.1181. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.78(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ syn $)$), $4.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}$ (anti)), syn:anti $=75: 25$.

(4S,6S)-4,6-Diphenyl-1,3-oxazinan-2-one (anti-4a): ${ }^{4}$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR was consistent with previously reported values. ${ }^{4}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dm}, 1 \mathrm{H}), 4.64$ $(\mathrm{m}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{br}, 1 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 10 \mathrm{H})$.

tert-Butyl (((4S,6R)-2-0xo-4,6-diphenyl-1,3-oxazinan-3-yl)(phenyl)methyl)carbamate (5a): A single diastereomer was obtained, although the stereochemistry was unknown. Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.36-2.51(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{dd}, J=10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.39(\mathrm{dd}, J=10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.45(\mathrm{~m}$, $15 \mathrm{H}) . \quad{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4$ (3C), 40.1, 63.0, 68.0, 77.8, 80.2, 125.8 (3C), 126.8 (2C), 127.5, 127.9 (2C), 128.2 (2C), 128.7, 128.8 (2C), 129.0 (2C), 138.0, 138.5 (2C), 153.5, 155.7. LRMS (FAB+) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 459$, found 459.

To confirm the stereochemistry, compound 5a was transformed into syn-4a through the hydrolysis with HCl in 86% yield as below.

6,6-Dimethyl-4-phenyl-1,3-oxazinan-2-one (6a): ${ }^{5}$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR was consistent with previously reported values. ${ }^{6} \quad{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.83$ (dd, $J=13.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{br}, 1 \mathrm{H}), 7.31-7.47$
(m, 5H).

Di-tert-butyl (phenylmethylene)dicarbamate (7a): ${ }^{7}$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR was consistent with previously reported values. ${ }^{7} \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 18 \mathrm{H}), 5.55(\mathrm{br}, 1 \mathrm{H})$, 6.07-6.11 (m, 1H), 7.29-7.42 (m, 5H).

4. Screening of $(R)-3,3-\mathrm{Ar}_{2}$-BINSAs 1 in the probe reaction of 3a with 2 a .

Table S 1 summarizes the screening of $(R)-3,3-\mathrm{Ar}_{2}-\mathrm{BINSAs} \mathbf{1}$ for the cluster catalyst ($3.3 \mathrm{~mol} \%$) in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$. The catalyst derived from $(R) \mathbf{- 1 b}$ (entry 4) was slightly less effective than the optimized catalyst derived from (R)-1a (entry 1). The catalysts derived from $(R) \mathbf{- 1 c},(R)-\mathbf{1 d}$, and $(R)-\mathbf{1 e}$ showed almost no catalytic activities (entries 5-7). Steric hindrance of $(R)-1 \mathbf{c}$ might make it difficult to generate the possible cluster catalyst (entry 5). Less sterically hindered $(R) \mathbf{- 1 d}$ might not be effective for stabilizing the corresponding cluster catalyst (entry 6). The low solubility of the catalyst derived from $(R)-1 \mathbf{e}$ might be a possible reason for the low

Table S1. Screening of $(R)-3,3-\operatorname{Ar}_{2}-\operatorname{BINSAs}(1) .{ }^{a}$

[^0]catalytic activity (entry 7). When styrene 3a was reduced to 2 mmol (i.e., 10 equiv), the yield was decreased (63%) although enantioselectivity was almost the same (93% ee) (entry 2). When the catalytic amount was reduced to $1.7 \mathrm{~mol} \%$, both the yield and enantioselectivity were decreased (63% yield, 89% ee) (entry 3). Overall, at least in this probe reaction of 2a and 3a, 20 equiv of $\mathbf{3 a}$ and $3.3 \mathrm{~mol} \%$ of the catalyst were necessary. Also see, Eq. 7 in the paper with the use of 4-methylstyrene $\mathbf{3 b}$, where 2 equiv of $\mathbf{3 b}$ and $1.7 \mathrm{~mol} \%$ of catalyst could be used. Therefore, the loading amounts of catalyst and styrene would strongly depend on the reactivity of styrene.

5. Screening of solvents in the probe reaction of 3a with 2a.

Table S2 summarizes the screening of solvents, such as chloroform, dichloromethane, dichloroethane, toluene, diethyl ether, and acetonitrile in the probe reaction of 3a with 2a. As a result, dichloromethane and dichloroethane were much more effective than the other solvents. Moreover, dichloroethane was slightly more effective than dichloromethane with respect to the chemical yield of $\mathbf{4 a}$, although the enantioselectivities were the same.

Table S2. Screening of solvents. ${ }^{a}$

${ }^{a}$ The reaction was carried out with $\mathbf{2 a}(0.20 \mathrm{mmol}), \mathbf{3 a}(4 \mathrm{mmol})$ in solvent at $0{ }^{\circ} \mathrm{C}$ for 5 h in the presence of $3.3 \mathrm{~mol} \%$ of the catalyst and MS $3 \AA$.

6. Screening of metal salts in the probe reaction of 3a with 2a.

Screening of alkali metal salts ($10 \mathrm{~mol} \%$) was performed with the combined use of $(R) \mathbf{- 1 a}$ (10 $\mathrm{mol} \%$) and $\mathrm{Mg}(\mathrm{OEt})_{2}$ ($3.3 \mathrm{~mol} \%$) in the probe reaction of 3a with 2a (Table S3, entries $1-4$). $\mathrm{Li}(\mathrm{I})$ and $\mathrm{Cs}(\mathrm{I})$ salts were much less effective than $\mathrm{Na}(\mathrm{I})$ and $\mathrm{K}(\mathrm{I})$ salts (entries 1 and 4). Moreover, $\mathrm{K}(\mathrm{I})$ salt was more effective than $\mathrm{Na}(\mathrm{I})$ salt for syn/anti-selectivity and the enantioselectivity of syn-4a (entries 2 and 4). $\mathrm{Next}, \mathrm{Ca}(\mathrm{II})$ and Zn (II) salts with the combined use of $(R) \mathbf{- 1 a}(10 \mathrm{~mol} \%)$ and $\mathrm{K}(\mathrm{O} t-\mathrm{Bu})_{2}(3.3 \mathrm{~mol} \%)$ were examined in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$ (entries 5 and 6). As a result, both the yields and enantioselectivities of $4 \mathbf{a}$ were low, although these catalysts were soluble under the reaction conditions.

Table S3. Screening of alkali metal salts. ${ }^{a}$

[^1]
7. Screening of the reaction temperature and molecular sieves in the probe reaction of 3 a with $\mathbf{2 a}$.

First, we examined the effect of molecular sieves on the optimized 3:1:3 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ ($3.3 \mathrm{~mol} \%$) in the probe reaction of $\mathbf{3 a}$ with $\mathbf{2 a}$ (Table S4). At $-10^{\circ} \mathrm{C}$, no significant differences were observed between the presence and absence of MS $3 \AA$ (entries 1 and 2). However, at $0{ }^{\circ} \mathrm{C}$, a significant difference in the yield of $\mathbf{4 a}$ was observed between the presence and absence of MS $3 \AA$ (entries 3 and 4); $\mathbf{4 a}$ was obtained in 56% yield with 95% ee in the absence of MS $3 \AA$ (entry 3), whereas $\mathbf{4 a}$ was obtained in 91% yield with 96% ee in the presence of MS $3 \AA$ (entry 4). These results showed that the removal of adventitious water in situ, which would easily decompose $\mathbf{2 a}$ under our acidic reaction conditions, is very important. MS $4 \AA$ and MS $5 \AA$ were slightly less effective than MS $3 \AA$ with respect to the yield, syn/anti-selectivity, and/or enantioselectivity (entries 5 and 6). Next, we conducted the reaction at a higher temperature with the use of MS $3 \AA$. As a result, at $10^{\circ} \mathrm{C}$, the reaction proceeded smoothly, but the yield and enantioselectivity were slightly decreased (entry 7). Interestingly, the reaction did not proceed at $25^{\circ} \mathrm{C}$ (entry 8). In contrast, in the absence of MS $3 \AA$, the reaction proceeded almost smoothly, and $\mathbf{4 a}$ was obtained in 75% yield with 88% ee (entry 9). These results in entries 8 and 9 may be due to the leaching of alkali metal ions from MS $3 \AA$ at $25^{\circ} \mathrm{C}$, since MS $3 \AA$ is $\mathbf{K}_{2} \mathbf{N a}_{3}\left[\left(\mathrm{AlO}_{2}\right)_{12}\left(\mathrm{SiO}_{2}\right)_{12}\right]$. Probably, ion-exchange between H^{+}of the catalyst and K^{+}(or Na^{+}) of MS $3 \AA$ would generate inactive species in situ, like the complexes in the X-ray analysis (entry 8).

Table S4. Screening of reaction temperature and molecular sieves. ${ }^{a}$
(R)-1a ($10 \mathrm{~mol} \%$)

		$(R)-\mathbf{1 a}(10$ $\mathrm{Mg}(\mathrm{OEt})_{2}(3$ $\mathrm{KOt}-\mathrm{Bu}(10$ $\mathrm{ClCH}_{2} \mathrm{CH}_{2}$ temperature $(-$ molecular	mol\%) $\mathrm{mol} \%$) mol\%) l, 5 h $0 \sim 25^{\circ} \mathrm{C}$) ieves		
entry	molecular sieves	temperature (${ }^{\circ} \mathrm{C}$)	yield (\%)	syn-4a:anti-4a	ee (\%) of syn-4a
1	-	-10	36	>99:<1	94
2	MS 3Å	-10	38	$>99:<1$	94
3	-	0	56	$>99:<1$	95
4	MS 3i̊	0	91	$>99:<1$	96
5	MS 4A	0	84	$>99:<1$	95
6	MS 5A	0	89	96:4	86
7	MS 3Å	10	89	$>99:<1$	93
8	MS 3Å	25	0	-	-
9	-	25	75	95:5	88

${ }^{a}$ The reaction was carried out with 2a $(0.20 \mathrm{mmol})$, 3a (4 mmol) in dichloroethane at -10 to $25{ }^{\circ} \mathrm{C}$ for 5 h in thepresence of $3.3 \mathrm{~mol} \%$ of the catalyst and in the presence or absence of molecular sieves.

Note that MS $4 \AA$ is $\mathbf{N a}_{12}\left[\left(\mathrm{AlO}_{2}\right)_{12}\left(\mathrm{SiO}_{2}\right)_{12}\right]$ and MS $5 \AA$ is $\mathrm{Ca}_{4.5} \mathbf{N a}_{3}\left[\left(\mathrm{AlO}_{2}\right)_{12}\left(\mathrm{SiO}_{2}\right)_{12}\right]$. Based on the screening of $\mathrm{K}(\mathrm{I}), \mathrm{Na}(\mathrm{I}), \mathrm{Mg}(\mathrm{II})$, and $\mathrm{Ca}(\mathrm{II})$ in Table S3, the combined use of $\mathrm{K}(\mathrm{I})$ and $\operatorname{Mg}(\mathrm{II})$ gave better results than other combinations. Therefore, the use of MS $3 \AA$, $\mathbf{K}_{9} \mathrm{Na}_{3}\left[\left(\mathrm{AlO}_{2}\right)_{12}\left(\mathrm{SiO}_{2}\right)_{12}\right]$, might be reasonable since only $\mathrm{MS} 3 \AA$ involves mainly K^{+}ions. Undesired ion-exchange between K^{+}of the catalyst and Na^{+}(or Ca^{2+}) of MS $4 \AA$ or MS $5 \AA$ might generate less active catalysts, such as a 3:1:4 complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}(\mathrm{Na})$.

We further examined the effect of MS $3 \AA$ on catalysts in terms of drying ability as well as K^{+} (or Na^{+}) leaching ability (Table S5). In the presence of MS $3 \AA$, the yields were generally improved due to the removal of water, although the product ratio of syn-4a and anti-4a was not essentially influenced (entries 2, 4, 6, 8, and 10). Moreover, in some cases, the enantioselectivities were also improved (entries 5 vs. 6 and 7 vs. 8). For example, with the use of a 2:1 complex of $(R)-1 a / M g$, the product was obtained in 90% yield with 78% ee in the presence of MS $3 \AA$ (entry 6), whereas the product was obtained in 73% yield with 48% ee in the absence of $M S$ $3 \AA$ (entry 5). In contrast, with the use of a 3:1:3 complex of $(R)-1 a / M g / K$, the enantioselectivities were essentially the same $(95-96 \%$ ee) in either the presence or absence of $M S 3 A$, although the yields were significantly improved (entries 9 and 10). These improved enantioselectivities might

Table S5. Effect of molecular sieves (MS 3Å) to catalysts. ${ }^{a}$

			$\begin{array}{r} (R)-1 \mathrm{a} \\ \mathrm{Mg}(\mathrm{OEt})_{2} \\ \mathrm{KOt} \mathrm{Bu}(\end{array}$	$\begin{aligned} & 0 \mathrm{~mol} \%) \\ & .3-5 \mathrm{~mol} \%) \\ & -10 \mathrm{~mol} \%) \end{aligned}$ l, $0^{\circ} \mathrm{C}, 5 \mathrm{~h}$ out MS 3Å			Ph
entry	$\begin{gathered} \mathrm{Mg}^{2+} \\ \left(\mathrm{mol}^{2+}\right) \end{gathered}$	$\begin{gathered} \mathrm{K}^{+} \\ (\mathrm{mol} \%) \end{gathered}$	(R)-1a:Mg:K (Initial ratio)	MS 3A	yield (\%)	syn-4a:anti-4a	$\begin{gathered} \text { ee (\%) of } \\ \text { syn-4a } \end{gathered}$
1	0	0	1:0:0	without	52	76:24	-4
2	0	0	1:0:0	with	69	80:20	-2
3	0	10	1:0:1	without	57	91:9	4
4	0	10	1:0:1	with	81	76:24	-2
5	5	0	2:1:0	without	73	92:8	48
6	5	0	2:1:0	with	90	94:6	78
7	5	5	2:1:1	without	65	>99:<1	82
8	5	5	2:1:1	with	83	95:5	89
9	3.3	10	3:1:3	without	56	>99:<1	95
10	3.3	10	3:1:3	with	91	$>99:<1$	96

[^2]
Table S5 (Continued).

entries 3 and 4

entries 5 and 6

entries 7 and 8

entries 9 and 10

For these complexes shown, the positions of H^{+}and K^{+}ions were not determined.
be due to the leaching of alkali ions from MS $3 \AA\left(\mathbf{K}_{9} \mathbf{N a}_{3}\left[\left(\mathrm{AlO}_{2}\right)_{12}\left(\mathrm{SiO}_{2}\right)_{12}\right]\right)$. Accordingly, some 'undesired' or 'unoptimized' catalysts might change to 'desired' or optimized' catalysts in situ in the presence of MS $3 \AA$. To confirm whether or not leaching really occurred, a trace element analysis was conducted by ICP-OES for the representative catalysts in entries 5, 6, 9, and 10 in Table S5. As a result, the value of K^{+}increased when $M S 3 A$ was used for a $2: 1$ complex of (R)-1a/Mg (Table S6, entry 1 vs. entry 2). In contrast, there was little, if any, change in the value of K^{+}when $M S 3 \AA$ was used for a 3:1:3 complex of $(R)-1 a / M g / K$ (Table S6, entry 3 vs. entry 4).

Table S6. Trace element analysis by ICP-OES (Inductively coupled plasma-optical emission spectroscopy) ${ }^{a}$

entry	Corresponding batch	$(R)-\mathbf{1 a : M g : K}$ (Initial ratio)	MS 3 \AA	K^{+}	Na^{+}	Mg^{2+}	Ca^{2+}
1	Table S5, entry 5	$2: 1: 0$	without	$\mathbf{0 . 5}$	1.1	40.1	1.0
2	Table S5, entry 6	$2: 1: 0$	with	$\mathbf{9 . 6}$	1.3	38.5	1.0
3	Table S5, entry 9	$3: 1: 3$	without	$\mathbf{6 3 . 1}$	2.0	29.4	0.4
4	Table S5, entry 10	$3: 1: 3$	with	$\mathbf{6 7 . 7}$	2.4	29.3	0.4

${ }^{a}$ Values in ppm (mg/L).

Overall, these results in Table S6 suggest that K^{+}ion, unlike Na^{+}ion, would be selectively leached from MS $3 \AA$. As a result, a $2: 1$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg}$ would incorporate K^{+}ion and release H^{+}. Thus, 'undesired' catalysts, which do not originally contain K^{+}, might occasionally incorporate K^{+}leached due to the effect of MS $3 \AA$ to spontaneously generate 'desired' catalysts.

Conclusion: The optimum 3:1:3 complex of $(R)-1 \mathrm{a} / \mathrm{Mg} / \mathrm{K}$ would not be further affected by MS $3 \AA$ in terms of the leaching of K^{+}ion under the standard reaction conditions (Table S6, entry 3 vs entry 4). Thus, we can ignore the ion-leaching effect of MS $3 \AA \AA$ under the standard (optimized) reaction conditions.

Sample preparation for ICP-OES: $(R) \mathbf{- 1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$ was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane (2 mL). To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}$) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}$) and at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of (R) - $\mathbf{1 a}$ was obtained in situ as pale yellow solid.
[With MS 3 \AA] Then, dichloroethane $(20 \mathrm{~mL})$ and well-activated MS $3 \AA(50 \mathrm{mg})$ were added at $0{ }^{\circ} \mathrm{C}$, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \quad 14.7 \mathrm{~mL}$ of the resulting mixture passed through a membrane filter (200 mm mesh) to remove MS $3 \AA$, and the volatile was removed from the filtrate in vacuo.
[Without MS 3A] Then, dichloroethane (20 mL) was added at $0^{\circ} \mathrm{C}$, and the solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . $\quad 14.7 \mathrm{~mL}$ of the resulting mixture passed through a membrane filter (200 mm mesh), and the volatile was removed from the filtrate in vacuo.

The resulting solid was diluted with methanol $(0.5 \mathrm{~mL})$ and $1 \% \mathrm{HNO}_{3}$ aqueous solution $(9.5$ mL), and passed through a membrane filter (200 mm mesh) just before ICP-OES mesurement (final concentration: ca. $1000 \mathrm{mg} / \mathrm{L}$ for (R)-1a). Calibration was executed by using a commercially available ICP standard solution including $\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$ ions (each $100 \mathrm{mg} / \mathrm{L}$ in $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$). The analytical results are shown in Table S6. Data was collected as a semi-quantitative method. Therefore, the values are almost qualitative, and absolute values between different ions cannot be evaluated.

8. Screening of other aldimines.

Some other aldimines were examined. Instead of N-Boc aldimine $\mathbf{2 a}$ (Eq. S1), N-Cbz aldimine S1 and N-Ts aldimine $\mathbf{S 3}$ were used under our optimized reaction conditions (Eqs. S2 and S3). As a result, the corresponding desired products were not obtained in either case. Next, N - Bz aldimine $\mathbf{S 5}$ was used (Eq. S4). However, the yield of the corresponding product $\mathbf{S 6}$ was low (3\% yield). Moreover, according to the report by Terada and Momiyama, ${ }^{8}$ we used more reactive N-(3,5-difluorobenzate)aldimine S7 and α-methylstyrene 8a (Eq. S5). As a result, the corresponding product was obtained, but in improved yield (26\%) with 38% ee. Overall, our catalyst system was particularly effective with the use of N-Boc aldimine.

9. Products in Scheme 1.

(4S,6R)-6-Phenyl-4-(o-tolyl)-1,3-oxazinan-2-one (syn-4b): $\quad 80 \%$ yield (5 h), syn:anti $=>99:<1$, 98% ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.00(\mathrm{dt}, J=14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.37-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{br}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=11.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.47$ $(\mathrm{m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.1,37.5,51.9,78.7,125.1$, 126.0 (2C), 127.2, 128.3, 128.7 (3C), 131.0, 134.8, 138.5, 138.6, 154.4. IR (KBr) 3219, 3108, 2934, 1691, 1401, 1301, 1286, 1148, $1051 \mathrm{~cm}^{-1}$. M.p. 201-202 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-19.6$ (c 1.00, $\mathrm{CHCl}_{3}, 98 \%$ ee, $(4 S, 6 R)$). HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}$ $=9.9 \mathrm{~min}($ major, $4 S, 6 R), 14.2 \mathrm{~min}($ minor, $4 R, 6 S)$. $\mathrm{HRMS}\left(\mathrm{FAB}+\right.$) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 268.1338, found 268.1339. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.04(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}($ syn $)$), $4.89(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArCH}-\mathrm{N}($ anti)), syn:anti $=81: 19$.

(4S,6R)-6-Phenyl-4-(\boldsymbol{m}-tolyl)-1,3-oxazinan-2-one (syn-4c): $\quad 98 \%$ yield (5 h), syn:anti $=>99:<1$, 94% ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.06(\mathrm{dt}, J=14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.43(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{br}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=11.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,39.3$, $55.9,78.6,123.2,125.9$ (2C), 126.7, 128.7 (3C), 129.1, 129.5, 138.5, 139.1, 140.5, 154.1. IR (KBr) 3283, 3159, 2929, 1726, 1694, 1455, 1396, 1317, 1303, 1288, 1142, $1048 \mathrm{~cm}^{-1}$. M.p. 215-216 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=+14.0\left(c 1.00, \mathrm{CHCl}_{3}, 94 \%\right.$ ee, $(4 S, 4 R)$). HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=10.3 \mathrm{~min}$ (major, $4 S, 6 R$), 18.7 min (minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$268.1338, found 268.1332. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ (10 mol\%); $\delta 4.73$ (dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}$ (syn)), 4.60 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}$ (anti)), syn:anti $=79: 21$.

(4S,6R)-6-Phenyl-4-(p-tolyl)-1,3-oxazinan-2-one (syn-4d): $\quad 96 \%$ yield (5 h), syn:anti $=>99:<1$, 96% ee $(s y n) . \quad$ Colorless soild. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{dt}, J=14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=11.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2,39.3$, 55.7, 78.6, 125.9 (2C), 126.1 (2C), 128.6, 128.7 (2C), 129.9 (2C), 137.5, 138.6, 138.7, 154.0. IR (KBr) 3272, 3154,2923 , 1726, $1687,1456,1396,1317,1301,1146,1051 \mathrm{~cm}^{-1}$. M.p. 193-194 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=+20.8\left(c \quad 1.00, \mathrm{CHCl}_{3}, 96 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i$ - $\operatorname{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=11.5 \mathrm{~min}$ (major, $4 S, 6 R$), 23.2 min (minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$268.1338, found 268.1332. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$); $\delta 4.73(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}-\mathrm{N}(s y n)), 4.60(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(a n t i))$, syn:anti $=86: 14$

(4S,6R)-6-Phenyl-4-(2-(trifluoromethyl)phenyl)-1,3-oxazinan-2-one (syn-4e): 100\% yield (5 h), syn:anti $=>99:<1,99 \%$ ee $(s y n)$. Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.02(\mathrm{dt}, J$ $=14.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{br}, 1 \mathrm{H})$, $5.46(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.1,51.2,78.3,124.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $273.5 \mathrm{~Hz}), 125.5(2 \mathrm{C}), 126.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5.8 \mathrm{~Hz}\right), 127.6(2 \mathrm{C}), 127.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right), 128.5,128.6$ (2C), 133.0, 138.2, 139.6, 154.5. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.8 . \quad \operatorname{IR}(\mathrm{KBr}) 3411,3273$, $1726,1698,1457,1375,1313,1164,1119,1051,1035 \mathrm{~cm}^{-1}$. M.p. 203-205 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{23}=+13.2$ (c $1.00, \mathrm{CHCl}_{3}, 99 \%$ ee, $(4 S, 6 R)$). HPLC analysis; IA- 3 , n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, t_{\mathrm{R}}=9.6 \mathrm{~min}$ (major, $4 S, 6 R$), 16.7 min (minor, $4 R, 6 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$344.0874, found 344.0849. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.21(\mathrm{dd}, J=11.9,4.6$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 5.04-5.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}-\mathrm{N}($ anti $)$, syn:anti$=71: 29$.

(4S,6R)-4-(2-Bromophenyl)-6-phenyl-1,3-oxazinan-2-one (syn-4f): 98% yield (5 h), syn:anti= $98: 2,97 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.89$ (dt, $J=14.2,11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{br}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=11.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}) . \quad{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.8,54.7,78.4,122.4,126.0(2 \mathrm{C}), 126.8,128.6,128.7$ (3C), 129.9, 133.4, 138.3, 139.5, 154.5. IR (KBr) 3213, 3108, 2937, 1694, 1397, 1301, 1285, 1148, $1053 \mathrm{~cm}^{-1}$. M.p. $181-182^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{27}=-84.0\left(c 1.00, \mathrm{CHCl}_{3}, 97 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i-\operatorname{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=11.8 \mathrm{~min}($ major, $4 S, 6 R), 21.9$ min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{16} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$332.0286, found 332.0292; $\mathrm{C}_{16} \mathrm{H}_{15}{ }^{81} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$334.0266, found 334.0258. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.23(\mathrm{dd}, J=11.5$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 5.07(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}($ anti $)$, syn:anti=73:27.

(4S,6R)-4-(2-Iodophenyl)-6-phenyl-1,3-oxazinan-2-one (syn-4g): 100% yield (5 h), syn:anti= $>99:<1,99 \%$ ee $(s y n)$. Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.85(\mathrm{dt}, J=13.7,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{br}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.0,59.5,78.4,97.7,126.0$ (2C), 126.5, 128.7 (3C), $129.5,130.3,138.3,140.1,142.2,154.5 . \operatorname{IR}(\mathrm{KBr}) 3208,3099,2933,1693,1466,1396,1299$, $1285,1147,1053 \mathrm{~cm}^{-1}$. M.p. $216-217{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{26}=-92.4\left(c 1.00, \mathrm{CHCl}_{3}, 99 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}=12.2 \mathrm{~min}$ (major, $4 S, 6 R$), 20.3 min (minor, $4 R, 6 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 380.0148$, found 380.0155. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.06(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}(s y n)), 4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}$ (anti)), syn:anti = 71:29.

(4S,6R)-4-(3-Chlorophenyl)-6-phenyl-1,3-oxazinan-2-one (syn-4h): 98\% yield (5 h), syn:anti $=98: 2,95 \%$ ee $(s y n) . \quad$ Colorless soild. $\quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{dt}, J=14.2,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=$ $11.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.1$, $55.2,78.4,124.3,125.9$ (2C), 126.4, 128.7 (3C), 128.8, 130.5, 135.0, 138.3, 142.7, 154.3. IR $(\mathrm{KBr}) 3268,3159,2927,1691,1470,1393,1288,1147,1045 \mathrm{~cm}^{-1}$. M.p. 201-202 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{27}=$ +19.6 (c $1.00, \mathrm{CHCl}_{3}, 95 \%$ ee, $(4 S, 6 R)$). HPLC analysis; OD-3, n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}=12.7 \mathrm{~min}$ (minor, $4 R, 6 S$), 16.3 min (major, $4 S, 6 R$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$288.0791, found 288.0790. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.76(\mathrm{dd}, J=11.5,4.6$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 4.62-4.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ anti $)$, syn:anti$=71: 29$.

(4S,6R)-4-(4-Fluorophenyl)-6-phenyl-1,3-oxazinan-2-one (syn-4i): 97\% yield (5 h), syn:anti= $>99:<1,96 \%$ ee $(s y n)$. Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.04(\mathrm{dt}, J=14.2,11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=$ $11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $39.4,55.2,78.5,116.2(\mathrm{~d}, J=21.9 \mathrm{~Hz}, 2 \mathrm{C}), 125.9(2 \mathrm{C}), 127.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{C}), 128.7$ (3C), $136.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 138.4,154.0,162.8(\mathrm{~d}, J=246.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 113.6. IR (KBr) 3244, 3129, 2927, 1699, 1657, 1508, 1396, 1304, 1226, $1058 \mathrm{~cm}^{-1}$. M.p. 183-184 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=+14.8\left(c \quad 1.00, \mathrm{CHCl}_{3}, 96 \%\right.$ ee, $\left.(4 S, 6 R)\right) . \quad$ HPLC analysis; IA-3, n-hexane $/ i$ - $\operatorname{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=11.2 \mathrm{~min}$ (major, $4 S, 6 R$), 17.9 min (minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$272.1087, found 272.1092. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H} \mathrm{NMR}$ analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$); $\delta 4.77(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}-\mathrm{N}(s y n)), 4.62(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(a n t i))$, syn:anti $=88: 12$.

(4S,6R)-4-(4-Bromophenyl)-6-phenyl-1,3-oxazinan-2-one (syn-4j): 98\% yield (5 h), syn:anti= $>99:<1,95 \%$ ee $(s y n)$. Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.03(\mathrm{dt}, J=14.2,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36-2.42(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 39.1,55.3,78.5,122.6,125.9(2 \mathrm{C}), 127.8$ (2C), 128.7 (3C), 132.3 (2C), 138.3, 139.6, 154.2. IR (KBr) 3255, 3146, 2923, 2923, 1722, 1688, 1486, 1455, 1412, 1391, 1292, 1047, 1008 cm^{-1}. M.p. $177-179{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=+50.4\left(c 1.00, \mathrm{CHCl}_{3}, 95 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=10.7 \mathrm{~min}($ major, $4 S, 6 R), 14.3 \mathrm{~min}($ minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{16} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$332.0286, found 332.0289; $\mathrm{C}_{16} \mathrm{H}_{15}{ }^{81} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$334.0266, found 334.0268. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.75(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 4.62(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArCH}-\mathrm{N}($ anti $))$, syn:anti $=88: 12$.

Crystal data of $\mathbf{s y n} \mathbf{- 4 j}$ (Figure S1): Compound $s y n-\mathbf{4 j}$ was recrystallized from n-hexanedichloromethane at room temperature for 2 days. Formula $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{2}$, colorless, crystal dimensions $0.50 \times 0.40 \times 0.15 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}(\# 4), a=10.513(3) \AA, b=$ $6.0756(16) \AA, c=12.045(4) \AA, \alpha=90.00^{\circ}, \beta=109.543(5)^{\circ}, \gamma=90.00^{\circ}, V=725.0(4) \AA^{3}, Z=2$, $\rho_{\text {calc }}=1.522 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=336, \mu(\mathrm{MoK} \alpha)=2.835 \mathrm{~mm}^{-1}, T=123 \mathrm{~K} .6325$ reflections collected, 3150 independent reflections with $I>2 \sigma(I)\left(2 \theta_{\max }=27.567^{\circ}\right)$, and 185 parameters were used for the solution of the structure. The non-hydrogen atoms were refined anisotropically. $\quad R_{1}$ $=0.0326$ and $w R_{2}=0.0644 . \quad$ GOF $=0.850$. Flack x parameter $=0.013(9) . \quad$ Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with

Figure S1. OPTEP drawing of syn-4j.
the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1546387). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Web page: http://www.ccdc.cam.ac.uk/].

(4S,6R)-4-(Naphthalen-1-yl)-6-phenyl-1,3-oxazinan-2-one (syn-4k): 99\% yield (5 h), syn:anti $=>99:<1,98 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.21$ (dt, $J=14.2,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{br}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=11.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=$ $11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.8,51.8,78.8,121.8,122.9,125.8,126.0$ (2C), 126.2, 126.9, 128.7 (3C), 129.1, 129.4, 130.1, 134.0, 136.1, 138.4, 154.4. IR (KBr) 3221, 3105, 2923, 1693, 1408, 1378, 1301, $1286,1143,1055 \mathrm{~cm}^{-1}$. M.p. $220-221^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{27}=-126.0\left(c 1.00, \mathrm{CHCl}_{3}, 98 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}=11.0 \mathrm{~min}$ (major, $4 S, 6 R$), 18.1 min (minor, $4 R, 6 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$304.1338, found 304.1337. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.60(\mathrm{dd}, J=11.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}($ syn $)$), $5.29(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}$ (anti)), syn:anti $=70: 30$.

(4S,6R)-4-(Naphthalen-2-yl)-6-phenyl-1,3-oxazinan-2-one (syn-4I): 100\% yield (5h), syn:anti $=>99:<1,97 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{dt}, J=14.2,11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{dm}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=11.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{br}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.83-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, d_{6}-DMSO) $\delta 38.1,54.5,77.2,124.7,125.0,126.0,126.2$ (2C), 126.3, 127.6, 127.8, 128.2, 128.3, 128.5 (2C), 132.6, 132.9, 139.3, 139.5, 153.2 IR (KBr) 3276, 3156, 3054, 1723, 1692, 1403, 1372, 1318, 1303, $1048 \mathrm{~cm}^{-1}$. M.p. $220-221^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{22}=72.0\left(c 0.10, \mathrm{CHCl}_{3}, 97 \%\right.$ ee, $(4 S, 6 R)$). HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}=14.0 \mathrm{~min}$ (major, $4 S, 6 R$), 23.6 min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$304.1338, found 304.1337. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample
by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.95(\mathrm{dd}, J=11.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ syn $)), 4.84(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArCH}-\mathrm{N}($ anti)), syn:anti $=83: 17$.

(4S,6R)-4-(4-Bromothiophen-3-yl)-6-phenyl-1,3-oxazinan-2-one (syn-4m): 91\% yield (20 h), syn:anti $=>99:<1,95 \%$ ee (syn). Pale yellow soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.00(\mathrm{dt}, J=$ $14.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=11.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.8,51.2,78.4$, $109.4,122.4,124.8,126.0$ (2C), 128.7 (3C), 138.3, 139.8, 154.5. IR (KBr) 3221, 3115, 2921, 2885, 1713, 1684, 1409, 1360, 1284, 1143, $1043 \mathrm{~cm}^{-1}$. M.p. $175-177{ }^{\circ} \mathrm{C}$ (decomposition). $[\alpha]_{\mathrm{D}}{ }^{24}=-29.2\left(c 1.00, \mathrm{CHCl}_{3}, 95 \%\right.$ ee, $\left.(4 S, 6 R)\right) . \quad$ HPLC analysis; IA- $3, n$-hexane $/ i-\operatorname{PrOH}=7 / 3$, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=10.8 \mathrm{~min}$ (major, $4 S, 6 R$), 15.1 min (minor, $4 R, 6 S$). HRMS (ESI+) calcd for $\mathrm{C}_{14} \mathrm{H}_{13}{ }^{81} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$339.9830, found 339.9837. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.94$ (dd, $J=11.9$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ syn $)$), 4.81 (m, 1H, ArC $\underline{H}-\mathrm{N}($ anti)), syn:anti $=77: 23$.

(4S,6R)-4-(Benzo[b]thiophen-3-yl)-6-phenyl-1,3-oxazinan-2-one (syn-4n): 87\% yield (20 h), syn:anti $=98: 2,91 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.29$ (dt, $J=14.2$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{br}, 1 \mathrm{H}), 5.53(\mathrm{dd}$, $J=11.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.9,50.7,78.6,121.3,123.2,123.4,124.5,125.0,125.9$ (2C), 128.7 (3C), 135.2, 136.3, 138.3, 141.2, 154.2. IR (KBr) 3244, 3107, 2925, 1706, 1457, 1428, 1403, 1296, 1148, $1059 \mathrm{~cm}^{-1}$. M.p. $210-213{ }^{\circ} \mathrm{C}$ (decomposition). $[\alpha]_{\mathrm{D}}{ }^{25}=-42.8\left(c 1.00, \mathrm{CHCl}_{3}, 91 \%\right.$ ee, $(4 S, 6 R)$). HPLC analysis; AD-3, n-hexane $/ i$ - $\operatorname{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=9.2 \mathrm{~min}$ (major, $4 S, 6 R$), 18.5 min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 310.0902, found 310.0896. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.25(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ syn $)$), $5.13(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ anti)), syn:anti $=88: 12$.

10. Products in Scheme 2.

(4S,6R)-4-Phenyl-6-(p-tolyl)-1,3-oxazinan-2-one (syn-8a): ${ }^{5} \quad 95 \%$ yield (5 h), syn:anti $=94: 6$, 89% ee $(s y n) . \quad$ Colorless soild. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.06(\mathrm{dt}, J=14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.76(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.30(\mathrm{br}, 1 \mathrm{H}), 5.41$ $(\mathrm{dd}, J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 21.2,39.2,55.9,78.5,125.9$ (2C), 126.1 (2C), 128.7, 129.2 (2C), 129.3 (2C), 135.5, 138.5, 140.6, 154.2. IR (KBr) 3227, 3114, 2919, 1715, 1456, 1400, 1304, $1147,1058 \mathrm{~cm}^{-1}$. M.p. $188-190^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=+10.4\left(c 1.00, \mathrm{CHCl}_{3}, 89 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i-\operatorname{PrOH}=7 / 3,210 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=12.4 \mathrm{~min}($ major, $4 S, 6 R$), 25.6 $\min ($ minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$268.1338, found 268.1339. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H} \mathrm{NMR}$ analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$); $\delta 4.76(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}(s y n)), 4.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ anti) $)$, syn:anti $=63: 37$.

(4S,6R)-4-(3-Methoxyphenyl)-6-(p-tolyl)-1,3-oxazinan-2-one (syn-8b): 84\% yield (20 h), syn:anti $=$ 90:10 (Inseparable through the silica gel column chromatography), 89% ee (syn). Colorless soild. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.06(\mathrm{dt}, J=14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $2.37(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{dd}, J=11.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{br}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.34$ $(\mathrm{m}, 3 \mathrm{H}) . \quad{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2,39.0,55.3,55.7,78.4,111.5,114.0,118.2,125.8$ (2C), 129.3 (2C), 130.2, 135.5, 138.4, 142.2, 154.3, 160.1. IR (KBr) 3319, 2968, 1715, 1597, $1459,1392,1302,1256,1154,1051 \mathrm{~cm}^{-1}$. M.p. $148-149{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=+26.0\left(c 1.00, \mathrm{CHCl}_{3}\right.$, 89% ee, $(4 S, 6 R)) . \quad$ HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=13.4$ \min (major, $4 S, 6 R$), 33.6 min (minor, $4 R, 6 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 298.1443, found 298.1439. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$; $\delta 4.73(\mathrm{dd}, J=11.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}(s y n)), 4.61$ (m, $1 \mathrm{H}, \mathrm{ArCH}-\mathrm{N}($ anti) $)$, syn:anti $=63 / 37$.

(4S,6R)-4-(4-Bromothiophen-3-yl)-6-(p-tolyl)-1,3-oxazinan-2-one (syn-8c): 99\% yield (5 h), syn:anti $=>99:<1,98 \%$ ee $($ syn $) . \quad$ Colorless soild. $\quad{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{dt}, J=$ $14.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (br, 1H), $5.43(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 21.3,36.7,54.7,78.4,122.4,126.0$ (2C), 126.8, 128.6, 129.3 (2C), $129.9,133.4,135.3,138.6,139.6,154.6$. IR (KBr) 3216, 3111, 2936, 1698, 1468, 1397, 1302, 1285, 1151, 1054, $1023 \mathrm{~cm}^{-1}$. М.p. $151-153{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{22}=-79.2$ (c $1.00, \mathrm{CHCl}_{3}, 98 \%$ ee, $(4 S, 6 R))$. HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=12.3 \mathrm{~min}$ (major, $4 S, 6 R$), 27.3 min (minor, $4 R, 6 S$). HRMS (ESI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{16}{ }^{79} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 368.0257, found 368.0253; $\mathrm{C}_{17} \mathrm{H}_{16}{ }^{81} \mathrm{BrNNaO}_{2} \quad[\mathrm{M}+\mathrm{Na}]^{+}$370.0238, found 370.0240. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$); $\delta 5.21$ (dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 5.04(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArCH}-\mathrm{N}(a n t i))$, syn:anti $=62: 38$.

(4S,6R)-4-(4-Bromothiophen-3-yl)-6-(p-tolyl)-1,3-oxazinan-2-one (syn-8d): 99\% yield (5 h), syn:anti $=>99:<1,97 \%$ ee $($ syn $) . \quad$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.84(\mathrm{dt}, J=$ $13.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (br, 1H), $5.43(\mathrm{dd}, J=11.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 21.3,36.9,59.5,78.4,97.7,126.0$ (2C), 126.5, 129.4 (2C), 129.5, $130.3,135.3,138.6,140.1,142.3,154.5 . \operatorname{IR}(\mathrm{KBr}) 3215,3103,2927,1697,1396,1301,1149$, $1055,1009 \mathrm{~cm}^{-1}$. M.p. 206-208 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-130.0\left(c 1.00, \mathrm{CHCl}_{3}, 97 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA- $3, n$-hexane $/ i$ - $\operatorname{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}=13.9 \mathrm{~min}$ (major, $4 S, 6 R$), 25.0 \min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 394.0304$, found 394.0303. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$); $\delta 5.04$ (dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 4.86(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(a n t i)$), syn:anti $=57: 43$.

(4S,6R)-4-(4-Bromothiophen-3-yl)-6-(p-tolyl)-1,3-oxazinan-2-one (syn-8e): 84\% yield (5 h), syn:anti $=95: 5,85 \%$ ee $(s y n) . \quad$ Colorless soild. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{dt}, J=14.2$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,36.8,51.2,78.4,109.5,122.3$, 124.9 , 126.0 (2C), 129.4 (2C), 135.3, 138.6, 140.0, 154.3. IR (KBr) 3230, 3099, 3077, 2919, 1699, $1518,1410,1294,1146,1055 \mathrm{~cm}^{-1}$. M.p. $166-168^{\circ} \mathrm{C}$ (decomposition). $[\alpha]_{\mathrm{D}}{ }^{25}=-18.0(c$ $1.00, \mathrm{CHCl}_{3}, 85 \%$ ee, $(4 S, 6 R)$). HPLC analysis; OD-3, n-hexane $/ i-\mathrm{PrOH}=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}, t_{\mathrm{R}}=44.2 \mathrm{~min}$ (major, $4 S, 6 R$), 68.1 min (minor, $4 R, 6 S$). HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{14}{ }^{79} \mathrm{BrNNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 373.9820$, found $373.9830 ; \mathrm{C}_{15} \mathrm{H}_{14}{ }^{81} \mathrm{BrNNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 375.9801$, found 375.9807. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.92(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}(s y n)), 4.79(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArC} \underline{H}-\mathrm{N}(a n t i))$, syn:anti $=56: 44$.

(4S,6R)-4-Phenyl-6-(o-tolyl)-1,3-oxazinan-2-one (syn-8f): $\quad 83 \%$ yield, syn:anti $=$ 93:7 (Inseparable through the silica gel column chromatography), 78\% ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{dt}, J=14.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}), 4.77(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{br}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 1 \mathrm{H})$, 7.20-7.27 (m, 3H), 7.32-7.44 (m, 4H), $7.49(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 19.1, 37.9, $55.9,75.6,125.7,126.1$ (2C), 126.5, 128.4, 128.7, 129.2 (2C), 130.6, 134.5, 136.4, 140.6, 154.5. $\operatorname{IR}(\mathrm{KBr}) 3229,3114,2928,1702,1456,1399,1287,1147,1048 \mathrm{~cm}^{-1}$. M.p. $188-190{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}$ $=+28.8\left(c 1.00, \mathrm{CHCl}_{3}, 78 \%\right.$ ee, $\left.(4 S, 6 R)\right) . \quad \mathrm{HPLC}$ analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=9.4 \mathrm{~min}($ major, $4 S, 6 R), 25.9 \mathrm{~min}($ minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$268.1338, found 268.1335. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.64(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, PhC $\underline{H}-\mathrm{N}(s y n)), 5.47(\mathrm{dd}, J=9.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ anti $)$), syn:anti $=79: 21$.

(4S,6R)-6-(4-(Chloromethyl)phenyl)-4-phenyl-1,3-oxazinan-2-one (syn-8g): 82\% yield (20 h), syn:anti $=>99:<1,92 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{dt}, J=$ $13.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dm}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ (br, 1H), 5.45 (dd, $J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.1$, 45.8, 55.7, 78.1, 126.1 (2C), 126.2 (2C), 128.7, 128.9 (2C), 129.2 (2C), 137.8, 138.8, 140.4, 154.1. $\operatorname{IR}(\mathrm{KBr}) 3241,3113,2925,1700,1401,1291,1206,1144,1059 \mathrm{~cm}^{-1} . \quad$ M.p. $223-225^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}$ $=+33.6\left(c 1.00, \mathrm{CHCl}_{3}, 92 \%\right.$ ee, $\left.(4 S, 6 R)\right) . \quad$ HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=19.8 \mathrm{~min}$ (major, $4 S, 6 R$), 63.0 min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$302.0948, found 302.0935. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.45(\mathrm{dd}, J=11.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ syn $)$), $5.35(\mathrm{dd}, J=8.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ anti $)$), syn:anti $=77: 23$.

(4S,6R)-6-(4-Bromophenyl)-4-(2-iodophenyl)-1,3-oxazinan-2-one (syn-8h): 96\% yield (20 h), syn:anti $=>99:<1,96 \%$ ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.80(\mathrm{dt}, J=$ $14.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (br, 1 H), 5.43 (dd, $J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.53(\mathrm{~m}$, $4 \mathrm{H}), 7.85(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.8,59.3,77.6,97.6,122.6$, $126.4,127.6$ (2C), 129.5, 130.3, 131.8 (2C), 137.3, 140.0, 142.0, 154.4. IR (KBr) 3242, 3120, $3060,1710,1440,1392,1297,1148,1065,1011 \mathrm{~cm}^{-1}$. M.p. $164-165^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-85.2(c 1.00$, $\mathrm{CHCl}_{3}, 96 \%$ ee, $\left.(4 S, 6 R)\right) . \quad$ HPLC analysis; IA- $3, n$-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=15.9 \mathrm{~min}$ (major, $4 S, 6 R$), 36.8 min (minor, $4 R, 6 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrINO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$457.9253, found 457.9251; $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{81} \mathrm{BrINO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$459.9232, found 459.9215 . syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$); $\delta 5.05$ (dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}-\mathrm{N}($ syn $)$), 4.85-4.88 (m, 1H, $\operatorname{ArC} \underline{H}-\mathrm{N}$ (anti)), syn:anti $=79: 21$.

(4S,6R)-6-(Naphthalen-1-yl)-4-phenyl-1,3-oxazinan-2-one (syn-8i): ${ }^{5} \quad 81 \%$ yield (5 h), syn:anti $=99: 1,96 \%$ ee $(s y n) . \quad$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.19(\mathrm{dt}, J=14.2,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{br}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=$ $11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.49-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.6$, $55.9,75.4,122.2,123.4,125.5,125.8,126.1$ (2C), 126.6, 128.6, 129.0, 129.1 (3C), 129.8, 133.7, 133.9, 140.5, 154.5. IR (KBr) 3237, 3120, 2927, 1706, 1400, 1303, 1147, $1078,1051 \mathrm{~cm}^{-1}$. M.p. $212-214{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{23}=+160.0\left(c \quad 1.00, \mathrm{CHCl}_{3}, 96 \%\right.$ ee, $(4 S, 6 R)$). HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{\mathrm{R}}=10.1 \mathrm{~min}$ (major, $4 S, 6 R$), 14.2 min (minor, $4 R, 6 S)$. HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$304.1338, found 304.1334. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ (10 mol\%); $\delta 6.22$ (dd, $J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ syn $)$), $6.10(\mathrm{dd}, J=8.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{-}-$ N (anti)), syn:anti $=81: 19$.

(4S,6R)-4-phenyl-6-(thiophen-3-yl)-1,3-oxazinan-2-one (syn-8j): 96\% yield, syn:anti = 96:4 (Inseparable through the silica gel column chromatography), 95% ee (syn). Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.12(\mathrm{dt}, J=14.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dm}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}$, $J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{br}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=11.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.43 (m, 7H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.3,55.6,74.9,122.3,125.4,126.1$ (2C), 126.6, 128.7, 129.2 (2C), 139.6, 140.5, 154.0. IR (KBr) 3272, 3156, 2927, 2866, 1725, 1406, 1298, 1146, $1058 \mathrm{~cm}^{-1}$. M.p. $177-179{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{25}=-20.0\left(c 1.00, \mathrm{CHCl}_{3}, 95 \%\right.$ ee, $\left.(4 S, 6 R)\right)$. HPLC analysis; IA-3, n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=14.7 \mathrm{~min}$ (major, $4 S, 6 R$), 26.5 min (minor, $4 R, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$260.0745, found 260.0740. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 4.75(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}($ syn $)), 4.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N}$ (anti)), syn:anti $=61: 39$.

11. Product from α-methylstyrene 9 in Eq. 2.

(4S,6R)-4-(2-Iodophenyl)-6-methyl-6-phenyl-1,3-oxazinan-2-one (syn-10): 81\% yield, syn:anti $=95: 5,85 \%$ ee $($ syn $) . \quad$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86-1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{dd}, J=14.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H})$, 6.98-7.02 (m, 1H), 7.25-7.36 (m, 5H), $7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.5,40.4,57.0,81.5,97.6,124.1$ (2C), 126.9, 127.6, 128.5 (2C), $129.3,130.0,139.9,141.8,144.1,154.3$. IR (KBr) 3230, 3114, 3060, 2979, 2928, 1701, 1463, $1440,1392,1331,1296,1092,1070 \mathrm{~cm}^{-1} . \quad$ M.p. $134-135^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{27}=-94.8\left(c 1.00, \mathrm{CHCl}_{3}\right.$, 85% ee, $(4 S, 6 R)$). HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}=9.4$ \min (major, $4 S, 6 R$), 16.2 min (minor, $4 R, 6 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 394.0304, found 394.0303. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.07(\mathrm{dd}, J=11.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ syn $)$), $4.36(\mathrm{dd}$, $J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H}-\mathrm{N}($ anti $)$, syn:anti $=76: 24$.

12. Reaction of β-methylstyrene 11 for the mechanistic insights (Eq. 3).

To determine the stereochemistry of 1,3-syn-2,3-anti-12 and 1,3-syn-2,3-syn-12, we examined the NOE effect in ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ analysis, as shown in Figure S2. In particular, we observed reasonable NOEs between syn-protons in 1,3-syn-2,3-anti-12 and 1,3-syn-2,3-syn-12, respectively. Moreover, X-ray analysis was conducted for 1,3-syn-2,3-anti-12, and the absolute stereochemistry was determined unambiguously (Figure S3).

Figure S2. NOE experiment for compounds 1,3-syn-2,3-anti-12 and 1,3-syn-2,3-syn-12.

(4S,5R,6R)-4-(2-Iodophenyl)-5-methyl-6-phenyl-1,3-oxazinan-2-one (1,3-syn-2,3-anti-12): 62% yield $(20 \mathrm{~h}), \mathrm{dr}=>99 \%, 99 \%$ ee. Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.68(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{br}, 1 \mathrm{H})$,
$7.05(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.9$, 41.4, 62.2, 84.7, 100.2, 127.5 (2C), 128.5, 128.7 (2C), 129.1, 129.5, 130.6, 137.3, 140.3, 141.7, 153.6. IR (KBr) 3413, 3233, 3134, 1701, 1395, $1037 \mathrm{~cm}^{-1}$. M.p. 231-234 ${ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-59.6$ (c $1.00, \mathrm{CHCl}_{3}, 99 \%$ ee). HPLC analysis; IA- $3, n$-hexane $/ i$ - $\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=10.0 \mathrm{~min}$ (major, $4 S, 5 R, 6 R$), 14.7 min (minor, $4 R, 5 S, 6 S$). HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{INO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$394.0304, found 394.0314. syn/anti-Isomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 0.68\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ (syn-trans)), $0.90\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ (anti-trans)), syn-trans:anti-trans $=61: 39$.

Crystal data of 1,3-syn-2,3-anti-12 (Figure S3): Compound 1,3-syn-2,3-anti-12 was recrystallized from n-hexane-dichloromethane at room temperature for 2 days. Formula $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$, colorless, crystal dimensions $0.30 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $C 2$ (\#5), $a=19.657(3) \AA, b=7.8904(13) \AA, c=20.662(3) \AA, \alpha=90.00^{\circ}, \beta=100.247(3)^{\circ}, \gamma=90.00^{\circ}$, $V=3153.6(8) \AA^{3}, Z=4, \rho_{\text {calc }}=1.656 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=1552, \mu(\mathrm{MoK} \alpha)=2.035 \mathrm{~mm}^{-1}, T=123 \mathrm{~K}$. 13313 reflections collected, 6441 independent reflections with $I>2 \sigma(I)\left(2 \theta_{\max }=27.828^{\circ}\right)$, and 390 parameters were used for the solution of the structure. The non-hydrogen atoms were refined anisotropically. $\quad R_{1}=0.0414$ and $w R_{2}=0.1069 . \quad \mathrm{GOF}=1.251$. Flack x parameter $=0.039(6)$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic DataCentre as supplementary publication no. CCDC-1546388). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Web page: http://www.ccdc.cam.ac.uk/].

Figure S3. OPTEP drawing of 1,3-syn-2,3-anti-12.

(4S,5S,6R)-4-(2-Iodophenyl)-5-methyl-6-phenyl-1,3-oxazinan-2-one (1,3-syn-2,3-syn-12): 5\% yield $(20 \mathrm{~h}), \mathrm{dr}=>99 \%, 0 \%$ ee. Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.47(\mathrm{~d}, J=6.9$
$\mathrm{Hz}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{br}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J$ $=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 5.6,33.7,63.4,81.0,98.0,125.4$ (2C), 127.7, 128.0, 128.5 (2C), 128.7, 130.2, 137.4, 139.7, 140.3, 154.3. IR (KBr) 3241, 3120, 2976, 1705, 1456, 1397, 1333, 1275, 1161, 1100, $1012 \mathrm{~cm}^{-1}$. M.p. $196-198{ }^{\circ} \mathrm{C}$. HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 394.0304$, found 394.0295

4-(2-Iodophenyl)-6,6-dimethyl-1,3-oxazinan-2-one (S9): Colorless soild. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{ddd}, J=13.7,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{br}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{dd}, J=7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.2$, $29.4,40.0,57.0,78.8,97.6,126.7,129.5,130.1,139.9,142.3,154.3$. IR (KBr) 3222, 3103, 2978, $2925,1697,1394,1303,1129,1104,1010 \mathrm{~cm}^{-1}$. M.p. $168-171^{\circ} \mathrm{C}$. HRMS (FAB+) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 332.0148$, found 332.0141 .

Since the reaction of cis $\mathbf{- 1 1}$ with $\mathbf{2 g}$ was very sluggish when a 3:1:3 mixture of $(R) \mathbf{- 1 a} / \mathbf{M g} / \mathrm{K}$ was used, 1,3-syn-2,3-syn-12 was obtained in only 5% yield, as shown above. Therefore, HBF_{4}-catalysis was also conducted for the reactions of trans-11 with $\mathbf{2 g}$ and cis-11 with $\mathbf{2 g}$ (Eqs. S6 and S7). As a result, 1,3-syn-2,3-anti-12 (34% yield) and 1,3-anti-2,3-anti-12 (8% yield) were obtained selectively when trans-11 was used (Eq. S6). In contrast, 1,3-syn-2,3-syn-12 (58\% yield) and 1,3-anti-2,3-syn-12 (2\% yield) were obtained selectively when cis-11 was used (Eq. S7). These results supported the concerted reaction pathway.

Procedure for $\mathbf{H B F}_{\mathbf{4}} \cdot \mathbf{E t}_{\mathbf{2}} \mathbf{O}$ catalysis: Aldimine $\mathbf{2 g}(66.2 \mathrm{mg}, 0.20 \mathrm{mmol})$, trans- β-methylstyrene (trans-11) or cis- β-methylstyrene (cis-11) ($519 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$), and $\mathrm{MgSO}_{4}(100 \mathrm{mg})$ were placed in a Schlenk tube under a nitrogen atmosphere and dissolved in dry dichloromethane (10 mL). To the solution was added tetrafluoroboric acid diethyl ether complex ($2.7 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and the mixture was stirred at room temperature for 20 h . The resulting reaction mixture was quenched with triethylamine $(0.2 \mathrm{~mL})$ at room temperature, and filtered through a pad of Celite. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane:EtOAc $=5: 1$ to $1: 15$) to give the desired product.

$\left(4 S^{*}, 5 S^{*}, 6 S^{*}\right)$-4-(2-Iodophenyl)-5-methyl-6-phenyl-1,3-oxazinan-2-one (1,3-anti-2,3-anti-12): Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{br}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.81-7.83$ (m, 1H).

$\left(4 S^{*}, 5 R^{*}, 6 S^{*}\right)$-4-(2-Iodophenyl)-5-methyl-6-phenyl-1,3-oxazinan-2-one (1,3-anti-2,3-syn-12): Colorless soild. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}$, $1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{br}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H})$.

13. Product from indene 13 in Eq. 4.

(4S,4aS,9bR)-4-(2-Iodophenyl)-8-methyl-4,4a,5,9b-tetrahydroindeno[2,1-e][1,3]oxazin-2(3H)one (syn-14): With (R)-1a-derived catalyst: 91% yield (20 h), dr $=>99 \%, 77 \%$ ee. With (R)-1b-derived catalyst: 95% yield $(20 \mathrm{~h}), \mathrm{dr}=>99 \%, 82 \%$ ee. $(20 \mathrm{~h}) . \quad$ Colorless soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.25(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=15.6,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{br}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.13$ $(\mathrm{m}, 3 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.3,30.3,39.8,58.7,83.3,97.9,124.8,126.4,127.0,129.1,130.1,130.9,137.1,139.2$, 140.1, 140.2 (2C), 155.0. IR (KBr) 3224, 3110, 2954, 2923, 1698, 1494, 1461, 1439, 1393, 1278, $1262,1166,1046,1011 \mathrm{~cm}^{-1}$. M.p. $220^{\circ} \mathrm{C}$ (decomposition). $[\alpha]_{\mathrm{D}}{ }^{25}=-178.4\left(c 0.50, \mathrm{CHCl}_{3}\right.$, 77% ee $(4 S, 4 \mathrm{a} S, 9 \mathrm{~b} R)$). HPLC analysis; IA-3, n-hexane $/ i-\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=$ 14.1 min (major, $4 S, 4 \mathrm{aS}, 9 \mathrm{~b} R$), 18.9 min (minor, $4 R, 4 \mathrm{a} R, 9 \mathrm{~b} S$). HRMS (ESI +) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 406.0298$, found 406.0280. Diastereomers were identified by ${ }^{1} \mathrm{H}$ NMR analysis of the authentic sample by using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mol} \%) ; \delta 5.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OC} \underline{H})$ (major, syn- $4 S^{*}, 4 \mathrm{a} S^{*}, 9 \mathrm{~b} R^{*}$), 5.57 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OC} \underline{\text { H }}$) (minor, anti- $4 S^{*}, 4 \mathrm{a} R^{*}, 9 \mathrm{~b} S^{*}$), syn:anti $=91: 9$. Enantiopurity of compound $\mathbf{1 4}$ was improved by a following procedure. Compound $\mathbf{1 4}$ $(77.0 \mathrm{mg}, 0.19 \mathrm{mmol}, \mathrm{dr}=>99 \%, 82 \%$ ee $)$ was dissolved in $\mathrm{THF} / \mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=1 / 1,2 \mathrm{~mL})$ at room temperature. Hexane (2 mL) was slowly added to the solution, and white prepicipate was formed. The prepicipate was filtered and the resulting filtrate was concentrated under reduced pressure to give compound 14 ($66.5 \mathrm{mg}, 82 \%$ yield based on imine $2 \mathbf{g}, \mathrm{dr}=>99 \%, 98 \%$ ee).

To determine the stereochemistry of syn-14, we performed an NOE effect on ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ analysis as shown in Figure S4. In particular, we could observe the reasonable NOEs.

Figure S4. NOE experiment for compound syn-14.

14. Transformation to 1,3-amino alcohols 16 (Scheme 3, Eqs. 5 and 6).

(1R,3S)-3-Amino-1,3-diphenylpropan-1-ol) (syn-15): ${ }^{9}$ The solution of $\operatorname{syn}-\mathbf{4 a}(25.3 \mathrm{mg}, 0.10$ mmol) and sodium hydroxide ($5 \mathrm{mg}, 0.12 \mathrm{mmol}$) in THF (1 mL), ethanol $(0.5 \mathrm{~mL})$, and water (25 $\mu \mathrm{L}$) was heated at $85^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, volatiles were removed under reduced pressure. Water (10 mL) was added to the resultant residue, and the mixture was extracted with dichloromethane $(5 \mathrm{~mL} \times 2)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=30: 1$ to $1: 1$) to give the desired product as colorless soild ($22.3 \mathrm{mg}, 98 \%$ yield). The enantiomeric purity was determined by chiral HPLC analysis. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.3-2.0 (br, 2 H), 1.89-2.02 (m, 2H), 2.6-4.0 (br, 1H), 4.18 (dd, $J=10.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (dd, $J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.31-7.36 (m, 4H), $7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.5,57.3,77.4$, 125.5 (2C), 126.7 (2C), 127.2, 127.4, 128.4 (2C), 128.9 (2C), 145.0, 146.8. IR (KBr) 3345, 3273, 3026, 2915, 2851, 1601, 1492, 1448, 1431, 1375, 1092, 1059, $1038 \mathrm{~cm}^{-1}$. M.p. $118-120{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{22}=+1.2(c 1.00, \mathrm{MeOH}, 97 \%$ ee $) .\left[\right.$ lit. $\left.[\alpha]_{\mathrm{D}}=+4.9(c 2.0, \mathrm{MeOH}, 100 \% \mathrm{ee},(1 R, 3 S))\right] .{ }^{10}$ HPLC analysis; OD-3, n-hexane $/ i-\mathrm{PrOH}=9 / 1,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=40.5 \mathrm{~min}$ (minor, $1 S, 3 \mathrm{R}$), 44.1 min (major, $1 R, 3 S$). HRMS ($\mathrm{FAB}+$) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$228.1388, found 228.1381 .

syn-4a 98\% ee

THF, MeOH
$60^{\circ} \mathrm{C}, 12 \mathrm{~h}$

THF, rt, 3 h

\boldsymbol{N}-((1S,3R)-3-Hydroxy-1,3-diphenylpropyl)-4-methylbenzenesulfonamide (syn-16): ${ }^{11}$ To a suspension of sodium hydride (60% oil dispersion, $80 \mathrm{mg}, 2.0 \mathrm{mmol}$) in N, N-dimethylformamide (DMF) (5 mL) at $0{ }^{\circ} \mathrm{C}$ was slowly added a solution of $\operatorname{syn}-\mathbf{4 a}(253 \mathrm{mg}, 1.0 \mathrm{mmol})$ in DMF (5 mL), and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \quad p$-Toluenesulfonyl chloride ($381 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to the resulting yellow suspension at $0{ }^{\circ} \mathrm{C}$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h . Then, the reaction mixture was cooled to room temperature, and diluted with water (10 mL). The mixture was extracted with ethyl acetate ($5 \mathrm{~mL} \times 2$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by neutral silica gel column chromatography (eluent: n-hexane: $\operatorname{EtOAc}=9: 1$ to $1: 1$) to give Ts-protected product ($345 \mathrm{mg}, 85 \%$ yield), which was used without further purification in the next step. The solution of Ts-protected product ($345 \mathrm{mg}, 0.85 \mathrm{mmol}$) and cesium carbonate (110 $\mathrm{mg}, 0.34 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ and methanol $(5 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the mixture was concentrated under reduced pressure. The resultant residue was extracted with dichloromethane ($5 \mathrm{~mL} \times 2$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=30: 1$ to $10: 1$) to give the product syn-16 as colorless soild ($301.1 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.91$ (dm, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{ddd}, J=8.5,5.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{dt}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{brd}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,46.3$, 57.7, 73.2, 125.7 (2C), 126.8 (2C), 127.3 (2C), 127.5, 128.0, 128.4 (2C), 128.7 (2C), 129.3 (2C), $137.4,140.8,143.0,143.9$. IR (KBr) 3503, 3175, 1457, 1430, 1325, 1152, $1089,1069 \mathrm{~cm}^{-1}$. M.p. $99-100{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{25}=-8.8\left(c 1.00, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $) . \quad$ HRMS $(\mathrm{FAB}+)$ calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 382.1477$, found 382.1469 .
N-((1S,3S)-3-((1,3-Dioxoisoindolin-2-yl)oxy)-1,3-diphenylpropyl)-4-methylbenzenesulfon amide (anti-17): To a stirred, cooled ($0{ }^{\circ} \mathrm{C}$) mixture of syn-16 ($175 \mathrm{mg}, 0.459 \mathrm{mmol}$), diphenyl-2-pyridylphosphine ($242 \mathrm{mg}, 0.917 \mathrm{mmol}$), and N-hydroxyphthalimide ($150 \mathrm{mg}, 0.917$ mmol) in THF (5 mL) was added bis(2-methoxyethyl) azodicarboxylate (DMEAD) ${ }^{12}(215 \mathrm{mg}$, 0.917 mmol), and the mixture was stirred at room temperature for 3 h . The reaction mixture was diluted with ethyl acetate (10 mL), and then washed with 1 M HCl aqueous solution ($10 \mathrm{~mL} \times 2$) and water $(10 \mathrm{~mL} \times 2)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane: $\mathrm{EtOAc}=9: 1$ to $1: 1$) to give the product anti-17 as colorless soild ($225 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}$, $1 \mathrm{H}), 4.63(\mathrm{q}, ~ J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.32(\mathrm{~m}$, $12 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,42.0$, $55.2,86.5,123.6$ (2C), 126.8 (2C), 127.2 (2C), 127.6, 127.8 (2C), 128.5 (2C), 128.6 (2C), 128.7,
129.2, 129.3 (2C), 134.5 (3C), 137.5, 137.9, 139.5, 142.9, 163.8 (2C). IR (KBr) 3277, 2925, $2850,1733,1456,1375,1159 \mathrm{~cm}^{-1}$. M.p. $235-237^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{25}=-130.0\left(c 1.00, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$. HRMS (FAB+) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 527.1641$, found 527.1655.
\boldsymbol{N}-((1S,3S)-3-Hydroxy-1,3-diphenylpropyl)-4-methylbenzenesulfonamide (anti-16): ${ }^{11}$ A mixture of anti-17 ($65.7 \mathrm{mg}, 0.125 \mathrm{mmol}$), molybdenumhexacarbonyl ($65.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), and triethylamine ($174 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN} /$ water $(15: 1,1.5 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the volatiles were removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=30: 1$ to $10: 1$) to give the product anti-16 as colorless soild ($45.8 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.98-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (m, 1H), 5.66 (brd, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) . \quad{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,45.9,55.4,70.6,125.7$ (2C), 126.3 (2C), 127.1 (2C), 127.3, 127.6, 128.5 (4C), 129.4 (2C), 137.5, 140.5, 143.1, 143.7. IR (KBr) 3548 , 3327, 1457, 1417, 1320, 1153, $1054 \mathrm{~cm}^{-1}$. M.p. $101-103{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-42.8(c 1.00$, $\mathrm{CHCl}_{3}, 98 \%$ ee). HRMS (FAB+) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$404.1296, found 404.1302.
(1S,3S)-3-Amino-1,3-diphenylpropan-1-ol (anti-15): ${ }^{9}$ Samarium(II) iodide (0.10 M in THF, $8.9 \mathrm{~mL}, 0.89 \mathrm{mmol})$ and hexamethylphosphoramide (HMPA) $(0.60 \mathrm{~mL}, 3.45 \mathrm{mmol})$ were added to a solution of anti-16 ($28.3 \mathrm{mg}, 0.0742 \mathrm{mmol}$) in THF (1 mL) at room temperature. The mixture was stirred under reflux conditions for 5 h until the purple color of the solution disappeared. The mixture was cooled to room temperature, and quenched with saturated NaHCO_{3} aqueous solution $(10 \mathrm{~mL})$. The resultant mixture was extracted with dichloromethane ($5 \mathrm{~mL} \times 2$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=30: 1$ to $1: 1$) to give the product anti-15 as colorless soild ($16.1 \mathrm{mg}, 95 \%$ yield). The enantiomeric purity was determined by chiral HPLC analysis. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.05-2.19 (m, 2H), 2.3-3.2 (br, 3 H), $4.16(\mathrm{dd}, J=7.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.29 (m, 4H), 7.31-7.39 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.7,53.2,70.6,125.6$ (2C), 126.3 (2C), 127.2, 127.9, 128.4 (2C), 128.9 (2C), 141.8, 144.2. IR (KBr) 3350, 3275, 3082, $3025,2864,1490,1454,1078,1065,1004 \mathrm{~cm}^{-1}$. M.p. $123-125{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-15.6(c 1.00$, $\mathrm{MeOH}, 98 \%$ ee $) .\left[\right.$ lit. $[\alpha]_{\mathrm{D}}=-39.9(c 1.9, \mathrm{MeOH}, 100 \%$ ee $\left.(1 S, 3 S))\right] .{ }^{10}$ HPLC analysis; OD-3, n-hexane $/ i-\mathrm{PrOH}=9 / 1,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}=24.6 \mathrm{~min}($ minor, $1 R, 3 R$), 25.6 min (major, $1 S, 3 S$). HRMS (FAB+) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 228.1388$, found 228.1381.

15. Transformation to bioactive compound 21 (Scheme 3, Eq. 7).

Gram scale synthesis of syn-8d could be achieved with the use of $\mathbf{5 ~ m o l} \%$ of catalysts and 2 molar equivalent of 3b as shown below.

[Gram scale synthesis of syn-8d] (R)-1a ($138.5 \mathrm{mg}, 0.204 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane (2 mL). To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $680 \mu \mathrm{~L}, 0.068 \mathrm{mmol}, 1.7$ mol\%) and potassium tert-butoxide (1.0 M in methanol, $204 \mu \mathrm{~L}, 0.204 \mathrm{mmol}, 5 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of (R)-1a was obtained in situ as pale yellow solid. Then, dichloroethane (38 mL) and well-activated MS $3 \AA(100 \mathrm{mg})$ were added at $0^{\circ} \mathrm{C}$, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . 4-Methylstyrene $\mathbf{3 b}(1.07 \mathrm{~mL}, 8.16 \mathrm{mmol})$ was then added to the suspension, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Aldimine $\mathbf{2 g}(1.35 \mathrm{~g}$, $4.08 \mathrm{mmol})$, which was dissolved in dichloroethane (2 mL), was then added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h . The resulting reaction mixture was quenched with triethylamine $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and filtered through a pad of Celite. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane: $\mathrm{EtOAc}=5: 1$ to $1: 15$) to give the desired product $\mathbf{8 d}$ in 98%
yield as colorless soild ($1.57 \mathrm{~g},>99 \%$ purity). The enantiomeric purity of $\mathbf{8 d}$ was determined by chiral HPLC analysis (syn:anti $=>99:<1,96 \%$ ee (syn)). (R)-1a was recovered ($133 \mathrm{mg}, 99 \%$, $>99 \%$ purity) through the same chromatography using chloroform/methanol.
(3R,4aS)-3-(p-Tolyl)-4,4a-dihydro-1H-[1,3]oxazino[4,3-a]isoindole-1,9(3H)-dione (18): A synthetic procedure was based on the literature. ${ }^{13}$ Compound $\operatorname{syn}-\mathbf{8 d}(1.57 \mathrm{~g}, 4.00 \mathrm{mmol})$, palladium(II) acetate (26.9 mg, $0.12 \quad \mathrm{mmol}, \quad 3 \quad \mathrm{~mol} \%$), and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) ($173 \mathrm{mg}, 0.30 \mathrm{mmol} 7.5 \mathrm{~mol} \%$) were placed in a 200 mL round-bottom flask under a nitrogen atmosphere. DMSO (50 mL), phenyl formate ($976 \mu \mathrm{~L}, 8.0 \mathrm{mmol}$), and triethylamine ($1.1 \mathrm{~mL}, 8.0 \mathrm{mmol}$) were added to the flask, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h . Then, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The mixture was washed with water ($25 \mathrm{~mL} \times 2$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane: $\operatorname{EtOAc}=1: 1$ to $1: 10$) to give the desired product $\mathbf{1 8}$ as pale brown soild $(1.17 \mathrm{~g}, 100 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{dt}, J=13.7,11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dm}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=12.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=11.9$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.2,35.7,57.2,81.6,122.4,125.7,125.9$ (2C), 129.5 (2C), 129.7, 129.9, 134.5, 134.9, 139.0, 143.1, 146.9, 165.9. IR (KBr) 2946, 1764, 1382, 1290, 1264, 1225, 1178, 1094, 1051, $1002 \mathrm{~cm}^{-1} . \quad$ M.p. $225-226{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{26}=-34.4\left(c 1.00, \mathrm{CHCl}_{3}, 96 \%\right.$ ee $) . \quad$ HRMS (FAB+) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 294.1130$ found 294.1130 .
(S)-3-((R)-2-Hydroxy-2-(p-tolyl)ethyl)isoindolin-1-one (19): ${ }^{14}$ To a stirred, cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 8}(1.17 \mathrm{~g}, 4.00 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$, ethanol $(10 \mathrm{~mL})$, and water $(5 \mathrm{~mL})$ was added lithium hydroxide ($95.7 \mathrm{mg}, 4.0 \mathrm{mmol}$), and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and extracted with dichloromethane $(50 \mathrm{~mL} \times 2)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane $: E t O A c=1: 1$ to $1: 15$) to give the product $\mathbf{1 9}$ as colorless soild $\left(0.959 \mathrm{~g}, 90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.88(\mathrm{dt}, J=14.2,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.21-2.37 (m, 2H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 4.76(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dt}, J=10.1,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{br}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 21.2,43.9,56.8,74.5,122.4,123.9,125.7$ (2C), 128.2, 129.4 (2C), 131.8, 131.9, 137.8, $141.3,147.5,170.5$. IR (KBr) 3420, 3258, 2919, 1687, 1469, 1404, $1080 \mathrm{~cm}^{-1}$. M.p. 63-65 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{28}=+20.4\left(c 1.00, \mathrm{CHCl}_{3}, 96 \%\right.$ ee $) . \quad$ HRMS $(\mathrm{FAB}+)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$268.1338,

2-((S)-2-((S)-3-Oxoisoindolin-1-yl)-1-(p-tolyl)ethoxy)isoindoline-1,3-dione (S10): To a stirred, cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $19(0.959 \mathrm{~g}, 3.59 \mathrm{mmol})$, diphenyl-2-pyridylphosphine ($1.89 \mathrm{~g}, 7.2 \mathrm{mmol}$), and N-hydroxyphthalimide ($1.17 \mathrm{~g}, 7.2 \mathrm{mmol}$) in THF (36 mL) was added bis(2-methoxyethyl) azodicarboxylate (DMEAD) ${ }^{12}(1.75 \mathrm{~g}, 7.2 \mathrm{mmol})$, and the mixture was stirred at room temperature for 3 h . The reaction mixture was diluted with dichloromethane $(50 \mathrm{~mL})$, and then washed with 1 $M \mathrm{HCl}$ aqueous solution $(50 \mathrm{~mL} \times 2)$ and water $(50 \mathrm{~mL} \times 2)$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: n-hexane:EtOAc $=1: 1$ to $1: 10$) to give the product $\mathbf{S 1 0}$ as colorless soild ($1.23 \mathrm{~g}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.74 (ddd, $J=14.9,11.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.78$ (ddd, $J=15.1,11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=11.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=11.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{br}, 1 \mathrm{H}), 7.71-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,41.5,53.1,86.9,122.2,123.6$ (2C), 123.9, 127.5 (2C), 128.2, 128.6, 129.2 (2C), 131.7, 131.8 (2C), 134.5, 134.6 (2C), 139.2, 147.5, 163.8 (2C), 170.7. IR (KBr) 3363, 2919, 1724, 1697, 1467, 1411, 1374, 1188, 1130, $1082 \mathrm{~cm}^{-1}$. M.p. $190-193{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{28}=-289.9$ (c 1.00, $\mathrm{CHCl}_{3}, 96 \%$ ee). HRMS $(\mathrm{FAB}+)$ calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 413.1501$, found 413.1504 .
(\boldsymbol{S}-3-($(\boldsymbol{S}) \mathbf{- 2 - H y d r o x y - 2 - (p - t o l y l})$ ethyl)isoindolin-1-one (20): ${ }^{\mathbf{1 4}}$ A mixture of $\mathbf{S 1 0}$ (1.23 g, 2.98 $\mathrm{mmol})$, molybdenumhexacarbonyl ($1.58 \mathrm{mg}, 6.0 \mathrm{mmol}$), and triethylamine ($4.2 \mu \mathrm{~L}, 30 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN} /$ water ($15: 1,30 \mathrm{~mL}$) was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the volatiles were removed under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: n-hexane $: \mathrm{EtOAc}=1: 1$ to $1: 10$) to give the product 20 as colorless soild ($0.700 \mathrm{~g}, 88 \%$ yield, 98% ee $).{ }^{1} \mathrm{H}$ NMR, MS, IR data were consistent with previously reported values. ${ }^{14} \quad{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.79(\mathrm{br}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.43$ $(\mathrm{m}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=10.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{br}, 1 \mathrm{H}), 7.81$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,44.0,54.1,71.5,122.4,123.9,125.5$ (2C), 128.1, 129.3 (2C), 131.6, 131.9, 137.4, 141.1, 148.2, 171.4. IR (KBr) 3207, 1666, 1472, $1415,1370,1327,1200,1144,1065 \mathrm{~cm}^{-1}$. M.p. $183-184{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}{ }^{28}=-52.4\left(c 1.00, \mathrm{CHCl}_{3}\right.$, 98% ee). HRMS (FAB+) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$268.1338, found 268.1339. HPLC analysis; OD-3, n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{\mathrm{R}}=5.8 \mathrm{~min}($ major, $S, S), 8.0 \mathrm{~min}$ (minor, R, R). Compound 20 would be transformed to compound 21 by the known procedures. ${ }^{14}$

16. ${ }^{1} \mathrm{H}$ NMR analysis of $(R)-1 \mathrm{a} / \mathrm{Mg} / \mathrm{K}$ complexes.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ analysis was performed for some complexes (Figure S5). Figures $\mathrm{S} 5 \mathrm{a}-\mathrm{d}$ show the results with (R)-1a alone, a 1:1 complex of $(R) \mathbf{- 1 a} / \mathrm{K}$, a $1: 2$ complex of $(R) \mathbf{- 1 a} / \mathrm{K}$, and a 1:1 complex of $(R) \mathbf{- 1 a} / \mathbf{M g}$, respectively. (R)-1a alone (Figure S 5 a) shows a relatively sharp spectrum, while the others (Figures $\mathrm{S} 5 \mathrm{~b}-\mathrm{c}$) show relatively broad peaks.

Figure S5. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ analysis of $(R) \mathbf{- 1 a} / \mathbf{M g} / \mathrm{K}$ complexes. (a) (R) $\mathbf{- 1 a}$ alone. (b) A $1: 1$ complex of $(R) \mathbf{- 1} \mathbf{a} /$ K. (c) A 1:2 complex of $(R) \mathbf{- 1 a} / \mathrm{K}$. (d) A 1:1 complex of $(R) \mathbf{- 1 a / M g}$.

Figures S5e-h show the results with a $2: 1$ complex of $(R) \mathbf{- 1 a} / \mathbf{M g}$, a $2: 1: 1$ complex of
 The $2: 1$ complex of $(R) \mathbf{- 1 a} / \mathrm{Mg}$ (Figure S5e) and 2:1:1 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ (Figure S5f) showed relatively broad spectra. Cluster species, the $3: 1: 3$ complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ (Figure S5h) and its component, a 2:1:2 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ (Figure S 5 g), showed relatively sharp spectra. However, overall, wce did not find clear evidence for a possible cluster structure of the active species, a 3:1:3 complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$.

Figure S5 (Continued). (e) A 2:1 complex of (R)-1a/Mg. (f) A 2:1:1 complex of (R)-1a/Mg/K. (g) A 2:1:2 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ (a possible core species of the cluster). (h) A 3:1:3 complex of $(R)-1 \mathbf{a} / \mathrm{Mg} / \mathrm{K}$ (the possible cluster).

17. ESI-MS analysis of a 3:1:3 complex of $(R)-1 \mathrm{a} / \mathrm{Mg} / \mathrm{K}$.

Sample preparation for ESI-MS analysis: (R) - $\mathbf{1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$ was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane (2 mL). To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}$) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of $(R) \mathbf{- 1 a}$ was obtained in situ as pale yellow solid. Then dichloroethane (2 mL) was added at room temperature, and stirred for $10 \mathrm{~min} .20 \mu \mathrm{~L}$ of the resulting mixture was diluted with dichloroethane (1 mL) in a well-dried test tube (final concentration: ca. $0.2 \mathrm{~m} M$), and passed through a membrane filter (200 mm mesh) just before injection.

The spectrum (negative mode) is shown in Figure S6. Correlation of the theoretical ion distribution for the major peaks $(m / z=2150 \sim 2220)$ is shown in Figure S7. As shown in Figures S6 and S7, not only $\mathrm{Mg}^{2+} / \mathrm{K}^{+}$and $\mathrm{Mg}^{2+} / \mathrm{Na}^{+}$, but also $\mathrm{K}^{+} / \mathrm{Na}^{+}$exchanges occurred in $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ complexes during the analysis due to Na^{+}that remained in the ESI-MS instrument. Among these peaks, the desired peak of a $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ also could be identified as $\mathrm{C}_{120} \mathrm{H}_{108} \mathrm{MgK}_{3} \mathrm{O}_{18} \mathrm{~S}_{6}^{-}[3\{(R)-\mathbf{1 a}\}-6 \mathrm{H}+\mathrm{Mg}+3 \mathrm{~K}]^{-}(m / z=2171.5339$ (found), 2171.4644 (calc.)).

Figure S6. ESI-MS (negative mode) spectrum of a 3:1:3 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$.

Theoretical distribution of $\mathrm{C}_{120} \mathrm{H}_{108} \mathrm{~K}_{4} \mathrm{NaO}_{18} \mathrm{~S}_{6}-\mathbf{a s}[3\{(R)-\mathbf{1 a}\}-6 \mathrm{H}+\mathrm{Na}+4 \mathrm{~K}]^{-}$

Theoretical distribution of $\mathrm{C}_{120} \mathrm{H}_{108} \mathrm{~K}_{2} \mathrm{Na}_{3} \mathrm{O}_{18} \mathrm{~S}_{6}{ }^{-}$as $[3\{(R)-1 \mathrm{a}\}-6 \mathrm{H}+3 \mathrm{Na}+2 \mathrm{~K}]^{-}$

Figure S7. Theoretical ion distribution for the major peaks in ESI-MS spectrum of a 3:1:3 complex of (R)-1a/Mg/K.

18. X-ray analysis of $(\boldsymbol{R})-1 \mathrm{a} / \mathrm{Mg} / \mathrm{K}$ complexes.

Preparation of a X-ray sample: (R)-1a ($13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$ was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane $(2 \mathrm{~mL})$. To a stirred solution were added di-n-butylmagnesium (1.0 M in heptane, $13.2 \mu \mathrm{~L}, 0.0132 \mathrm{mmol}$) and potassium tert-butoxide (1.0 M in THF, $13.2 \mu \mathrm{~L}, 0.0132 \mathrm{mmol}$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice. Then water $(5.4 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$, THF (0.5 mL), and n-heptane $(0.5 \mathrm{~mL})$ were added at room temperature, and the solution passed through a membrane filter ($0.50 \mu \mathrm{~m}$ pore size). The solution was settled at room temperature, and a single crystal was obtained within 12 h .

X-ray analysis: We could obtain a good crystal, which was relatively stable in the mother liquor but extremely unstable in the absence of the mother liquor. The crystal decomposed under the analysis conditions even at 123 K , and gradually provided a powder pattern. However, we ultimately succeeded in the X-ray analysis, although the R_{1} value (0.1095) was not so excellent. As a result, cif-check check CIF/PLATON still showed some Alert A errors. These errors might be caused by the huge structure itself ($Z=2, \mathrm{C}_{120} \mathrm{H}_{108} \mathrm{~K}_{3.5} \mathrm{Mg}_{1.5} \mathrm{O}_{21.5} \mathrm{~S}_{6}$, which is subject to symmetric expansion.) and disorder of some parts of the structures, and we could not determine all of thehydrogens, such as $\mathrm{SO}_{3} \mathrm{H}$ and $\mathrm{H}_{2} \mathrm{O}$. Moreover, we used SQUEEZE since the solvents are also so badly disordered that they cannot be modeled even with restraints. Therefore, we cannot fully discuss the detailed parameters of the compounds such as bond distances, angles, and torsions, although there should be no serious difficulties in roughly understanding the structures of these complexes.

Crystal data of (R)-1a/Mg/K complexes (Figure S8): Formula $\mathrm{C}_{120} \mathrm{H}_{108} \mathrm{~K}_{3.5} \mathrm{Mg}_{1.5} \mathrm{O}_{21.5} \mathrm{~S}_{6}$, pale yellow, crystal dimensions $0.30 \times 0.30 \times 0.20 \mathrm{~mm}^{3}$, monoclinic, space group $C 2$ (\#5), $a=$ 19.261(2) $\AA, b=25.280(3) \AA, c=32.387(4) \AA, \alpha=90.00^{\circ}, \beta=104.025(2)^{\circ}, \gamma=90.00^{\circ}, V=$ $15300(3) \AA^{3}, Z=2, \rho_{\text {calc }}=0.981 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=4722, \mu(\mathrm{MoK} \alpha)=0.242 \mathrm{~mm}^{-1}, T=123 \mathrm{~K}$. 28622 reflections collected, 15869 independent reflections with $I>2 \sigma(I)\left(2 \theta_{\max }=27.540^{\circ}\right)$, and 1394 parameters were used for the solution of the structure. The non-hydrogen atoms were refined anisotropically. $\quad R_{1}=0.1095$ and $w R_{2}=0.2703$. GOF $=1.673$. Flack x parameter $=$ $0.099(15)$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1546867. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Web page: http://www.ccdc.cam.ac.uk/].

(a) Top view

3:2:3 Complex of (R)-1a/Mg/K (S11)
Figure S8. X-ray drawings of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ complexes $($ red $=\mathrm{O}$, green $=\mathrm{Mg}$, yellow $=\mathrm{S}$, purple $=\mathrm{K}$).
(a) Structual formula.
(b) Structual drawing in wireflame style.

(c) Structual drawing in capped sticks and ball/sticks styles.

Figure S9. X-ray drawings of a $3: 1: 4$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}(\mathbf{2 2})$ as one crystal conponent. Hydrogens are omitted for clarity.
(a) Structual formula
(a) Stuctual formua

(b) Structual drawing in wireflame style

(c) Structual drawing in capped sticks and ball and sticks style

Figure S10. X-ray drawings of a $3: 2: 3$ complex of $(R) \mathbf{- 1 a} / \mathbf{M g} / \mathrm{K}(\mathbf{S 1 1})$ as the other crystal conponent. Hydrogens are omitted for clarity. One $\mathrm{SO}_{3} \mathrm{H}$ proton, which is supposed to be here, cannot be determined.

19. Control experiments with the use of various $(R)-1 \mathrm{a} / \mathrm{Mg} / \mathrm{K}$ complexes.

Based on the X-ray analysis of the $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ clusters, we examined a probe reaction with the use of the most relevant $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ complexes (i.e., mono- Mg (II) complexes and di- Mg (II) complexes) in the absence of MS $3 \AA$ (Table S7).
[For mono- $\mathbf{M g}($ II $)$ complexes] First, the use of a 3:1:4 complex of $(R) \mathbf{- 1 a} / \mathbf{M g} / \mathrm{K}$, which had the same ratio as complex 22 as seen in X-ray analysis and involved no $\mathrm{SO}_{3} H$ proton, did not show catalytic activity (entry 1). In sharp contrast, the use of a $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ (i.e., our optimized ratio), which included one $\mathrm{SO}_{3} H$ proton, showed great catalytic activity, and syn-4a was obtained with 95% ee (entry 2). Moreover, other mono-Mg(II) complexes, such as a 3:1:2 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ and a 3:1:1 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$, which included two and three $\mathrm{SO}_{3} H$ protons, respectively, were examined (entries 3 and 4). As a result, syn-4a was obtained with 89% ee and 84% ee, respectively (entries 3 and 4). Overall, mono- $M g(I I)$ complexes with one, two, or three $\mathrm{SO}_{3} \mathrm{H}$ protons showed catalytic activities, and in particular a 3:1:3 complex of (R)-1a/Mg/K with one $\mathbf{S O}_{3} \underline{\boldsymbol{H}}$ proton gave better results than the others (entry 2 vs. entries 3 and 4). However, due to the complex equilibrium of the catalyst components, it is not possible to unequivocally determine that a $3: 1: 2$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ is a real active species.
[For di-Mg(II) complexes] Next, we found that the use of a 3:2:3 complex of $(R) \mathbf{- 1 a} / \mathbf{M g} / \mathrm{K}$, which had the same ratio as complex $\mathbf{S 1 1}$ as seen in X-ray analysis and would involve one $\mathrm{SO}_{3} H$ proton, did not show catalytic activity (entry 5). Moreover, the use of a 3:2:2 complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$, which involved two $\mathrm{SO}_{3} \mathrm{H}$ proton, also did not show catalytic activity (entry 6). Therefore, di-Mg(II) complexes should not be active species in this reaction.

Table S7. Screening of the ratio of magnesium and potassium ions to $(R) \mathbf{- 1 a}$.
(R)- $\mathbf{1 a}$ ($10 \mathrm{~mol} \%$)

entry $\mathrm{Mg}^{2+}(\mathrm{mol} \%)^{b} \mathrm{~K}^{+}(\mathrm{mol} \%)^{c} \quad(R)-\mathbf{1 a}: \mathrm{Mg}: \mathrm{K} \quad$ yield (\%) syn:anti of $\mathbf{4 a}$ ee (\%) of syn-4a

1	3.3	13.3	$3: 1: 4$	$\mathbf{0}$	-	-
2	3.3	10	$3: 1: 3$	56	$>99:<\mathbf{1}$	$\mathbf{9 5}$
3	3.3	6.6	$3: 1: 2$	52	$>99:<1$	89
4	3.3	3.3	$3: 1: 1$	63	$>20:<1$	84
5	6.6	10	$3: 2: 3$	$\mathbf{0}$	-	-
6	6.6	6.6	$3: 2: 2$	$\mathbf{0}$	-	-

[^3]Table S7 (Continued). The structures below have not been derermined and are drawn based on speculations. In particular, the positions of proton and potassium ions were not determined except for the complex in entry 1 .

entry 3 3:1:2 Complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$

Less active
entry 5 3:2:3 Complex of $(R)-1 \mathrm{a} / \mathrm{Mg} / \mathrm{K}$

entry 2 3:1:3 Complex of $(R)-\mathbf{1 a} / \mathbf{M g} / \mathrm{K}$

More active
entry 4 3:1:1 Complex of $(R)-1 \mathbf{a} / \mathrm{Mg} / \mathrm{K}$

Less active
entry 6 3:2:2 Complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$

20. Kinetics study.

An initial rate kinetics study was conducted according to the established procedure in the literature. ${ }^{15}$ As a result, first-order dependency (1.18) on the initial concentration of the catalyst components was observed by plotting $\ln \mathrm{n}_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right.$) versus $\ln [3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ $(\mathrm{m} M)$] (Figure S13). Zero-order dependency (0.0135) on the initial concentration of the aldimine 2a was observed by plotting $\ln \mathrm{n}_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ versus $\ln [\mathbf{2 a}(\mathrm{m} M)$ (Figure S15). First-order dependency (0.978) on the initial concentration of the styrene 3a was observed by plotting $\ln \mathrm{n}_{\mathrm{obs}}$ $\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ versus $\ln [\mathbf{3 a}(\mathrm{m} M)]$ (Figure S17).

To make sense of these observations, we can consider possible reaction steps under the assumption of a $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ (first-order) (Figure S11). First, a 3:1:3 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ (first-order) might coordinate and activate aldimine $\mathbf{2 a}$ (zero-order), which should not be a rate-determining step. Next, the corresponding 2a-activated 3:1:3 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}$ (first-order) might react with styrene $\mathbf{3 a}$ (first-order); this should be a rate-determining step.

3:1:3 Complex of $(R) \mathbf{- 1} \mathbf{a} / \mathrm{Mg} / \mathrm{K}+\mathbf{2 a}$

Figure S11. Summary of kinetics study and possible rate determing step.

(1) Kinetics study using 3:1:3 complex of $(R)-1 \mathbf{a} / \mathbf{M g} / \mathrm{K}$.

$0.333 \mathbf{m M} /[3: 1: 3$ complex of (R)-1a/Mg/K] concentration: (R)-1a ($13.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 10$ mol\%) was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane $(2 \mathrm{~mL})$. To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) and potassium tert-butoxide (1.0 M in methanol, 20 $\mu \mathrm{L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of $(R) \mathbf{- 1 a}$ was obtained in situ as pale yellow solid. Then dichloroethane $(20 \mathrm{~mL})$ and well-activated MS $3 \AA\left(50 \mathrm{mg}\right.$) were added at $0^{\circ} \mathrm{C}$, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) was added to the suspension, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Aldimine 2a ($41.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 120 min . After stirring for the indicated period, small amount of reaction mixture was sampled via syringe and poured into triethylamine ($\mathrm{ca} .100 \mu \mathrm{~L}$) to quench the reaction. The volatiles were removed under reduced pressure, and the residue was dissolved into CDCl_{3} to measure the conversion yield, which was determined by NMR analysis of peaks derived from 2a (8.85 ppm , s, $1 \mathrm{H}, \mathrm{PhC} \underline{H}=\mathrm{N}$) and $\mathbf{4 a}(4.78 \mathrm{ppm}, \mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N})$.
$0.167 \mathrm{mM} /[3: 1: 3$ complex of (\boldsymbol{R})-1a/Mg/K] concentration: (R)-1a ($6.8 \mathrm{mg}, 0.010 \mathrm{mmol}$), magnesium ethoxide (0.10 M in methanol, $33.3 \mu \mathrm{~L}, 0.0033 \mathrm{mmol}$), potassium tert-butoxide (1.0 M in methanol, $10 \mu \mathrm{~L}, 0.010 \mathrm{mmol}$), styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$), aldimine 2a($41.1 \mathrm{mg}, 0.20$ $\mathrm{mmol})$, and dichloroethane (20 mL) were used.
$0.667 \mathrm{mM} /[3: 1: 3$ complex of (R)-1a/Mg/K] concentration: (R) - $\mathbf{1 a}$ ($27.2 \mathrm{mg}, 0.040 \mathrm{mmol}$), magnesium ethoxide (0.10 M in methanol, $133.3 \mu \mathrm{~L}, 0.0133 \mathrm{mmol}$), potassium tert-butoxide (1.0 M in methanol, $40 \mu \mathrm{~L}, 0.040 \mathrm{mmol}$), styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$), aldimine 2a ($41.1 \mathrm{mg}, 0.20$ $\mathrm{mmol})$, and dichloroethane (20 mL) were used.

A 3:1:3 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}(\mathrm{m} M)$ vs. time (min) plot is shown in Figure S12. Initial rate kinetics study of cycloaddition of $\mathbf{3 a}$ with $\mathbf{2 a}$ was conducted by assuming pseudo first-order consumption of $\mathbf{2 a}$ to give $\mathbf{4 a}$. As a result, first-order dependency (1.18) in the initial concentration of the catalyst components was observed by plotting $\ln v_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ versus \ln [3:1:3 complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}(\mathrm{m} M)$] (Figure S13). Overall, this observation might strongly assist that the active species would be a 3:1:3 complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$, which would provide the single active proton center in the transition states, without decomposition to its components.

Catalyst concentration $(\mathrm{m} M)$	$v_{\text {obs }}\left[\mathrm{m} M \mathrm{~min}^{-1}\right]$
0.167	0.0195
0.333	0.0440
0.667	0.100

Figure S12. Plot of $[\mathbf{4 a}](\mathrm{m} M)$ vs. time (min) with variable catalyst concentration.

Figure S13. Plot of $\ln v_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ vs. $\ln [3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}(\mathrm{m} M)]$.

(2) Kinetic study of aldimine 2a.

$10 \boldsymbol{m M} /[$ aldimine $2 \boldsymbol{a}$] concentration: $(R) \mathbf{- 1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane (2 mL). To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3$ mol\%) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of $(R) \mathbf{- 1 a}$ was obtained in situ as pale yellow solid. Then dichloroethane (20 mL) and well-activated MS $3 \AA(50 \mathrm{mg})$ were added at $0{ }^{\circ} \mathrm{C}$, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) was added to the suspension, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Aldimine $\mathbf{2 a}(41.1 \mathrm{mg}$, 0.20 mmol) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 120 min . After stirring for the indicated period, small amount of reaction mixture was sampled via syringe and poured into triethylamine (ca. $100 \mu \mathrm{~L}$) to quench the reaction. The volatiles were removed under reduced pressure, and the residue was dissolved into CDCl_{3} to measure the conversion yield, which was determined by NMR analysis of peaks derived from $\mathbf{2 a}$ ($8.85 \mathrm{ppm}, \mathrm{s}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}=\mathrm{N}$) and $\mathbf{4 a}$ (4.78 ppm, dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N})$.
$\mathbf{5} \boldsymbol{m M} /[$ aldimine 2a] concentration: (R) - $\mathbf{1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$, magnesium ethoxide $(0.10 \mathrm{M}$ in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}$), potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020$ mmol), styrene 3a($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$), aldimine 2a ($20.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), and dichloroethane (20 mL) were used.
$20 \boldsymbol{m M} /[$ aldimine 2a] concentration: $(R) \mathbf{- 1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$, magnesium ethoxide $(0.10 \mathrm{M}$ in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}$), potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020$ mmol), styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$), aldimine $\mathbf{2 a}(82.1 \mathrm{mg}, 0.40 \mathrm{mmol}$), and dichloroethane (20 mL) were used.

A 2a ($\mathrm{m} M$) vs. time (min) plot is shown in Figure S14. Initial rate kinetics study of cycloaddition of $\mathbf{3 a}$ with $\mathbf{2 a}$ was conducted by assuming pseudo first-order consumption of $\mathbf{2 a}$ to give $\mathbf{4 a}$. As a result, zero-order dependency (0.0135) in the initial concentration of the aldimine $\mathbf{2 a}$ was observed by plotting $\ln v_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ versus $\ln [\mathbf{2 a}(\mathrm{m} M)]$ (Figure S15).

2a concentration $(\mathrm{m} M)$	$v_{\text {obs }}\left[\mathrm{m} M \mathrm{~min}^{-1}\right]$
5	0.0425
10	0.0440
20	0.0433

Figure S14. Plot of [4a] ($\mathrm{m} M$) vs. time (min) with variable 2a concentration.

Figure S15. Plot of $\ln v_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ vs. $\ln [\mathbf{2 a}(\mathrm{m} M)]$.

(3) Kinetic study of styrene 3a.

$200 \boldsymbol{m M} /[$ styrene 3 a] concentration: $(R)-1 \mathbf{1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane (2 mL). To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3$ mol\%) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of $(R) \mathbf{- 1 a}$ was obtained in situ as pale yellow solid. Then dichloroethane (20 mL) and well-activated MS $3 \AA(50 \mathrm{mg})$ were added at $0{ }^{\circ} \mathrm{C}$, and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) was added to the suspension, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Aldimine 2a $(41.1 \mathrm{mg}$, 0.20 mmol) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 120 min . After stirring for the indicated period, small amount of reaction mixture was sampled via syringe and poured into triethylamine (ca. $100 \mu \mathrm{~L}$) to quench the reaction. The volatiles were removed under reduced pressure, and the residue was dissolved into CDCl_{3} to measure the conversion yield, which was determined by NMR analysis of peaks derived from $\mathbf{2 a}$ ($8.85 \mathrm{ppm}, \mathrm{s}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}=\mathrm{N}$) and $\mathbf{4 a}$ (4.78 ppm, dd, $J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC} \underline{H}-\mathrm{N})$.
$100 \mathbf{m M} /[$ styrene 3a] concentration: $(R) \mathbf{- 1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$, magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}$), potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020$ mmol), styrene 3a ($231 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$), and aldimine 2a($41.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) were used.
$400 \mathbf{m M} /[$ styrene 3a] concentration: $(R)-1 \mathbf{1 a}(13.6 \mathrm{mg}, 0.020 \mathrm{mmol})$, magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}$), potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020$ mmol), styrene 3a ($926 \mu \mathrm{~L}, 8.0 \mathrm{mmol}$), and aldimine 2a($41.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) were used.

A 3a ($\mathrm{m} M$) vs. time (min) plot is shown in Figure S16. Initial rate kinetics study of cycloaddition of $\mathbf{3 a}$ with $\mathbf{2 a}$ was conducted by assuming pseudo first-order consumption of 2a to give $\mathbf{4 a}$. As a result, first-order dependency (0.978) in the initial concentration of the styrene $\mathbf{3 a}$ was observed by plotting $\ln v_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ versus $\ln [\mathbf{3 a}(\mathrm{m} M)]$ (Figure S17).
(R)-1a ($10 \mathrm{~mol} \%$)

3a concentration $(\mathrm{m} M)$	$v_{\text {obs }}\left[\mathrm{m} M \mathrm{~min}^{-1}\right]$
100	0.0245
200	0.0440
400	0.0950

Figure S16. Plot of [4a] ($\mathrm{m} M$) vs. time (min) with variable 3a concentration.

Figure S17. Plot of $\ln v_{\text {obs }}\left(\mathrm{m} M \cdot \mathrm{~min}^{-1}\right)$ vs. $\ln [\mathbf{3 a}(\mathrm{m} M)]$.

21. Control experiments with the use of catalysts and additives (Eqs. 9 and 10).

To confirm whether or not one proton in the $\mathrm{SO}_{3} H$ moiety would be the active center in the 3:1:3 complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$, we performed the following experiments (1), (2), and (3).
(1) Effect of the addition of trifluoromethanesulfonic acid ($3.3 \mathrm{~mol} \%$) or p-toluenesulfonic acid ($3.3 \mathbf{~ m o l} \%$) on the catalytic reaction of a $3: 1: 4$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}(3.3 \mathrm{~mol} \%)$.

As shown in Eq. 9, the addition of a strong acid such as trifluoromethanesulfonic acid (TfOH) dramatically restored the catalytic activity of an inactive $3: 1: 4$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$. Moreover, the addition of a much weaker acid such as p-toluenesulfonic acid ($p-\mathrm{TsOH}$) did not strongly promote the reaction, and syn-4a was obtained in 7% yield with 89% ee (Eq. S8). As seen in Table $\mathrm{S} 8, p-\mathrm{TsOH}$ alone did not promote the reaction. Therefore, these results also might support the presence of proton-catalysis, after the proton-exchange reaction.

[Procedure of Eq. 9] (R)-1a ($14.0 \mathrm{mg}, 0.0206 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane $(2 \mathrm{~mL})$. To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $68.7 \mu \mathrm{~L}, 0.00687 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) and potassium tert-butoxide (1.0 M in methanol, $27.5 \mu \mathrm{~L}, 0.0275 \mathrm{mmol}, 13.3 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of (R)-1a was obtained in situ as pale yellow solid. Then dichloroethane (20 mL) and trifluoromethanesulfonic acid $(0.6 \mu \mathrm{~L}, 0.00687 \mathrm{mmol}$,
$3.3 \mathrm{~mol} \%$) were added at room temperature, and the solution was stirred at room temperature for 30 min . Styrene $\mathbf{3 a}(463 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ was then added to the solution at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then aldimine 2a ($42.2 \mathrm{mg}, 0.206 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The resulting reaction mixture was quenched with triethylamine $(0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the organic phase was concentrated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: n-hexane:EtOAc $=5: 1$ to $1: 15$) to give the desired product $\mathbf{4 a}$ in 58% yield $(30.3 \mathrm{mg})$. The enantiomeric purity of 4a was determined by chiral HPLC analysis (syn:anti $=>99:<1,90 \%$ ee $(s y n)$).
[Procedure of Eq. S8] Based on the samed procedure, p-toluenesulfonic acid monohydrate (1.2 $\mathrm{mg}, 0.00687 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) was used in place of trifluoromethanesulfonic acid. The desired product $\mathbf{4 a}$ was obtained in 7% yield $(3.7 \mathrm{mg})$. The enantiomeric purity of $\mathbf{4 a}$ was determined by chiral HPLC analysis (syn:anti $=97: 3,89 \%$ ee (syn)).
(2) Effect of the addition of 2,6-di-tert-butylpyridine ($3.3 \mathrm{~mol} \%$) on the catalytic reaction of a 3:1:3 complex of (R) - $\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}(3.3 \mathrm{~mol} \%)$.

As shown in Eq. 10, the addition of 2,6-di-tert-butylpyridine completely deactivated the catalytic activity of a $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$. This result might support proton-catalysis.

[Procedure of Eq. 10] (R)-1a ($13.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane (2 mL). To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of (R)-1a was obtained in situ as pale yellow solid. Then dichloroethane (20 mL), well-activated MS $3 \AA(50 \mathrm{mg})$, and 2,6 -di-tert-butylpyridine ($1.5 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) were added at room temperature, and the solution was stirred at room temperature for 30 min . Styrene $\mathbf{3 a}(463 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ was then added to the solution at
$0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then aldimine 2a ($41.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h . The resulting reaction mixture was quenched with triethylamine $(0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the organic phase was concentrated under reduced pressure. The resultant residue was analyzed by ${ }^{1} \mathrm{H}$ NMR measurement. As a result, no desired product was obtained and starting materials were fully recovered.
(3) Effect of the addition of methallyltrimethylsilane ($10 \mathrm{~mol} \%$) on the catalytic reaction of a $3: 1: 3$ complex of $(R) \mathbf{- 1 a} / \mathrm{Mg} / \mathrm{K}(3.3 \mathrm{~mol} \%)$.

As shown in Eq. 10, the addition of methallyltrimethylsilane completely deactivated the catalytic activity of a $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$. This result also might support the proton-catalysis.

[Procedure of Eq. 10] (R)-1a ($13.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was placed in a Schlenk test tube under a nitrogen atmosphere and dissolved in dry dichloroethane $(2 \mathrm{~mL})$. To a stirred solution were added magnesium ethoxide (0.10 M in methanol, $66.7 \mu \mathrm{~L}, 0.0067 \mathrm{mmol}, 3.3 \mathrm{~mol} \%$) and potassium tert-butoxide (1.0 M in methanol, $20 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) at room temperature, and the solution was stirred for 1 h . The volatiles were removed in vacuo, and then dichloroethane (1 mL) was added and removed in vacuo again. This solvent-removal sequence was repeated twice, and the magnesium/potassium salt of (R)-1a was obtained in situ as pale yellow solid. Then dichloroethane (20 mL), well-activated MS $3 \AA(50 \mathrm{mg})$, and methallyltrimethylsilane ($3.6 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added at room temperature, and the solution was stirred at room temperature for 30 min . Styrene 3a ($463 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) was then added to the solution at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then aldimine 2a $\left(41.1 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The resulting reaction mixture was quenched with triethylamine $(0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the organic phase was concentrated under reduced pressure. The resultant residue was analyzed by ${ }^{1} \mathrm{H}$ NMR measurement. As a result, no desired product was obtained and starting materials were fully recovered.

22. Control experiments with the use of achiral Bronsted acids and Lewis acids.

To confirm whether or not the proton in the $\mathrm{SO}_{3} \mathrm{H}$ moiety would be the active center in the 3:1:3 complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ (i.e., to confirm whether $\mathrm{Mg}(\mathrm{II})$ and $\mathrm{K}(\mathrm{I})$ are unlikely to be active centers), we examined some achiral Brønsted acids as well as achiral Lewis acids (Table S8). As a result, the reaction did not proceed in the presence of weak Brønsted acids, such as $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$, p - $\mathrm{TsOH},(\mathrm{PhO})_{2} \mathrm{PO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (entries 2-6). On the other hand, stronger Brønsted acids, such as $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{TfOH}$, and $\mathrm{Tf}_{2} \mathrm{NH}$, promoted the reaction, and the yields were improved in the order $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}<\mathrm{TfOH}<\mathrm{Tf}_{2} \mathrm{NH}$ (entries 7-9). Strong Lewis acids, such as $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, which are conventionally used in N-Boc-cleavage reactions, ${ }^{16}$ were also examined (entries 11 and 12). As a result, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ promoted the reaction moderately (32% yield), although the syn/anti-diastereoselectivity was low (67:32), whereas $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ did not

Table S8. Control experiments with achiral acid catalysts. ${ }^{a}$

entry	acid	$\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{H}_{2} \mathrm{O}^{b}$	$\mathrm{p} K_{\mathrm{a}}$ in DMSO^{c}	yield (\%)	syn-4a:anti-4a
1	-	-	-	0	-
2	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	4.76	-	0	-
3	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	0.26	-	0	-
4	$(\mathrm{PhO})_{2} \mathrm{PO}_{2} \mathrm{H}$	$0.26{ }^{\text {d }}$	-	0	-
5	p-TsOH	-1.34	-	0	-
6	$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$	-2.0	-	0	-
7	$\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$	$-4.9{ }^{\text {e }}$	-10.3	30	75:25
8	TfOH	-13.0	-11.4	70	71:29
9	$\mathrm{Tf}_{2} \mathrm{NH}$	-	-11.9	84	80:20
11^{f}	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	-	-	0	-
12^{f}	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	-	-	32	67:33
13	$\begin{gathered} (R)-1 \mathrm{a}: \mathrm{Mg}: \mathrm{K}=3: 1: 3 \\ (3.3 \mathrm{~mol} \%) \end{gathered}$	-	-	56	$>99:<1$

${ }^{a}$ The reaction was carried out with $\mathbf{2 a}(0.20 \mathrm{mmol}), \mathbf{3 a}(4 \mathrm{mmol})$ in dichloroethane at $0{ }^{\circ} \mathrm{C}$ for 2 h in the presence of $10 \mathrm{~mol} \%$ of the catalyst. ${ }^{b}$ Gryko, D.; Zimnicka, M.; Lipiński, R. J. Org. Chem. 2007, 72, 964. ${ }^{c}$ Kütt, A.; Rodima, T.; Saame, J.; Raamat, E.; Mäemets, V.; Kaljurand, I.; Koppel, I. A.; Garlyauskayte, R. Y.; Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76, $391{ }^{d}$ Krašovec, F.; Jan, J. Croat. Chem. Acta 1963, 35, 183. ${ }^{e}$ Klähn, M.; Seduraman, A.; Wu, P. J. Phys. Chem. B 2011, 115, $8231 .{ }^{f}$ MS $3 \AA$ was used.
promote the reaction. Overall these results strongly support the notion that strong Brønsted acids would facilitate the reaction more efficiently than Lewis acids. Moreover, the Brønsted acidity of our $3: 1: 3$ complex of $(R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K}$ (entry 13) might be stronger than those of p - TsOH (entry 5) and $\mathrm{CH}_{3} \underline{S O}_{3} \underline{\mathrm{H}}$ (entry 6), and weaker than those of TfOH (entry 8) and $\mathrm{Tf}_{2} \mathrm{NH}$ (entry 9).

23. Control experiments with the use of chiral Bronsted acids

Moreover, other chiral Brønsted acid catalysts were examined (Table S9). As a result, highly regarded chiral phosphoric acid $\mathbf{S 1 2}$ (TRIP) ${ }^{17}$ did not promote the reaction due to the weak Brønsted acidity (entry 3). Even chiral phosphoric acid S13, ${ }^{18}$ which would have stronger Brønsted acidity than S12, was not effective (entry 4). Moreover, chiral phosphoramides S14 and S15, ${ }^{19}$ as stronger Brønsted acid catalysts, promoted the reaction, although the yield, syn/anti-ratio, and enantioselectivity of $\mathbf{4 a}$ were not good (entries 5-8). Highly Brønsted acidic chiral disulfonimide catalyst $\mathbf{S 1 6}{ }^{20}$ also promoted the reaction, but the syn/anti-ratio and enantioselectivity of $\mathbf{4 a}$ were decreased (entries 9 and 10). Finally, our previous methodology using (R)-BINSA ammonium salts was examined. As a result, $\mathbf{S 1 7}^{21}$ slightly promoted the reaction with low selectivities, whereas no reaction occurred when we used less acidic $\mathbf{S 1 8}{ }^{22}$.

Table S9. Screening of other chiral catalysts. ${ }^{a}$

Table S9 (Continued).

Entry	Catalyst	Drying agent	Yield (\%) of $\mathbf{4 a} / 5 a / 6 a / 7 a$ by ${ }^{1} \mathrm{H}$ NMR	Isolated yield (\%) of $\operatorname{syn}-\mathbf{4 a}$	syn-4a:anti-4a	$\begin{gathered} \text { ee (\%) of } \\ \text { syn-4a } \end{gathered}$
$1^{\text {b }}$	$\begin{gathered} \text { 3:1:3 } \\ \text { complex of } \\ (R)-\mathbf{1 a} / \mathrm{Mg} / \mathrm{K} \end{gathered}$	-	59/0/0/20	56	>99:<1	95
$2^{\text {b }}$	$\begin{gathered} \text { 3:1:3 } \\ \text { complex of } \\ (R)-\mathbf{- a} / \mathrm{Mg} / \mathrm{K} \end{gathered}$	MS 3Å	92/4/0/0	91	>99: <1	96
3	S12	-	0/0/0/47	0	-	-
4	S13	-	0/0/0/20	0	-	-
5	S14	-	57/0/22/22	55	84:16	-21
6	S14	MS 3Å	47/10/7/0	47	88:12	-24
7	S15	-	42/0/5/21	40	87:13	40
8	S15	MS 3Å	55/3/12/0	30	87:13	24
9	S16	-	31/6/0/18	31	74:26	19
10	S16	MS 3A	43/9/5/0	42	78:22	18
11	S17	-	12/4/0/34	12	84:16	-17
12	S17	MS 3Å	26/8/3/0	25	87:13	-18
13	S18	-	0/0/0/0	0	-	-
14	S18	MS 3Å	0/0/0/0	0	-	-

[^4]
24. Re-investigation of our previous works.

To confirm whether or not chiral BINSA ammonium salt catalysts might dissolve the drying agents and take up the corresponding metal ions, we re-investigated our previous works (1) and (2), as shown following the conclusion.

> Conclusion: Our previous reactions with chiral BINSA ammonium salt catalysts might not be affected by MgSO_{4}. Chiral BINSA ammonium salts might be fairly neutralized, and would have much weaker Brønsted acidity than the original chiral BINSA alone. Therefore, chiral BINSA ammonium salts in the presence of MgSO_{4} under mixing conditions may not easily dissolve MgSO_{4}. However, the Brønsted acidity of the corresponding chiral BINSA ammonium salts would strongly depend on the basicity of the selected amines. Therefore, we must be careful regarding catalyst preparation and/or the reaction conditions to avoid leaching Mg^{2+} when we use strong Brønsted acids. Equal attention should be paid to other drying agents, such as $\mathrm{Na}_{2} \mathrm{SO}_{4}$, molecular sieves, etc.

(1) Direct Mannich-type reaction of aldimine S1 and acetylacetone S19. ${ }^{21}$

The original data for the reaction of aldimine $\mathbf{S} 1$ with acetylacetone $\mathbf{S} 19$ are shown in Eq. S9. S20 was obtained in 91% yield with 90% ee in the presence of chiral BINSA ammonium salt catalyst and MgSO_{4} in dichloromethane at $0{ }^{\circ} \mathrm{C} .{ }^{21}$ When the reaction was conducted without $\mathrm{MgSO}_{4}, \mathbf{S 2 0}$ was obtained in 50% yield with 93% ee (Eq. S10). The yield was decreased since adventitious water decomposed $\mathbf{S 1}$ at $0{ }^{\circ} \mathrm{C}$. Next, we examined the reaction with the chiral BINSA $\mathrm{Mg}(\mathrm{II})$ salt, which was prepared in advance from (R) - $\mathrm{BINSA}, \mathrm{Mg}(\mathrm{OEt})_{2}$, and 2,6- Ph_{2}-pyridine, in the presence of MgSO_{4} (Eq. S11). As a result, $\mathbf{S 2 0}$ was obtained quantitatively but the enantioselectivity was only 37% ee. These results strongly suggest that MgSO_{4} in this catalysis would not be dissolved and thus would not be involved in the complexation of the chiral BINSA ammonium salt catalyts.
[Reaction procedure] A well-dried pylex Schlenk tube was charged with (R)-1,1'-binaphthyl-2,2'-disulfonic acid (BINSA) ($1.0 \mathrm{mg}, 0.0025 \mathrm{mmol}$) and 2,6-diphenylpyridine $(1.2 \mathrm{mg}, 0.005 \mathrm{mmol})$ under nitrogen atmosphere. 2 mL of acetonitrile was added, and the solution was stirred at room temperature for 15 min . The volatile solvent was removed in vacuo, and then $\mathrm{MgSO}_{4}(50 \mathrm{mg})$ and 1.5 mL of dichloromethane were added, and the suspension was stirred at room temperature for 30 min . The mixture was cooled to $0^{\circ} \mathrm{C}$, and aldomine $\mathbf{S 1}$ (89.7 $\mathrm{mg}, 0.375 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ was added via a cannula, and then acetylacetone $\mathbf{S 1 9}(25.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ was added over 1 h (A syringe pump is
useful if available.). After that, the resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , by monitoring the TLC. 10 mL of saturated NaHCO_{3} aqueous solution was poured into the reaction mixture, the product was extracted with ehyl acetate $(15 \mathrm{~mL} \times 2)$. The combined extracts were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), to give the desired product $\mathbf{S 2 0}(77.2 \mathrm{mg}, 91 \%$ yield). The enantiomeric purity was determined by chiral HPLC (AD-H; hexane $/ \mathrm{EtOH}=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}=47.3 \mathrm{~min}$ (minor, S), 52.3 min (major, R), 90% ee (R)).

(2) Aza-Friedel-Crafts reaction of pyrrole S21 with aldimine S1. ${ }^{21}$

The original data for the reaction of pyrrole S21 with aldimine S1 are shown in Eq. S12. S22 was obtained in 84% yield with 89% ee in the presence of chiral BINSA ammonium salt catalyst and MgSO_{4} in dichloromethane at $-78{ }^{\circ} \mathrm{C} .{ }^{22}$ When the reaction was conducted without MgSO_{4}, S22 was obtained in 86% yield with 85% ee (Eq. S13). In this case, the yield was not decreased (cf. Eq. S10) despite the presence of adventitious water, since the reaction temperature was $-78{ }^{\circ} \mathrm{C}$. Next, we examined the reaction with the chiral BINSA $\mathrm{Mg}(\mathrm{II})$ salt, which was prepared in advance from (R)-BINSA, $\mathrm{Mg}(\mathrm{OEt})_{2}$, and $N, N-\mathrm{Me}_{2} \mathrm{NBu}$ in the presence of MgSO_{4} (Eq. S14). As a result, S22 was scarcely obtained (5\% yield) and the enantioselectivity was only 1% ee. These results
strongly suggest that MgSO_{4} in this catalysis also would not affect the complexation of the chiral BINSA ammonium salt catalyst.
[Reaction procedure] A well-dried pyrex Schlenk tube was charged with (R)-BINSA (4.1 mg , $0.01 \mathrm{mmol})$ and N, N-dimethylbutylamine $(1.4 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ under a nitrogen atmosphere. 2 mL of acetonitrile was added, and the solution was stirred at room temperature for 30 min . The volatile solvent was removed in vacuo at room temperature for 1 h , and then $\mathrm{MgSO}_{4}(40 \mathrm{mg}), 1.5$ mL of dichloromethane, and n-benzylpyrrole $\mathbf{S 2 1}(30.8 \mu \mathrm{~L} 0.20 \mathrm{mmol})$ were added. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Aldimine $\mathbf{S 1}(71.8 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ was added via a cannula. The resultant mixture was then stirred at $78{ }^{\circ} \mathrm{C}$ for 30 min . 1 mL of saturated NaHCO_{3} aqueous solution was poured into the reaction mixture, and the product was extracted with ethyl acetate $(15 \mathrm{~mL} \times 2)$. The combined extracts were washed with brine $(10 \mathrm{~mL})$ and dried over MgSO_{4}. The organic phase was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography (eluent: n-hexane $/ \mathrm{AcOEt}=3 / 1$ to $1 / 1$) to give the desired product $\mathbf{S 2 2}(66.7 \mathrm{mg}, 84 \%$ yield). The enantiomeric purity was determined by chiral HPLC (AD-H, n-hexane $/ i-\operatorname{PrOH}=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R}}=22.9 \mathrm{~min}(\operatorname{minor}, R), 26.1 \mathrm{~min}($ major, $S), 89 \%$ ee (S)).

26. Additional mechanistic consideration.

For another possible mechanism, formation of $\mathbf{S} 23^{5}$ cannot be completely ruled out as shown Eq. S15, although unstable $\mathbf{S 2 3}$ might readily decompose to $\mathbf{S} 24$ by releasing CO_{2}.

Therefore, we additionally examined another substrate with $\beta-\mathrm{H}$ on the $N-\mathrm{CO}_{2}$ moiety (Eq. S16). As a result, $N-\mathrm{CO}_{2} \mathrm{Et}$-aldimine, which might be let to $\mathbf{S 2 3}$, was not effective under our standard conditions, and $\mathbf{4 a}$ was not obtained since a reaction gave a complex mixture. This result might strongly suggest that nucleophilicity of N-protected intermediate $\mathbf{S 2 5}$ in the concertet pathway should be important, although steric factor of $\mathrm{N}-\mathrm{CO}_{2} \mathrm{R}$ might also affected the results. In anyway, at this preliminaly stage, we cannot conclude the mechamism, and further investigation should be necessary.

27. References.

(1) Hatano, M.; Ozaki, T.; Nishikawa, K.; Ishihara, K. J. Org. Chem. 2013, 78, 10405.
(2) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
(3) Richter, H.; Fröhlich, R.; Daniliuc, C.-G.; Mancheño. O. G. Angew. Chem. Int. Ed. 2012, 51, 8656.
(4) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518.
(5) Uddin, N.; Ulicki, J. S.; Foersterling, F. H.; Hossain, M. M. Tetrahedron Lett. 2011, 52, 4353.
(6) Davies, S. G.; Garner, A. C.; Roberts, P. M.; Smith, A. D.; Sweet, M. J.; Thomson, J. E. Org. Biomol. Chem. 2006, 4, 2753.
(7) Kano, T.; Yurino, T.; Asakawa, D.; Maruoka, K. Angew. Chem. Int. Ed. 2013, 52, 5532.
(8) Momiyama, N.; Okamoto, H.; Kikuchi, J.; Korenaga, T.; Terada, M. ACS Catal. 2016, 6, 1198.
(9) Narasaka, K.; Ukaji, Y.; Yamazaki, S. Bull. Chem. Soc. Jpn. 1986, 59, 525.
(10) Lanter, J. C.; Chen, H.; Zhang, X.; Sui, Z. Org. Lett. 2005, 7, 5905.
(11) Tokizane, M.; Sato, K.; Ohta, T.; Ito, Y. Tetrahedron: Asymmetry 2008, 19, 2519.
(12) (a) Sugimura, T.; Hagiya, K. Chem. Lett. 2007, 36, 566. (b) Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. Tetrahedron 2009, 65, 6109.
(13) Konishi, H.; Nagase, H.; Manabe, K. Chem. Commun. 2015, 51, 1854.
(14) (a) Müller, A.; Polborn, K.; Wanner, K. T. J. Heterocyclic Chem. 2007, 44, 575. (b) Müller, A.; Höfner, G.; Renukappa-Gutke, T.; Parsons, C. G.; Wanner, K. T. Bioorg. Med. Chem. Lett. 2011, 21, 5795.
(15) Mashiko, T.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 14990.
(16) Wuts, P. G. M. Greene's Protective Groups in Organic Synthesis (Fifth Edition), John Wiley \& Sons, 2014.
(17) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368.
(18) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583.
(19) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
(20) García-García, P.; Lay, F.; García-García, P.; Rabalakos, C.; List, B. Angew. Chem. Int. Ed. 2009, 48, 4363.
(21) Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858.
(22) Hatano, M.; Sugiura, Y.; Akakura, M.; Ishihara, K. Synlett 2011, 2011, 1247.

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-4a

syn-4a by the catalysis
mAU
D: $¥$ Data $¥ K N \neq K N 1191$ ph ph IA3 73 1.0.lcd

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
PDA Ch2 210nm 4nm
Cuin

Peak No	RT (min)	Area	Height (mV)	\% Area
1	9.895	12448185	621978	98.116
2	18.645	238998	7569	1.884
Total		12687183	629547	100.000

IA-3,

n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
(syn-4b)

Racemic syn-4b

1 PDA Multi $5 / 254 n m 4 n m$
syn-4b by the catalysis

1 PDA Multi $5 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table				
Peak Ch5 254nm 4nm RT (min) Area Height (mV) \% Area 1 9.859 821348 38470 2 14.153 7225 29.128 Total 828573 38692	0.872			

(syn-4c)

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-4c

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-4c by the catalysis
D: $7720 ¥ \mathrm{KN} ¥ \mathrm{KN} 1225 . \mathrm{Icd}$

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch1 210 nm 4 nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	10.254	12953716	484657	96.925
2	18.688	410897	11909	3.075
Total		13364613	496567	100.000

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-4d)

Racemic syn-4d

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-4d by the catalysis

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

Racemic syn-4e
D: $¥ 720 ¥ \mathrm{KN} ¥ \mathrm{KN} 1640.1 \mathrm{~cd}$
$m A U$

1 PDA Multi 3/254nm 4nm
syn-4e by the catalysis

1 PDA Multi 3/254nm 4nm
Peak Table
SPD-M20A Ch3 254 nm 4 nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	9.626	2871414	181193	99.589
2	16.713	11855	423	0.411
Total		2883269	181616	100.000

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-4f)

Racemic syn-4f

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-4f by the catalysis

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

SPD-M20A Ch1 210nm 4nm			Peak Table	
Peak No.	RT (min)	Area	Height (mV)	\% Area
1	9.547	690588	22044	0.819
2	11.769	80852396	2735193	95.878
3	12.800	1589657	65157	1.885
4	21.882	1195746	34411	1.418
Total		84328386	2856805	100.000

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
(syn-4g)

Racemic syn-4g
D: $¥ 720 ¥ \mathrm{KN} ¥ \mathrm{KN} 1357 . \mathrm{lcd}$
mAU

1 PDA Multi 3/254nm 4nm
syn- $\mathbf{4 g}$ by the catalysis

1 PDA Multi 3/254nm 4nm
Peak Table

| SPD-M20A Ch3 254 nm 4 nm | |
| ---: | ---: | ---: | ---: | ---: |
| Peak No. RT (min) Area Height (mV)
 1 12.226 4090115 195947
 2 20.331 21761 707
 Total 4111876 196654 | 0.571 |

OD-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
(syn-4h)

Racemic syn-4h

1 PDA Multi 3/254nm 4nm
syn-4h by the catalysis
D: $¥ 720 ¥ \mathrm{KN} ¥ \mathrm{KN} 1487$ OD3.lcd

1 PDA Multi $3 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch3 254nm 4nm

SPD-M20A				
Peak No.	RT (min)	Area	Height (mV)	\% Area
1	12.670	19169	600	2.491
2	15.016	5852	181	0.760
3	16.299	727379	19183	94.526
4	17.323	17101	676	2.222
Total		769500	20640	100.000

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-4i)

Racemic syn-4i

1 PDA Multi 2/210nm 4nm
syn-4i by the catalysis

D: $¥$ Data $¥ K N ¥ K N 1352$ 4-F-ph ph.lcd
mAU

1 PDA Multi 2/210nm 4nm

Peak Table

PDA Ch2 210 nm 4 nm

Peak No	RT (min)	Area	Height (mV)	\% Area
1	11.222	15325621	667068	97.977
2	17.926	316390	11367	2.023
Total		15642011	678435	100.000

(syn-4j)

IA-3,

n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-4j

D:¥Data $¥ K N \neq K N 4-B r-p h$ ph authen IA3 73 1.0.led

1 PDA Multi 2/210nm 4nm
syn-4j by the catalysis

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table

SPD-M20A Ch1 210nm 4nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	10.674	26252799	1146607	97.573
2	14.311	653106	23464	2.427
Total		26905905	1170070	100.000

IA-3,

n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$
(syn-4k)

Racemic syn-4k
D: $¥ 720 ¥ \mathrm{KN} ¥ \mathrm{KN} 1344 . \mathrm{lcd}$

syn- $4 \mathbf{k}$ by the catalysis

1 PDA Multi $5 / 280 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch5 280nm 4nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	10.997	9262626	456599	99.012
2	18.102	92464	3124	0.988
Total		9355089	459723	100.000

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
(syn-41)

Racemic syn-41

D:¥Data¥KN¥KN 2-naph ph authen IA3 7 3.lcd

1 PDA Multi 5/254nm 4nm
syn-41 by the catalysis

1 PDA Multi $5 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PDA Ch5 254nm 4nm Peak Table				
Peak No	RT (min)	Area	Height (mV)	\% Area
1	14.022	925460	26587	98.319
2	23.107	15822	353	1.681
Total		941282	26940	100.000

IA-3,

n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-4m)

Racemic syn-4m

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-4m by the catalysis

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table

SPD-M20A Ch1 210nm 4nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	10.822	4789950	206488	97.416
2	15.132	127055	4175	2.584
Total		4917004	210663	100.000

$\begin{aligned} & \text { AD-3, } \\ & n \text {-hexane } / i-\operatorname{PrOH}=7 / 3, \\ &(\text { syn-4n) } \quad 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}\end{aligned}$

Racemic syn-4n
D: $¥$ Data $¥ K N \neq K N 1447$ AD3.lcd

1 PDA Multi 2/210nm 4nm
syn- $\mathbf{4 n}$ by the catalysis

1 PDA Multi 2/210nm 4nm

IA-3,

n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-8a)

Racemic syn-8a

D: \because Data $¥ K N ¥ K N$ ph 4-Me-ph authentic IA3 73 1.0.lcd

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-8a by the catalysis

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table					
PDA Ch2 210nm 4nm					
Peak No RT (min) Area Height (mV) \% Area 1 11.054 920988 49110 3.443 2 11.789 668226 35609 2.498 3 12.376 23835475 931721 89.105 4 25.572 1325254 33846 4.954 Total 26749943 1050286 100.000					

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-8b

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-8b by the catalysis

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch1 210nm 4nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	11.696	3522958	105957	5.651
2	13.350	52805847	1491468	84.701
3	16.183	2994248	82382	4.803
4	33.626	3020512	59274	4.845
Total		62343564	1739082	100.000

Racemic syn-8c

1 PDA Multi 2/210nm 4nm
syn-8c by the catalysis
D: \because Data $¥ K N \neq K N 1410 . \mathrm{lcd}$

1 PDA Multi 2/210nm 4nm
PDA Ch2 210nm 4nm

Peak No	RT (min)	Area	Height (mV)	\% Area
1	12.285	7501461	325569	98.796
2	27.261	91395	2178	1.204
Total		7592856	327746	100.000

IA-3,

n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
(syn-8d)

Racemic syn-8d

1 PDA Multi 3/254nm 4nm
syn-8d by the catalysis

1 PDA Multi $3 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table

SP-M20A Ch3 254 nm 4 nm			
SPD-M Peak Table Peak No. RT (min) Area Height (mV) \% Area 1 13.948 4222081 183974 98.503 2 24.973 64174 1686 1.497 Total 4286255 185660 100.000			

(syn-8e)

Racemic syn-8e
D: $¥ 720 ¥ K N \neq K N 1429$ OD3 9-1 1.0.lcd

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-8e by the catalysis

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M2OA Ch1 210 nm 4 nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	39.380	379731	4452	3.238
2	44.159	10273345	102365	87.605
3	54.700	254449	2113	2.170
4	68.139	819357	6773	6.987
Total		11726882	115703	100.000

(syn-8f)

Racemic syn-8f

1 PDA Multi 2/210nm 4nm
syn-8f by the catalysis

1 PDA Multi 2/210nm 4nm

PDA Ch2 210nm 4nm Peak Table				
Peak No	RT (min)	Area	Height (mV)	\% Area
1	8.150	1529512	91976	4.924
2	9.435	26239851	1106620	84.480
3	25.853	3290898	76839	10.595
Total		31060260	1275434	100.000

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-8g)

Racemic syn-8g

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-8g by the catalysis

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch1 210nm 4nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	19.831	70970579	1604868	95.964
2	63.007	2984724	31456	4.036
Total		73955304	1636324	100.000

Br (syn-8h)

IA-3,

n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-8h

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
syn-8h by the catalysis
D: $¥ 720 ¥ K N \nVdash K N 1508 . l c d$

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch1 210nm 4nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	15.928	96967452	2951852	97.880
2	36.767	2099873	33867	2.120
Total		99067325	2985719	100.000

IA-3,

n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$
(syn-8i)

Racemic syn-8i

syn- $\mathbf{8 i}$ by the catalysis

1 PDA Multi $5 / 280 \mathrm{~nm} 4 \mathrm{~nm}$

SPD-M20A Ch5 280nm 4nm			Peak Table	
Peak No.	RT (min)	Area	Height (mV)	\% Area
1	7.728	167577	10345	0.670
2	8.608	119279	6776	0.477
3	10.057	24175208	1132787	96.659
4	14.170	548649	22049	2.194
Total		25010713	1171958	100.000

IA-3,

n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-8j

syn-8j by the catalysis

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table

SPD-M20A Ch2 210nm 4nm

Peak No	RT (min)	Area	Height (mV)	\% Area
1	11.342	901743	41231	3.442
2	13.558	405241	15322	1.547
3	14.655	24210188	820318	92.413
4	26.542	680724	13911	2.598
Total		26197896	890782	100.000

(syn-10)

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

Racemic syn-10

1 PDA Multi $5 / 254 \mathrm{~nm} 4 n m$
syn-10 by the catalysis

PDA Ch5 254nm 4nm			Peak Table	
Peak No	RT (min)	Area	Height (mV)	\% Area
1	5.702	92877	7216	2.653
2	6.614	84502	6282	2.414
3	9.410	3078028	183078	87.925
4	16.194	245318	9494	7.008
Total		3500724	206071	100.000

(1,3-syn-2,3-anti-12)

Racemic 1,3-syn-2,3-anti-12
$\mathrm{IA}-3$,
n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

1,3-syn-2,3-anti-12 by the catalysis

1 PDA Multi $2 / 210 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table					
Peak No RT (min) Area 1 10.024 26173999 2 14.650 91571 Total 26265570	1146300	9537	0.651		

IA-3,
n-hexane $/ i-\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$
(syn-14)

Racemic syn-14

syn-14 by the catalysis

(syn-15)

OD-3,
n-hexane $/ i$ - $\mathrm{PrOH}=9 / 1$,
$0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic syn-15

syn- $\mathbf{1 5}$ derived through the catalysis

1 PDA Multi 1/210nm 4nm
Peak Table
SPD-M20A Ch1 210 nm 4 nm

Peak No.	RT (min)	Area	Height (mV)	$\%$ Area
1	40.489	13722	240	1.644
2	44.148	820903	12173	98.356
Total		834625	12414	100.000

(anti-15)

OD-3,
n-hexane $/ i-\mathrm{PrOH}=9 / 1$,
$0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Racemic anti-15
D: $¥ 720 \neq \mathrm{KN} \neq \mathrm{KN}$ anti rac NH 2 OH OD3 9-1 $0.8 . \mathrm{Icd}$
mAU

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
anti- $\mathbf{1 5}$ derived through the catalysis

D: $¥ 720 ¥ \mathrm{KN} ¥ \mathrm{KN}$ anti ee NH 2 OH OD3 9-1 0.8 . Icd
mAU

1 PDA Multi $1 / 210 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table
SPD-M20A Ch1 210 nm 4 nm

Peak No.	RT (min)	Area	Height (mV)	\% Area
1	24.551	80264	1932	0.662
2	25.592	12036508	209714	99.338
Total		12116772	211646	100.000

OD-3,
n-hexane $/ i$ - $\mathrm{PrOH}=7 / 3$,
$1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
(20)

Racemic 20

1 PDA Multi 3/254nm 4nm

20 derived through the catalysis

(R)-1a)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-4e)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-4h)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-4)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-4)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-4m)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-4n)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
S-B15

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(syn-8f)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(syn-8g)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-8j)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
S-B26

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
S-B27

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(S9)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(syn-15)
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]: ${ }^{a}$ The reaction was carried out with $\mathbf{2 a}(0.20 \mathrm{mmol})$, $\mathbf{3 a}(4 \mathrm{mmol})$ in dichloroethane at $0{ }^{\circ} \mathrm{C}$ for 5 h in the presence of $3.3 \mathrm{~mol} \%$ of the catalyst and MS $3 \AA .{ }^{b} 2 \mathrm{mmol}$ of $\mathbf{3 a}$ was used. ${ }^{c} 1.7 \mathrm{~mol} \%$ of the catalyst was used.

[^1]: ${ }^{a}$ The reaction was carried out with $\mathbf{2 a}(0.20 \mathrm{mmol}), \mathbf{3 a}(4 \mathrm{mmol})$ in dichloroethane at $0{ }^{\circ} \mathrm{C}$ for 5 h in the presence of $3.3 \mathrm{~mol} \%$ of the catalyst and MS $3 \AA$.

[^2]: ${ }^{a}$ The reaction was carried out with $\mathbf{2 a}(0.20 \mathrm{mmol})$, $\mathbf{3 a}(4 \mathrm{mmol})$ in dichloroethane at $0{ }^{\circ} \mathrm{C}$ for 5 h in the presence of $3.3 \mathrm{~mol} \%$ of catalysts and in the presence or absence of MS $3 \AA$. For convenience to understand the catalysts, possible structures of the catalysts are shown below, although the positions of H^{+}and K^{+}ions were not determined.

[^3]: ${ }^{a}$ The reaction was conducted in dichloroethane at $0{ }^{\circ} \mathrm{C}$ for 2 h on a 0.20 mmol scale of $\mathbf{2 a}$ in the absence of MS $3 \AA$.
 ${ }^{b} \mathrm{Mg}(\mathrm{OEt})_{2}$ was used as a magnesium source as described in the general reation procedure. ${ }^{c} \mathrm{KO} t$ - Bu was used as a potassium source as described in the general reation procedure.

[^4]: ${ }^{a}$ The reaction was carried out with $\mathbf{2 a}(0.20 \mathrm{mmol}), \mathbf{3 a}(4 \mathrm{mmol})$ in dichloroethane at $0{ }^{\circ} \mathrm{C}$ for 2 h in the presence of $10 \mathrm{~mol} \%$ of the catalyst unless otherwise noted. ${ }^{b}$ Reaction time was $5 \mathrm{~h} .(R) \mathbf{- 1}(10 \mathrm{~mol} \%), \mathrm{KO} t-\mathrm{Bu}(10$ $\mathrm{mol} \%)$, and $\mathrm{Mg}(\mathrm{OEt})_{2}$ ($3.3 \mathrm{~mol} \%$) were used as a catalyst.

