
Supporting information for:

Intercalation Kinetics in Multiphase Layered

Materials

Raymond B. Smith,† Edwin Khoo,† and Martin Z. Bazant∗,†,‡

†Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, USA

‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, USA

E-mail: bazant@mit.edu

S1

bazant@mit.edu


Simulation Details for Examining Axial Symmetry As-

sumption

In the interest of keeping the 2D simulation time to a few hours, we perform the simulation

up to t = 1553 s instead of t = 6210 s as in ref. S1. We impose no-flux boundary conditions

on the straight edges of the sector and lithium intercalates along the arc of the sector. In

Figure S1, we plot c̃1 at t = 669 s where axial symmetry is broken, and at t = 1553 s where

axial symmetry is not broken. We provide plots of c̃1 against r at θ = 0◦ and θ = 0.352◦ to

examine how axial symmetry is broken or not broken. In addition, we compare these c̃1 plots

with those obtained from a 1D simulation in COMSOL Multiphysics using the same grid

spacing of 1.43×10−7 m to examine how well the 1D model approximates the 2D model. This

grid spacing is larger than the approximate value of the interface width in these simulations

(7.1× 10−8 m), which is a compromise on accuracy to speed up the simulations and enable

a larger central angle for the 2D sector. We retain the same grid spacing in both cases in

Figure S1 to focus on the comparison rather than accurate model predictions. Full movies

are provided in the supplement.

In Figure S1, comparing plots (a), (c) and (e) for t = 669 s, we observe that axial

symmetry in the c̃1 profile is broken; for instance, at the arc of the sector, c̃1 increases

with increasing θ. On the other hand, comparing plots (b), (d) and (f) for t = 1553 s, c̃1

does not vary as a function of θ and axial symmetry is not broken. More generally, even

though we initialize c̃1 and c̃2 to be 10−2 uniformly, we observe that axial symmetry is

broken immediately, turns “less broken” as t increases, first becomes unbroken at t = 776 s

(not shown in Figure S1, but can be seen in the full videos in the supplement), and then

remains unbroken till t = 1553 s. Although we did not perform 2D simulations up to

t = 6210 s as was done in ref. S1, we expect that axial symmetry remains unbroken from

t = 1553 s to t = 6210 s. Comparing plots (c) and (e) with (g), the broken axial symmetry

at t = 669 s causes some deviations between the c̃1 profiles for θ = 0◦, θ = 0.352◦ and
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Figure S1: 2D and 1D simulations from ref. S1 performed using COMSOL Multiphysics
(finite element discretization). (a) and (b) are a repeat of Figure 6 for easy comparison.
Snapshots in (a), (c), (e) and (g) are taken at t = 669 s and those in (b), (d), (f) and (h) are
taken at t = 1553 s. Snapshots from the 2D simulation in (c) and (d) are taken at θ = 0◦

and those in (e) and (f) are taken at θ = 0.352◦. Snapshots in (g) and (h) are taken from
the 1D simulation.

the true 1D simulation. However, comparing plots (d) and (f) with (h), these c̃1 profiles

agree reasonably well with each other when axial symmetry is not broken at t = 1553 s; this
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also holds true when axial symmetry first becomes unbroken at t = 776 s. Crucially, the

four internal domains for c̃1 in the 2D simulation are also reproduced by the 1D simulation.

Therefore, the 1D simulation approximates the 2D simulation reasonably well except at early

times where there are minor deviations that do not significantly affect the accuracy of the

1D simulation at later times.

Matching Diffusive Behavior in Solid Solution and Phase

Separating Simulations

To approximately match the transport behavior of the two models, it is helpful to rearrange

the flux expression in Eqs. 10 and 11 in terms of a chemical diffusivity, which is valid in

regions where the gradient term is negligible (far from phase interfaces),

Fi ≈ −
D0

kBT

ciγi
γd‡,i

∂µi

∂c̃i
∇c̃i = −Dchem,i∇ci (S1)

where

Dchem,i =
D0

kBT

c̃iγi
γd‡,i

∂µi

∂c̃i
(S2)

=
D0

kBT

c̃iγi
γd‡,i

[
kBT

c̃i(1− c̃i)
− 2Ωa − 2Ωcc̃j(1− c̃j)

]
. (S3)

Here, we are constrained on our choice for the ratio γi/γ
d
‡,i > 0 by the second law of thermo-

dynamicsS2, so we cannot choose it such that we have perfectly constant Dchem,i. We note

that the choice originally proposed in Appendix A and simplified in Eq. 12 gives usS1

Dchem,i =
D0

kBT
(kBT − 2Ωac̃i(1− c̃i)− 2Ωcc̃i(1− c̃i)c̃j(1− c̃j)), (S4)

≈ D0 far from phase interfaces. (S5)
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Another natural choice may be to assume constant prefactor in front of the ∇µi, or

c̃iγi
γd‡,i

= 1, (S6)

leading to

Dchem,i =
D0

kBT

[
kBT

c̃i(1− c̃i)
− 2Ωa − 2Ωcc̃j(1− c̃j)

]
(S7)

which has been used in a similar modelS3 and has diverging chemical diffusivity near full

and empty states. We also find this model specified by Eq. S6 to match porous electrode

data in our companion paper in which the particle models are describing effective properties

of secondary (polycrystalline) graphite particlesS4. However, to retain the most similar

behavior of chemical diffusivity between the solid solution and phase separating models, we

focus here on the model proposed in Eq. 12.

Diffusional Chemical Potential for Single-Variable Model

Reduction

In the reduced thermodynamic model for lithium intercalation in graphite, the function

describing the diffusional chemical potential as a function of a single total filling fraction

variable is given by

µop(c̃)

kBTref
= 0.18 + µ̃A(c̃) + µ̃B(c̃) + µ̃C(c̃) + µ̃D(c̃) + µ̃E(c̃)− κ

crefkBTref
∇2c̃ (S8)
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where

µ̃A(c̃) =

(
− 40 exp

(
− c̃

0.015

)
+ 0.75

(
tanh

(
c̃− 0.17

0.02

)
− 1

)
(S9)

+

(
tanh

(
c̃− 0.22

0.04

)
− 1

))
SD(c̃, 0.35, 0.05)

µ̃B(c̃) = −0.05

c̃0.85
(S10)

µ̃C(c̃) = 10SU(c̃, 1, 0.045) (S11)

µ̃D(c̃) = 6.12
(
0.4− c̃0.98

)
SD(c̃, 0.49, 0.045)SU(c̃, 0.35, 0.05) (S12)

µ̃E(c̃) = (1.36(0.74− c̃) + 1.26)SU(c̃, 0.5, 0.02) (S13)

and step up and step down functions respectively defined by

SU(x, xc, δ) = 0.5

(
tanh

(
x− xc
δ

)
+ 1

)
(S14)

SD(x, xc, δ) = 0.5

(
− tanh

(
x− xc
δ

)
+ 1

)
. (S15)

The homogeneous free energy can be computed from an integral of the homogeneous contri-

bution to the diffusional chemical potential.
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