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Introduction

• iso-Butanol has been suggested as a potent 
second-generation biofuel

• It has a higher RON and MON than n-butanol, 
while simultaneously being easier to produce 
biologically

• Several companies have started to commercialize 
butanol production technologies

• Nevertheless, the combustion properties of iso-
butanol have not been investigated thoroughly, 
particularly for off-stoichiometric conditions at 
high pressure and low temperature
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• Previous work for 

stoichiometric ignition 

delays of iso-butanol found 

diverging predictions of 

low temperature ignition 

delays using different 

models

• Our objectives are to 

develop a comprehensive, 

predictive, kinetic model 

for iso-butanol combustion 

and use the model and new 

experiments to explore the 

behavior of the autoignition

Motivation
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𝜙 𝑃𝐶 (bar) Fuel Mole Fraction O2 Mole Fraction N2 Mole 

Fraction

Oxidizer

1.0 15 & 30 0.0338 0.2030 0.7632 O2/N2 Air

0.5 15 & 30 0.0172 0.2065 0.7763 O2/N2 Air

0.5 15 & 30 0.0338 0.4060 0.5602 Oxygen Rich

2.0 15 & 30 0.0338 0.1015 0.8647 Oxygen Lean

Experimental Conditions

Weber and Sung, Energy and Fuels, 2013, 27 (3), pp 1688–1698

• Most previous work on iso-butanol ignition focused on lean to 

stoichiometric mixtures, and at relatively high temperature and high 

dilution

• We include high pressure, low-to-intermediate temperature (770-950 

K), high fuel loading, and rich conditions
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Experimental Methods
• Experiments to measure the ignition delay of iso-butanol are performed in a 

heated Rapid Compression Machine (RCM)

• Homogeneous gas-phase mixtures of fuel and oxidizer are compressed and the 
piston is held in place at Top Dead Center (TDC), creating a constant volume 
reactor

• The compression ratio of the RCM, and the initial pressure and initial 
temperature of the mixture are varied to vary the pressure and temperature at 
TDC

• The pressure and temperature at TDC are referred to by subscript “C” – i.e. 
𝑃𝐶 & 𝑇𝐶 respectively
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Experimental Methods
• The ignition delay is the time 

from TDC to the maximum of the 
time derivative of the pressure

• During the ignition delay, the 
reactants are losing energy by heat 
transfer to the relatively colder 
reactor walls

• Because we have a constant 
volume, closed reactor, the heat 
loss produces pressure drop

• We characterize this pressure drop 
by replacing oxygen with nitrogen 
in the mixture to eliminate the 
explosion but retain a similar heat 
loss profile to the reactive 
experiments

• 𝑇𝐶 is taken as the temperature at 
TDC of a non-reactive simulation
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Experimental Results

• For the experiments with changing oxidizer ratio, 𝜙 = 0.5 is the most reactive and 𝜙 =
2.0 is the least reactive

• The same effect has been shown for n-butanol in our previous work
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Experimental Results

• For the experiments in air, 𝜙 = 0.5 is less reactive than 𝜙 = 1.0 for the same 

compressed pressure because of the reduced fuel concentration

• Reactivity increases as pressure increases for constant 𝜙
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Model Development Paradigm
RMG Builds 

Reaction 

Mechanism for 

Specified Reaction 

Condition

Rate & 

Thermo 

Estimation 

Database

Sensitivity 

Analysis

Sensitive 

to Rough 

Estimate

?

Compute Sensitive 

Number using 

Quantum Chemistry

Update Database 

with new Number 

from Quantum 

Chemistry

Next Reaction 

Condition

Compare with 

Experimental Data if 

available

Yes

No

http://rmg.mit.edu/

Free and open source software:

Reaction Mechanism 

Generator (RMG)
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Iso-Butanol Low Temperature Model

372 species,
8723 reactions:

Seed Mechanism
Validated under high temperature 

combustion and pyrolysis  (P 30 torr – 30 bar)

Computer 
considered:

>1,000 species and 
>10,000 reactions

Extend to T < 850 K
T = 750 – 1000 K
P = 15 - 30 bar

418 species,
10413 reactions:

Weber et al., 8th U.S. National 
Combustion Meeting. 2013

Hansen et al., Combust and Flame. 
2013, accepted

Supplied rate library for peroxy chemistry 
based on  quantum calculations for n-butanol

Welz et al. 2013 (submitted to C&F)
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The model doesn’t predict the correct [O2] dependence

• The model can predict 𝜙 = 2.0 ignition delays reasonably well but does not predict 

the proper [O2] sensitivity

• Previous models built with RMG are also unable to predict the [O2] dependence of n-

butanol ignition delay
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The model predicts ignition delays in air pretty well

• The model is able to predict lean ignition delays in air at the lower pressure very 

well, but still over-predicts the ignition delay for all of the conditions

• The experiments are predicted to within a factor of 2-3 for the other conditions
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• Path analysis shows that the fuel is initially decomposing through 
the expected channels

• The 𝛽-hydroxybutylperoxy radical does not undergo the 
Waddington reaction although it is included in the mechanism

Path Analysis - 𝝓 = 𝟏. 𝟎, 800 K, 30 bar
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• Sensitivity analysis 
shows the importance of 
the initiation reactions 
with the fuel

• Fuel + OH => 𝛼 has 
positive sensitivity 
because this is an 
effective OH terminating 
pathway

• Fuel + HO2 => 𝛼 has 
negative sensitivity 
because this is an OH 
branching pathway 
(through H2O2 reactions)

Sensitivity Analysis of Fuel Reactions
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Conclusions

• New experimental ignition delays for iso-butanol 
have been measured in a heated RCM

• A new chemical kinetic model has been built using 
low-temperature reaction pathways and validated 
with the new experiments

• For lean and stoichiometric conditions in air, the 
model is able to predict the ignition delay to within a 
factor of 2-3

• For lean, stoichiometric, and rich conditions at 
constant initial fuel mole fraction, the model is 
unable to predict the dependence of the ignition 
delay on the initial oxygen concentration

• Path and sensitivity analysis provide clues to 
improve the mechanism



Thank you! Questions?
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