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1. Experimental methods 

The sample consists of high-quality monolayers of WS2 that were CVD-grown on sapphire 
substrates [1, 2], and all measurements in this study were conducted at ambient condition (300 K, 
1 atm). In our experiments, we used a Ti:sapphire amplifier producing laser pulses with duration 
of 50 fs and at 30 kHz repetition rate. Each pulse was split into two arms. For the pump arm, the 
pulses were sent to a second-harmonic nonlinear crystal, while for the probe arm the pulses were 
sent through a delay stage and a white-light continuum generator (ℎ𝜈 = 1.78-2.48 eV, chirp-
corrected). The two beams were focused at the sample, and the probe beam was reflected to a 
monochromator and a photodiode for lock-in detection [3, 4]. By scanning the grating and the 
delay stage, we were able to measure 𝛥𝑅/𝑅 (and hence 𝛼, [3]) as a function of energy and time 
delay. 

 

2. Kramers-Kronig analysis 

Throughout our analysis, we used the proper definitions of reflectance 𝑅, transmittance 𝑇 and 
absorptance 𝛼, which respectively means the fractions of incident electromagnetic power that is 
reflected, transmitted and absorbed at the monolayer interface (between vacuum and substrate). 
This is in contrast to reflectivity and transmittivity, which are technically only valid for semi-
infinite system. In the main text, we also used more familiar names such as absorbance and 
absorption to mean, quantitatively, the absorptance 𝛼 of monolayer WS2. 

Pump-probe experiments detect small changes in probe reflectance (or transmittance) that is 
induced by pump excitation. This gives the differential reflectance ∆𝑅/𝑅 as a function of energy 
and time delay, from which we can obtain the transient reflectance, 𝑅 𝑡 = 𝑅+(1 + ∆𝑅(𝑡)/𝑅+), 
where 𝑅+  is the reflectance of the system in equilibrium. In fact, the absorptance 𝛼  (or the 
induced absorptance Δ𝛼) is what we really want (as shown in the main text) because it provides 
the explicit information about the optical transition matrix element of the system. The 
absorptance and the reflectance are related through the complex dielectric function 𝜖 . This 
relation can be derived using Maxwell equations (see section S3). We obtain 𝜖 𝜔, 𝑡  by fitting 
𝑅 𝜔, 𝑡  using a Kramers-Kronig (KK) constrained variational analysis [5]. Finally, we construct 
𝛼(𝜔, 𝑡) by repeating this procedure at different time delays. The details of the above procedure 
are described as follows. 

First, we want to find the relation between the complex dielectric function and the optical 
properties such as reflectance, transmittance and absorptance by using Maxwell’s equations. It is 
important to include the substrate influence on electromagnetic radiation especially for 
atomically-thin materials. Here, the current density in a monolayer WS2 sample is described by a 
delta function, 𝑗5 = 𝜎 𝜔 𝛿 𝑧 𝐸5  where 𝜎  is the complex conductivity and 𝐸5  is the 𝑥 -
component of the probe electric field (along the sample’s surface). By substituting this into 
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Maxwell’s equations and using the appropriate boundary conditions between the monolayer and 
the substrate, we can obtain the reflectance as 

	 𝑅(𝜔) =
(1 − 𝑛= − >?

@ 𝜖A)
A + (>?@ 𝜖B − 1 )A

(1 + 𝑛= + >?
@ 𝜖A)A + (

>?
@ 𝜖B − 1 )A

	 (1) 

and the transmittance as 

	 𝑇(𝜔) =
4𝑛=

(1 + 𝑛= + >?
@ 𝜖A)A + (

>?
@ 𝜖B − 1 )A

	 (2) 

where 𝑛= is the substrate’s refractive index (1.7675 for sapphire at photon energy of 2.07 eV), 𝑑 
is the effective thickness of the monolayer (0.67 nm), 𝜖B and 𝜖A are the real and imaginary parts 
of the dielectric function, respectively. Here, the 2D dielectric function is expressed as	

	 𝜖(𝜔) = 1 +
4𝜋𝑖𝜎/𝑑
𝜔 	 (3) 

Meanwhile, the absorptance can be expressed as 

	 𝛼(𝜔) =
4>?@ 𝜖A

(1 + 𝑛= + >?
@ 𝜖A)A + (

>?
@ 𝜖B − 1 )A

	 (4) 

These expressions are exact, and they are valid for any monolayer materials on a dielectric 
substrate. We find that the presence of the substrate significantly influences the optical properties 
of the monolayer WS2 above it. As compared to an isolated monolayer WS2, the reflectance is 
enhanced, while both the transmittance and the absorptance are reduced. In graphene, the above 
expressions can be further simplified because the real part of its dielectric function is featureless 
in the visible spectrum (𝜖B ∼ 1, negligible 𝜎A). This is, however, not the case for monolayer 
WS2, and we must include both the real and imaginary parts of the dielectric function to obtain 
accurate results. In situation where none of the equilibrium absorptance, reflectance or 
transmittance spectrum is available, the pump-induced absorptance Δ𝛼  can still be estimated 
pretty well from the measured Δ𝑅/𝑅 or Δ𝑇/𝑇 through the following expression 

	
Δ𝑅
𝑅 =

𝑛= + 1
𝑛= − 1

+
𝑛=

𝑛= − 1	 A
𝛾BA + 𝛾AA

𝛾A
Δ𝛼	 (5) 

	
Δ𝑇
𝑇 = −

𝑛= + 1
2 +

𝛾BA + 𝛾AA

4𝛾A
Δ𝛼	 (6) 

where Δ𝑅 and Δ𝑇 are the pump-induced changes of the probe reflectance 𝑅 and transmittance 𝑇, 
𝑛= is the refractive index of the substrate, 𝛾B = 𝜔𝑑 𝜖B − 1 /𝑐, and 𝛾A = 𝜔𝑑𝜖A/𝑐. In situation 
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where 𝛾BA and 𝛾AA are small, such as graphene and few other TMDs, only the first term in the 
bracket needs be considered. 

In our analysis, we used the equilibrium absorptance 𝛼  of monolayer WS2 measured using 
differential reflectance microscopy (see main text). The absorptance spectrum contains peaks 
from the A exciton at 2.0 eV. The equilibrium reflectance 𝑅+ can then be constructed from 𝛼 by 
finding the appropriate complex dielectric function 𝜖 as expressed in equations (3), (4) and (1). 
To do this, we implemented a Kramers-Kronig (KK) constrained variational analysis [5] to 
extract 𝜖 from the measured 𝛼 in thin-film approximation. Here, the total dielectric function is 
constructed by many Drude-Lorentz oscillators, which are anchored at equidistant energy 
spacing, in the following form 

	 𝜖 𝜔 = 𝜖L +
𝜔M,NA

𝜔+,NA − 𝜔A − 𝑖𝜔𝛾N

O

NPB

	 (7) 

In our calculations, we used 𝑁 = 40 oscillators with a fixed linewidth of 𝛾N = 50 meV spanning 
the energy range of 1.77	𝑒𝑉 ≤ 𝜔+,N ≤ 2.40	𝑒𝑉, and we found that these parameters can fit 𝛼 
spectrum very well. We can then construct 𝑅+  spectrum by using 𝜖 obtained from the above 
analysis. 

The transient absorptance spectra 𝛼(𝑡) can be obtained by performing similar (KK) analysis. 
This time we inferred the absorptance from the reflectance at different time delays: 𝑅 𝑡 =
𝑅+(1 + ∆𝑅(𝑡)/𝑅+), where the differential reflectance ∆𝑅(𝑡)/𝑅+ is measured directly from the 
experiments. 

 

3. Maxwell’s equations for monolayer materials 

In this section, we provide a full derivation from Maxwell's equations in order to obtain the exact 
solutions of reflectance 𝑅(𝜔) , transmittance 𝑇(𝜔)  and absorptance spectra 𝛼(𝜔)  for any 
monolayer materials on a substrate. Readers who are interested in this section should also refer to 
the original articles by L. A. Falkovsky [6] and T. Stauber [7] in the study of graphene. Here, we 
express the solutions in terms of the complex dielectric function 𝜖(𝜔) or conductivity 𝜎(𝜔) for 
Kramers-Kronig analysis as shown in section S2. 
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Figure S1. Schematic of the plane of incidence. 

The electromagnetic wave equation at frequency 𝜔, inside a medium with a dielectric constant 𝜖 
and a current density 𝐣, can be expressed as 

	 ∇ ∇ ⋅ 𝐄 − ∇A𝐄 = 𝜖
𝜔A

𝑐A 𝐄 +
4𝜋𝑖𝜔
𝑐A 𝐣	 (8) 

We consider a situation (Fig S1) where the monolayer medium spreads on the 𝑥𝑦 plane with a 
current density 𝑗5 = 𝜎 𝜔 𝛿(𝑧)𝐸5(𝑥, 𝑡) that is driven by a propagating electric field on the 𝑥𝑧 
plane of the form 𝐄 = 𝐸+5, 0, 𝐸+] 𝑒^(𝐤⋅𝐫a>b). By evaluating the partial derivatives of	𝐄, the two 
components of the wave equation can be expressed as 

	 𝑖𝑘5
𝜕𝐸]
𝜕𝑧 −

𝜕A𝐸5
𝜕𝑧A − 𝜖

𝜔A

𝑐A 𝐸5 =
4𝜋𝑖𝜔
𝑐A 𝑗5	 (9) 

	 𝑖𝑘5
𝜕𝐸5
𝜕𝑧 + 𝑘5A − 𝜖

𝜔A

𝑐A 𝐸] = 0	 (10) 

where we have used 𝜕/𝜕𝑥 → 𝑖𝑘5  because the law of refraction requires that 𝑘5  is conserved, 
while 𝑘] is not. Boundary conditions for the tangential and normal components of the field (red 
arrows) yield 

	 𝐸5 = 𝐸^ − 𝐸f cos 𝜃^ = 𝐸b cos 𝜃b	 (11) 

	 𝜖=𝐸] ]P+k − 𝐸] ]P+l = 4𝜋 𝜌 𝑧 𝑑𝑧
+k

+l
	 (12) 

where we have used 𝜖 = 𝜖= for the substrate and 𝜖 = 1 for the vacuum. The charge density 𝜌 and 
the current density 𝑗5  must satisfy the continuity equation 𝜕𝜌/𝜕𝑡 + ∇ ⋅ 𝐣 = 0. Since they are 
driven by the same external field 𝐸5(𝑥, 𝑡), we can then obtain a relation 
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	 𝜌 = 𝑗5𝑘5/𝜔	 (13) 

Equation (12) can now be evaluated by substituting 𝐸] from equation (10) and 𝜌 from equation 
(13), which yields 

	
𝜖=
𝑘=A
𝜕𝐸5
𝜕𝑧n −

1
𝑘]A
𝜕𝐸5
𝜕𝑧a =

4𝜋𝜎
𝑖𝜔 𝐸5 ]P+	 (14) 

where the relations between 𝑘5, 𝑘]  and 𝑘=  are shown in Fig S1. Note that the fields at the 
boundary are 𝐸5 ]k = 𝐸b𝑒^(No5nNp]) cos 𝜃b  and 𝐸5 ]l = 𝐸^𝑒^𝐤⋅𝐫 − 𝐸f𝑒a^𝐤⋅𝐫 cos 𝜃^ . Substituting 
these will yield 

	
𝜖=
𝑘=
+
4𝜋𝜎
𝜔 𝐸b cos 𝜃b =

1
𝑘]

𝐸^ + 𝐸f cos 𝜃^ 	 (15) 

	 𝐸^ − 𝐸f cos 𝜃^ = 𝐸b cos 𝜃b	 (16) 

These are the two equations that will be used to obtain the reflectance, transmittivity, and 
absorptance of the monolayer. For convenience, we have moved equation (11) into (16). 

At normal incidence, 𝑘= = 𝜖=𝜔/𝑐 and 𝑘] = 𝜔/𝑐, hence the coefficients of amplitude reflection 
and transmission [8] can be simplified into 

	 −𝑟 = −
𝐸f
𝐸^
=
1 − 𝑛= − rst

@

1 + 𝑛= + rst
@
	 (17) 

	 𝑡 =
𝐸b
𝐸^
=

2
1 + 𝑛= + rst

@
	 (18) 

where 𝜎 = 𝜎B + 𝑖𝜎A is the complex conductivity of the monolayer, and we have used 𝜖= = 𝑛= 
for an insulating substrate. Finally, we can obtain the reflectance 𝑅 and the transmittance 𝑇, as 
well as the absorptance 𝛼 through the energy conservation 𝑟 A + 𝑛= 𝑡 A + 𝛼 = 1 [8], 

	 𝑅 = 𝑟 A =
1 − 𝑛= − rstu

@
A + rstv

@
A

1 + 𝑛= + rstu
@

A + rstv
@

A	 (19) 

	 𝑇 = 𝑛= 𝑡 A =
4𝑛=

1 + 𝑛= + rstu
@

A + rstv
@

A	 (20) 

	 𝛼 =
4 rstu

@

1 + 𝑛= + rstu
@

A + rstv
@

A	 (21) 
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The obtained 𝛼 𝜔  is the absorptance of a monolayer medium deposited on an insulating 
substrate. The whole derivation already accounts for the out-of-phase back-reflected electric field 
that reduces the light intensity impinging on the monolayer. The above solutions can be 
expressed in terms of 𝜖 instead of 𝜎 using the following relation 

	 𝜖 = 1 +
4𝜋𝑖𝜎/𝑑
𝜔 	 (22) 

Note that 𝜎 has different units in 2D (here) and in 3D; hence we keep the dielectric function 
dimensionless by introducing the monolayer thickness 𝑑. In order to convert these gaussian-unit 
equations into the SI-unit, we can use 4𝜋 → 1/𝜖+ where 𝜖+(= 8.85 × 10-12 F/m) is the vacuum 
permittivity. 

 

4. Fitting analysis 

To obtain the peak parameters shown in Figure 1 (fluence dependence) and Figure 4 (time 
dependence), we use a fitting expression that includes a Lorentzian function (exciton peak) and a 
second-order polynomial (background): 

	 𝐹 𝜔 = 𝐼+
𝑔+

𝜋 𝜔 − 𝜔+ A + 𝑔+A
+ 𝐴 + 𝐵 𝜔 − 𝜔B + 𝐶 𝜔 − 𝜔B A 	 (23) 

Here, 𝐼+, 𝜔+ and 𝑔+ are the absorption peak intensity, energy and linewidth respectively, while 
𝐴, 𝐵, 𝐶 and 𝜔B are the background constants and energy reference respectively. We first use this 
expression to fit the equilibrium absorption spectrum and record the fitting parameters. The 
obtained background parameters are fixed for subsequent fitting procedures in fluence-dependent 
and time-dependent spectra, and only the Lorentzian function parameters (𝐼+, 𝜔+  and 𝑔+) are 
allowed to vary. 

 

5. Microscopic many-body computation 

To calculate linear optical properties of monolayer WS2 on a substrate under the influence of 
excited carriers, we combine first-principle 𝐺+𝑊+  calculations with the solution of the 
semiconductor Bloch equations in screened-exchange-Coulomb-hole (SXCH) approximation for 
the two highest valence bands and the two lowest conduction bands as described in detail and 
applied to freestanding monolayer MoS2 in Ref. [9]. In the following, we describe in detail how 
the previously used theory has to be augmented to properly take the substrate into account. We 
assume that the substrate mainly affects the internal Coulomb interaction and neglect its 
influence on the band structure, as we are only interested in relative shifts of the exciton 
resonance energy. Therefore, we derive the bare 𝑈�� 𝑞  and screened 𝑉��(𝑞)  Coulomb 
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interaction matrices in the Wannier-orbital basis (with 𝛼, 𝛽 ∈ [𝑑]v, 𝑑5�, 𝑑5va�v] ) for a 
freestanding WS2 slab using the FLEUR and SPEX codes [10, 11]. As discussed in [12], 
macroscopic screening effects (like those arising from substrates) are described by the leading or 
macroscopic eigenvalue of the dielectric matrix. To access this quantity, we transform the full 
matrices 𝑈�� 𝑞  and 𝑉�� 𝑞  to their diagonal representations 𝑈? 𝑞 = 𝑇𝑈 𝑞 𝑇∗  and 𝑉? 𝑞 =
𝑇𝑉 𝑞 𝑇∗  using the eigenbasis 𝑇  of the bare interaction and define the diagonal dielectric 
function via 𝜀? 𝑞 = 𝑈? 𝑞 /𝑉? 𝑞 . Now each diagonal matrix is defined by its three 
eigenvalues. We fit the leading eigenvalues 𝑈B 𝑞  and 𝜀B 𝑞  via 

	 𝑈B 𝑞 =
𝑒A

2𝜀+𝐴
1

𝑞(1 + 𝛾𝑞 + 𝛿𝑞A)	
(24) 

	 𝜀B 𝑞 = 𝜀L 𝑞
1 − 𝛽B𝛽A𝑒aA��

1 + 𝛽B + 𝛽A 𝑒a�� + 𝛽B𝛽A𝑒aA��
	 (25) 

while all other elements (𝑈A, 𝑈�, 𝜀A and 𝜀�) are approximated by constant values given in Table 
S1.  

𝑈 𝜀 𝑇 

𝑈A 0.712 eV 𝜀A 2.979  𝑑]v 𝑑5� 𝑑5va�v 

𝑈� 0.354 eV 𝜀� 2.494 𝑇B +0.577 +0.577 +0.577 

𝛾 2.130 Å 𝑎 3.989 ÅaA 𝑇A +0.816 -0.408 -0.408 

𝛿 0.720 ÅA 𝑏 30.19 𝑇� 0 -0.707 +0.707 

𝐴 2.939 ÅA 𝑐 5.447 Å     

  ℎ 1.564 Å     

  𝑒 4.506     

 
Table S1. Fitting parameters to describe the diagonal bare interaction 𝑈, the corresponding eigenbasis 𝑇 
and the diagonal dielectric function 𝜀. 

In Equation (24), 𝑒 is the elementary charge, 𝜀+ the vacuum permittivity, 𝐴 the unit cell area per 
orbital and 𝛾 and 𝛿 are used to obtain optimal fits to the vacuum extrapolated ab initio data. In 
Equation (25) we introduced the parameters 𝛽^ which are given by 

	 𝛽^ =
𝜀L 𝑞 − 𝜀=��.,^
𝜀L 𝑞 + 𝜀=��.,^

	 (26) 



Page	9	of	16	
		

Here, the dielectric constants of the substrate (𝑖 = 1) and superstrate (𝑖 = 2) are introduced. In 
order to describe the original ab initio data as close as possible we fit 𝜀L(𝑞) using 

	 𝜀L 𝑞 =
𝑎 + 𝑞A
�sin ��
��� n�v

+ 𝑒	 (27) 

and set 𝜀=��.,B = 𝜀=��.,A = 1. As soon as all fitting parameters are obtained (see Table S1) the 
screening of a dielectric environment can be included by choosing 𝜀=��.,B  or 𝜀=��.,A 
correspondingly. In this paper, we use 𝜀=��.,B = 10 (𝜀=��.,A = 1) which models the screening of 
the sapphire substrate. In Figure S2, we present the original ab initio data in combination with 
the resulting fits in the diagonal basis. In Figure S2c, we additionally show how the dielectric 
environment modulates the leading eigenvalue of the screening matrix. Using the latter, we can 
readily derive the fully screened Coulomb interaction 𝑉? 𝑞 = 𝑈?(𝑞)/𝜀?(𝑞)  including the 
screening effects of the dielectric environment. Finally, we make use of the transformation 
matrix 𝑇  to obtain the screened Coulomb interaction matrix in the orbital basis 𝑉 𝑞 =
𝑇∗𝑉? 𝑞 𝑇. 

 

Figure S2. (a) Bare Coulomb matrix elements in its eigenbasis. Red dots, blue squares and green 
triangles correspond to the leading, second and third eigenvalue of 𝑈(𝑞)  as obtained from ab initio 
calculations. Dashed lines show the corresponding fits using Equation (24) and Table S1. (b) 
Eigenvectors of the bare Coulomb matrix (from left to right corresponding to the leading, second and 
third eigenvalue). The corresponding vector elements of the 𝑑]v  (red), 𝑑5�  (green) and 𝑑5va�v  (blue) 
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orbitals are shown. Dashed lines indicate constant fits as given in Table 1. (c) Matrix elements of the 
diagonal dielectric function. Markers indicate ab initio results and dashed lines show the fits using 
Equation (25) and Table S1. Next to the freestanding results we plot the leading eigenvalue of the 
dielectric matrix under the influence of a dielectric substrate with 𝜀=��,B = 10 (long dashes). 

Besides the analytical description of the screened Coulomb matrix elements we make use of a 
Wannier-based tight-binding model to describe the electronic band structure (as obtained from 
𝐺+𝑊+ calculations) of the WS2 slab. To this end, we utilize the same Wannier-orbital basis as 
described before and derive a minimal three-band model describing the highest valence and two 
lowest conduction bands using the Wannier90 package [13]. Thereby we solely disentangle our 
target bands from the rest without performing a maximal localization in order to preserve the 
original W 𝑑-orbital characters. The latter is crucial for the subsequent addition of first and 
second order Rashba spin-orbit coupling following Ref. [14], which takes into account the large 
spin-orbit splitting in the conduction and the valence band K valleys. By using this computation 
approach, we can obtain the density dependence of gap shift, exciton binding energy, exciton 
peak shift and Bohr radius along the lines of Ref. [9] (Fig S3). 

 

Figure S3. Computational results at increasing excitation density on the (a) gap narrowing 𝛥𝐸�  and 
exciton binding energy 𝐸�, (b) exciton shift 𝛥𝐸, and (c) exciton Bohr radius. 

 

6. Exciton-exciton annihilation effect 
 
At high carrier densities but below the Mott transition, plasma effects are small and the carriers 
predominantly form excitons. In this regime the effect of exciton-exciton annihilation has been 
discussed in the literature [15, 16]. With respect of a time delay of about 2 ps between excitation 
and measurement, we correct the estimation of the actual exciton density by the reduction due to 
this process. In order to estimate the dissipation rate, we studied the exciton bleaching decay 
upon photoexcitation with 3.16 eV pump pulse. Fig S4 shows two time-traces of –𝛥𝛼 at the A 
exciton absorption peak with pump fluences of 14.6 µJ/cm2 and 4.4 µJ/cm2, where the measured 
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data is shown by the open circles. These pump fluences correspond to excitation densities of 
𝑛+ = 4.3x1012 cm-2 and 1.3x1012 cm-2. 

 

 

Figure S4. Time-traces at different pump fluences to study the exciton annihilation effect on the density. 
The upper and lower curves correspond to pump fluences of 14.6 µJ/cm2 and 4.4 µJ/cm2 (open circles are 
measured data points, red curves are fitting lines). These pump fluences correspond to excitation densities 
of 𝑛+ = 4.3x1012 cm-2 and 1.3x1012 cm-2. 

	

Exciton-exciton annihilation can be described by differential equation 

	 𝑑𝑛
𝑑𝑡 = −𝑘𝑛A	 (28) 

where 𝑛 is the exciton density at time 𝑡, and 𝑘 is the annihilation rate. This differential equation 
has a solution 

	 𝑛 𝑡 =
𝑛+

1 + 𝑘𝑛+𝑡
	 (29) 

where 𝑛+ is the initial excitation density. Through global fitting of the two time-traces we obtain 
an annihilation rate 𝑘 = 0.04 ± 0.01 cm2/s, where the red curves show the fitting lines. The 
obtained value is consistent with those reported for CVD-grown monolayer WS2 of 0.08-0.10 
cm2/s [17, 18], within an order of magnitude. The uncertainty in the fitting curve at high fluence 
is a common observation due to the 3.16 eV above-gap excitation and attributed to the fast 
cooling process [17]. Note that the annihilation rate is dependent on particular substrate used and 
on the as-grown sample quality. Exfoliated monolayer WS2 shows greater annihilation rate [16], 
which is also discussed in Reference [17]. By using the obtained annihilation rate, we 
renormalize the density on Fig 3a. At the max fluence we used, the actual density reaches 70% at 
2 ps, while at low fluence the actual density reaches 90% at 2 ps. 
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7. Heat capacity and estimated temperature 
 
In the later parts of our experiments that involve variations in time delays and pump fluence, we 
used pump photon energy of 3.16 eV, which is much higher than the lowest excitation energy (A 
exciton) of 2.00 eV. This means that, for every e-h pair excited in the pumping process, there 
will be about 1.16 eV of excess energy after relaxation into the A exciton. In monolayer WS2, as 
is also the case for most materials, the relaxation processes are dominated by electron-electron 
(e-e) and electron-phonon (e-ph) scatterings. Typically, the timescale of e-e thermalization is 
about 10−100 fs, while the e-ph thermalization is about 1 ps. This means, the excess energy will 
be first distributed among the electrons to form a hot exciton gas, followed by heat transfer into 
the lattice. Here, we want to estimate the electronic temperature 𝑇� and the lattice temperature 𝑇� 
by calculating the corresponding heat capacities. Note that these temperatures will be the upper 
limits of what we expect from the system because the heat transfer to the substrate is known to 
be very effective in 2D systems, with a timescale of about 2 ps [19]. 

The electronic heat capacity 𝐶� (per area) can be expressed as 

	 𝐶� 𝑇 =
𝜕𝑓 𝜀, 𝜇
𝜕𝑇 𝜀𝐷 𝜀 𝑑𝜀	 (30) 

where 𝑓 is the occupation number of states, 𝜇 is the chemical potential, and 𝐷(𝜀) is the density 
of states (per area) in the range of energy 𝜀 and 𝜀 + 𝑑𝜀. The low-energy excitations in monolayer 
WS2 constitute of excitons with various spin combinations in the two valleys (Fig S5). 

	

Figure S5. Schematic electronic band structure 
(one-particle picture) of monolayer WS2 at the K 
and K’ valleys. The CB consists of two electron 
bands at each valley separated by a spin-splitting 
gap of 𝛥� ∼ 30 meV, and the VB consists of two 
hole bands at each valley separated by a spin-
splitting gap of 𝛥� ∼  400 meV [20, 21]. The 
chemical potentials (𝜇� and 𝜇�) of the photoexcited 
sample are measured from the tip of the relevant 
bands. 

Here, we will consider the contributions of the electrons and holes to the electronic heat capacity 
separately. In this way, we can account for the spin-valley degeneracy by assuming parabolic 
energy dispersion for each band as 𝜀  = ℏA𝑘A/2𝑚  + 𝛥  , where 𝑚   and 𝛥   are the effective 
mass and the gap of band 𝑛 (with specific spin-valley index). The density of states can then be 
expressed as 𝐷 𝜀 = 𝜃 𝜀 − 𝛥  𝑚 /2𝜋ℏA  , while the occupation number is 𝑓 𝜀, 𝜇 =
[exp	((𝜀 − 𝜇)/𝑘𝑇) + 1]aB. The chemical potential, which depends on excitation density 𝑛 and 
temperature, has an important role to keep the number of electrons and holes equal (𝑛� = 𝑛� =
𝑛). In this quasi-equilibrium condition, where we have intentionally photo-injected the carriers 
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into the system, the chemical potentials 𝜇�  and 𝜇�  are measured from the bottom of the 
conduction band (CB) and the top of the valence band (VB), respectively, as are also the case for 
the kinetic energies 𝜀 . Variations of these chemical potentials with temperature can be followed 
from the conservation of particle’s number density 𝑛 = 𝑓 𝜀, 𝜇 𝐷 𝜀 𝑑𝜀 . In the case of 
electrons, this gives 

	 𝑛�/𝑛¦ = ln	 1 + 𝑒¨©/N¦ A 1 + 𝑒(¨©aª©)/N¦ A 	 (31) 

and the holes, 

	 𝑛�/𝑛¦ = ln	 1 + 𝑒¨«/N¦ A 1 + 𝑒(¨«aª«)/N¦ A 	 (32) 

where 𝑛¦ = 𝑚  𝑘𝑇/2𝜋ℏA is called the thermal quantum density. Hence, for a given excitation 
density, we can compute the chemical potentials as a function of temperature. Finally, by using 
the above equation, we can calculate the electronic heat capacity as a function of temperature 
(Fig S6a). The actual electronic heat capacity is expected to be larger than this because of the 
higher-lying bands which we have ignored in the present calculations. 

 

Figure S6. Estimating the electronic and lattice temperatures after photoexcitation by calculating the heat 
capacities and the absorbed excess energy. (a) Electronic heat capacity 𝐶�(𝑇) of monolayer WS2 by 
considering the lowest e-h excitations at K,K’ valleys. (b) 𝑇� vs 𝑛. (c) 𝜇�,� vs 𝑛. (d) Lattice heat capacity 
𝐶�(𝑇) by considering three acoustic and six optical phonon modes. (e) 𝛥𝑇� vs 𝑛. Here, the electrons and 
lattice are treated separately. 
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As shown in Fig S6a, 𝐶�  increases rapidly at low temperatures and saturates at higher 
temperatures. Note that heat capacity is proportional to the number of electrons that can store the 
thermal energy. At low temperatures (quantum regime), only the electrons around the Fermi 
level can contribute to 𝐶�. At higher temperatures (classical regime), electrons are more sparsely 
distributed across different energies, hence more electrons can contribute to 𝐶� until it reaches a 
saturation value where all of the electrons are involved. The transition between quantum and 
classical regimes should happen at temperature reaching the electron-hole chemical potential, 
𝑘�𝑇 ∼ 𝜇�,�. This is also consistent with the fact that in classical regime 𝐶� is proportional to the 
excitation density 𝑛.  

We can now estimate the rise of temperature upon photoexcitation in monolayer WS2 by using 

	 𝛥𝑄 = 𝑛𝛥𝐸 = 𝐶 𝑇 𝑑𝑇	 (33) 

where 𝛥𝑄 is the absorbed energy density, 𝑛 is the photoexcited pair density and 𝛥𝐸 is the excess 
energy per pair (1.13 eV). Note that in monolayer WS2, the usual (singlet) A exciton is slightly 
higher by 𝛥� = 30 meV as compared to the (triplet) A exciton. In the first few hundreds of 
femtoseconds after photoexcitation, most of the excess energy is redistributed among the 
electrons. By using the obtained 𝐶�(𝑇) and 𝛥𝑄, we can calculate 𝑇� for a given excitation density 
as shown in Fig S6b. The results show that, except at very low densities, the electronic system 
reaches a constant 𝑇� = 6850 K at all densities. In fact, this result can be understood if we 
assume that every photoexcited charge carrier (electron or hole) carries an excess photon energy 
of (ℎ𝜈 − 𝐸+)/2 = 0.56 eV, which will be stored as their thermal energy 𝑘�𝑇�. This will amount 
to 𝑇� ∼ 6500 K regardless of the density, and this is consistent with the above results. So, if we 
were to use higher photon energy, 𝑇�  would increase correspondingly. Therefore, in ideal 
condition, the fluence dependence data in Fig 1 (main text) should correspond to the same 
temperature of 6850 K at all fluences. However, in reality the transient electronic temperature is 
usually much smaller (typically 𝑇� > 1000 K) due to rapid thermalization with phonons that we 
discuss below. 

In short timescale, the thermal energy will be distributed to the lattice (~1 ps) or substrate (~10-
1000 ps), and 𝑇� will decrease back to 300 K. In this situation, we can estimate the chemical 
potential 𝜇�,� of the charge carriers for a given excitation density. Figure S6c shows that 𝜇�,� 
increases linearly with density, and the chemical potentials are the same for electrons and holes 
because they have similar effective mass in monolayer WS2 (𝑚� = 𝑚� = 0.44 𝑚+, [22]). Such a 
linear increase in 𝜇(𝑛) is quite expected due to the constant density of states 𝐷 𝜀  in an ideal 2D 
system. Note that, at the excitation density that we used in the experiment, 𝜇�,� is still lower than 
the spin-splitting of the two bands (𝛥� =  30 meV, 𝛥� =  400 meV). So, for much higher 
excitation densities, we would expect the 𝜇�,� vs 𝑛 slope to be lowered into half as it approaches 
𝜇�,� ∼ 30 meV. 
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For the lattice heat capacity 𝐶�, we calculated separately the contribution from the acoustic and 
optical phonon modes. Monolayer WS2 has three atoms in the unit cell, with three acoustic and 
six optical modes. By taking the average optical phonon energy as ℏ𝜔+ = 45 meV [23], we can 
estimate its contribution to 𝐶� per unit cell as 

	 𝐶®M 𝑇 =
𝜕
𝜕𝑇

6ℏ𝜔+
𝑒ℏ>°/N¦ − 1 	 (34) 

For the acoustic phonon contributions (per unit cell), we can use the 2D Debye model which 
gives 

	 𝐶±@ 𝑇 = 6𝑘�
𝑇
𝛩

A 𝑥�𝑒5

𝑒5 − 1 A

5³

+
	 (35) 

where the Debye temperature is defined as 𝛩 = ℏ𝑣/𝑘� 4𝜋/𝐴@���  and the Debye cutoff is 
𝑥µ 𝑇 = 𝛩/𝑇. We calculated the Debye temperature (𝛩 = 460 K) by using an average sound 
velocity 𝑣 of about 5×103 m/s [23], and an area per unit cell 𝐴@���  of 8.46×10−16 cm2 with a 
lattice constant of 𝑎 = 3.13 Å [23]. Finally, the total lattice heat capacity can be calculated, 
which is shown in Fig S6d. 

Figure S6d shows that 𝐶�(𝑇) increases rapidly at low temperatures and saturates to its Dulong-
Petit value at higher temperatures. Note that 𝐶�  is about 1000 times larger than 𝐶� , and this 
means for a given 𝑛 the temperature increase 𝛥𝑇� would be much smaller than 𝛥𝑇�. Figure S6e 
shows 𝛥𝑇�  as a function of 𝑛  for different initial lattice temperatures 𝑇� . Since in our time-
dependent experiment we used 𝑛 =  3.3×1012 cm−2 at 𝑇� =  300 K (Fig 4, main text), 𝛥𝑇� 
increases by only about 20 K. Unlike the electronic system where the excess photon energy is 
redistributed evenly to the charge carriers that results in a constant 𝐶�(𝑛), the lattice will absorb 
the total excess energy from all of the charge carriers. Hence, 𝐶� increases with 𝑛. 

Now, if we allow a strong e-ph coupling to direct the absorbed energy into the lattice, we can 
merely use the total lattice heat capacity to estimate the temperature of the system. This is 
because 𝐶� ≫ 𝐶�. As we can see from Fig S6b and S6e, with excitation density of 3.3×1012 cm−2 
(Fig 4, main text), the electronic temperature could reach 𝑇� > 1000 K for a short while until it 
cools down to share a common temperature with the lattice to about 320 K. In fact, we must also 
consider the heat transfer to the thick substrate, which effectively plays a role as the thermal 
reservoir at 300 K. As a result, the actual temperatures should be much lower than what we have 
estimated in this analysis, similar to what have been observed in suspended vs supported 
graphene [19].  
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