Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S1 Anisotropy

Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski, Ján Titiš, Beáta Vranovičová, Roman Boča

Electronic Supporting Information

Figure S1. IR transmittance spectrum of 1 in a KBr pellet in the 400–4000 cm⁻¹ region

<i>j</i> - <i>B</i>	- L (2)2(2 -)(-) - ·	$= - \int (2 - \int (- \int (- \int (- \int (- \int (- \int (- $	
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(112)-H(112)O(213) ¹	0.844(19)	1.85(2)	2.681(3)	168(4)
O(113)-H(113)O(21)	0.84	2.24	2.946(3)	142.4
O(113)-H(113)O(26)	0.84	2.34	2.903(3)	124.5
O(212)-H(212)O(113) ²	0.856(19)	1.803(19)	2.659(3)	178(4)
O(213)-H(213)O(16)	0.84	2.30	2.883(3)	126.4
O(213)-H(213)O(11)	0.84	2.24	2.983(3)	146.8
O(1)-H(1AO)O(3)	0.796(18)	1.96(2)	2.709(3)	156(4)
$O(1)-H(1BO)O(2)^{3}$	0.793(18)	1.93(2)	2.709(3)	167(4)
O(2)-H(2AO)O(4)	0.832(19)	1.85(2)	2.684(3)	175(5)
O(2)-H(2BO)O(26)	0.806(18)	2.43(3)	3.170(3)	153(5)
O(3)-H(3AO)O(111)	0.785(18)	2.20(3)	2.862(3)	142(4)
$O(3)-H(3BO)O(32)^4$	0.845(17)	1.945(18)	2.773(3)	166(3)
			1	2

Table S1. Hydrogen bonds for $[Co^{II}Co^{III}(LH_2)_2(H_2O)(CH_3COO)](H_2O)_3$ (1) [Å and °]

Symmetry transformations used to generate equivalent atoms: ${}^{1}x+1/2,y+1/2,z$; ${}^{2}x+1/2,y-1/2,z$; ${}^{3}x+1,y,z$; ${}^{4}x-1/2,-y+1/2,z-1/2$

Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S2 Anisotropy Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski,

A. Buvayio, viadinin N. Kokozay, Olga Fu. vassiyeva, Bhan w. Skenon, Andrew Ozaro Ján Titiš, Beáta Vranovičová, Roman Boča

DC magnetic data and ESR spectra within the spin-Hamiltonian formalism

1) A thorough theoretical analysis for the hexacoordinate Co(II) complexes shows that the spin Hamiltonian formalism fails in the case of an elongated tetragonal bipyramid.¹ In such a case the octahedral ${}^{4}T_{1g}$ electronic term splits into the ground ${}^{4}E_{g}$ and excited ${}^{4}A_{2g}$ terms; the axial crystal field splitting parameter is $\Delta_{ax} < 0$ (Figure S2). The spin-orbit coupling causes a further splitting of the ground ${}^{4}E_{g}$ term into four Kramers doublets (crystal-field multiplets). The analysis of the wave function allows an assignment of the irreducible representations in the corresponding double group D'₄. Important is the order of energy levels: Γ_{6} , Γ_{7} and Γ_{7} (Bethe notation). This strictly contradicts the assumption of the spin Hamiltonian formalism for which the only two Kramers doublets are Γ_{6} (ground, $M_{S} = \pm 1/2$) and Γ_{7} (excited, $M_{S} = \pm 3/2$) with the energy separation of 2*D* (this applied for a compressed tetragonal bipyramid).

(1) Boča, R. Magnetic Parameters and Magnetic Functions in Mononuclear Complexes Beyond the Spin-Hamiltonian Formalism. *Struct. Bonding*, **2006**, *117*, 1-260. Traditional spin Hamiltonian (ZFS) in the form appropriate to the mononuclear Co(II) S = 3/2 systems reads

$$\hat{H}_{k,l} = D(\hat{S}_z^2 - \vec{S}^2/3)\hbar^{-2} + \mu_{\rm B}B_m(g_x\hat{S}_x\sin\theta_k\cos\varphi_l + g_y\hat{S}_y\sin\theta_k\sin\varphi_l + g_z\hat{S}_z\cos\theta_k)\hbar^{-1}$$
(S1)

where *D* is the zero-field splitting parameter and the second contribution is the spin Zeeman term for directions defined by the polar angles $\{\mathcal{B}_k, \varphi_l\}$. The free magnetic parameters cover the axial zero-field splitting parameter *D*, the magnetogyric factors g_z and $g_x = g_y$. The above Hamiltonian can be safely used in analyzing the magnetic and ESR data for tetracoordinate Co(II) complexes as well as to the subgroup of hexacoordinate complexes exhibiting an axial compression where the ground state is orbitally non-degenerate. Some secondary corrections are represented by the molecular-field correction (zj), and the temperature-independent magnetism χ_{TIM} according to the formula $\chi_{corr} = \chi_{mol} / [1 - (zj / N_A \mu_0 \mu_B^2) \chi_{mol}] + \chi_{TIM}$. The matrices of the spin Hamiltonian have been diagonalized and the eigenvalues inserted into the van Vleck formula for the susceptibility and the partition function for the magnetization, respectively. Three working magnetic fields need be used in order to determine the van Vleck coefficients numerically in the vicinity of the reference field.

The magnetic data for 1, $\chi = f(T; B_0 = 0.1 \text{ T})$ and $M = f(B, T_0 = 2 \text{ K})$, has been fitted to the above Hamiltonian yielding the following set of magnetic parameters: $D/hc = 145 \text{ cm}^{-1}$, $g_z = 2.357$, $g_x = 2.872$, $zj/hc = -0.069 \text{ cm}^{-1}$, and $\chi_{TIM} = -21 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}$. The quality of the fit is good as expressed by discrepancy factors for the susceptibility $R(\chi) = 0.045$ and magnetization R(M) = 0.009 (Figure S3). Attempts to fit the magnetic data with D < 0 failed. Involvement of the *E*-parameter brought some correlation with *D* showing an overparametrization for the given experimental dataset.

Despite a good quality of the fit, this set of magnetic parameters is virtual.

Figure S3. DC magnetic data for **1**. Left – temperature dependence of the effective magnetic moment (inset – temperature dependence of the molar magnetic susceptibility), right – field dependence of the magnetization per formula unit. Open symbols – experimental data, lines – fitted with the ZFS model.

2) If the spin Hamiltonian is applied to an S = 3/2 state, the features observed in the ESR spectrum can be simulated assuming certain intrinsic g values associated with certain E/D ratio (with a very large D, of

Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S4 Anisotropy

Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski, Ján Titiš, Beáta Vranovičová, Roman Boča

hundreds of wavenumbers). For each E/D ratio, over a wide range, a set of intrinsic *g*-parameters can be found which will simulate the spectra (and will result in the observed effective *g* values). As long as the spin Hamiltonian is applicable (which may not be the case here), there is a proportionality between the deviations of the *g*-components from 2.0023 and the elements of the zero-field splitting tensor. One could thus try to select a set which, to preserve that proportionality, conforms to

$$E/D = (1/2)(g_x - g_y)/(2g_z - g_x - g_y)$$
(S2)

This yields the intrinsic values of $g_x = 2.40$, $g_y = 2.73$, $g_z = 2.25$ and E/D = 0.252. The fact that our effective g values are frequency-independent up to 634 GHz (corresponding to 21 cm⁻¹) allows us to put a lower limit on the D value, of some 60 cm⁻¹. Above this value, the *effective* g values do not depend on D.

3) As a comparison, the magnetization data and the low-temperature susceptibility data were also fitted by considering an effective spin Hamiltonian for $S^* = 1/2$ and the results are presented in Figure S4. One can see that the principal values of the **g**-tensor are in a reasonable agreement with those observed in EPR.

Figure S4. Fit of the DC magnetic data for 1 with the parameters of the *effective* spin $S^* = 1/2$: $g_x = 7.06$, $g_y = 4.20$, $g_z = 2.00$ (EPR data $g_x = 7.18$, $g_y = 2.97$, $g_z = 1.96$.)

Generalized crystal field theory

In the basis set of atomic terms five matrices are constructed and combined to the final interaction matrix: 1. the interelectron repulsion (parametrized by the Racah *B* and *C*); 2. the crystal field strength (parametrized by the crystal field poles $F_n(R)$, not to be confused with the Slater-Condon parameters; $10Dq = (10/6)F_4$ in the octahedron); 3. the spin-orbit coupling (parametrized by the true spin-orbit coupling constant ξ); 4. the orbital Zeeman term (accompanied with the orbital reduction factors κ and dependent upon magnetic field *B*); and 5. the spin Zeeman term (with the true electronic g-factor and *B*). With 1 + 2 the eigenvalues refer to the crystal field terms; with 1 + 2 + 3 the eigenvalues are the crystal field multiplets; with 1 + 2 + 3 + 4 + 5 the eigenvalues are the Zeeman levels in the magnetic field. Crystal field terms are classified according to the irreducible representations of the ordinary point groups (Mulliken notation) whereas the crystal field multiplets are classified according to the irreducible representations of the double group (Bethe notation).¹

⁽¹⁾ Boča, R. Magnetic Parameters and Magnetic Functions in Mononuclear Complexes Beyond the Spin-Hamiltonian Formalism. *Struct. Bonding*, **2006**, *117*, 1–260.

Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S5 Anisotropy

Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski, Ján Titiš, Beáta Vranovičová, Roman Boča

Input for C	ORCA	Pro	ogram Version 3.0.3 - RELEASE		
86> \$new	_job				
87> ! ZO	RA DefBas2	TightSCF	RIJCOSX Grid4 GridX4 NoPop		
88> ! moread					
89> %mo	inp "input.q	ro"			
90> %cas	scf nel 7				
91>	norb 5				
92>	switchstep k	diis			
93>	mult 4,2				
94>	nroots 10,40)			
95>	trafostep rin	no			
96>	NEVPT2 tru	ue			
97>	rel				
98>	dosoc true				
99>	gtensor true				
100>	printlevel 3				
101> end					
102> end					
103> * xy	z 0 4				
104> Co	3.737597	3.904811	9.166505		
105> Co	6.731841	3.904941	9.165790		
106> C	1.988839	4.384915	11.362888		
107> O	2.437861	3.510013	10.488016		
108> C	2.291589	5.765929	11.394422		
109> C	1.686436	6.602080	12.373978		
110>H	1.893200	7.529258	12.387912		
111>C	0.805633	6.091027	13.301834		
112>H	0.401951	6.665799	13.940755		
113>C	0.507171	4.721716	13.300001		
114>H	-0.100360	4.368010	13.937088		
115>C	1.097881	3.886866	12.371961		
116>O	0.903768	2.520416	12.262511		
117> C	0.030254	1.899870	13.205767		
118>H	0.376854	2.037711	14.111256		
119> H	-0.023231	0.938882	13.018582		
120> H	-0.862974	2.296489	13.134083		
121>C	3.169515	6.382314	10.427332		
122> H	3.287608	7.323796	10.483066		
123> N	3.804185	5.761508	9.497277		
124> C	4.618388	6.526657	8.499204		
125>C	4.993187	5.530559	7.382880		
126> H	4.297428	5.547464	6.678875		
127> H	5.851865	5.806241	6.970377		
128> O	5.117732	4.206111	7.896583		
129> C	5.857864	7.084525	9.171675		
130> H	6.316266	7.711313	8.558054		
131>H	5.599210	7.582574	9.986230		
132> O	6.744572	6.014044	9.520377		
133> H	7.452826	6.332899	9.845062		
134> C	3.795288	7.659297	7.889433		
135>H	3.705989	8.386215	8.554387		
136>H	4.279843	8.023406	7.106045		
137> O	2.487545	7.239791	7.476197		

Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S6 Anisotropy

Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski, Ján Titiš, Beáta Vranovičová, Roman Boča

138> H	2.522103	6.448634	7.197712
139> C	1.903503	3.462939	7.032894
140> O	2.405943	4.322496	7.880633
141>C	2.205517	2.080624	6.981561
142> C	1.551173	1.240572	6.044355
143>H	1.751794	0.313394	6.026205
144> C	0.625837	1.752926	5.160316
145>H	0.188341	1.178153	4.543029
146> C	0.332996	3.123537	5.174433
147> H	-0.293365	3.479844	4.555862
148> C	0.949739	3.955786	6.083772
149> O	0.730864	5.314434	6.197622
150> C	-0.055617	5.955786	5.188183
151>H	0.355803	5.806241	4.310194
152> H	-0.097726	6.918075	5.369867
153>H	-0.961706	5.581274	5.193866
154> C	3.111101	1.443433	7.909050
155>H	3.225293	0.503251	7.830216
156> N	3.773109	2.044213	8.832872
157> C	4.603337	1.266580	9.808212
158> C	5.007421	2.263979	10.918119
159> H	4.319936	2.262679	11.628907
160>H	5.865846	1.979194	11.320905
161>O	5.144618	3.579454	10.398182
162> C	5.840383	0.703511	9.117041
163>H	6.305987	0.075423	9.724061
164> H	5.573300	0.208062	8.301386
165> O	6.716607	1.780624	8.766139
166> H	7.387382	1.456437	8.341719
167> C	3.784150	0.135891	10.430816
168> H	3.670525	-0.583875	9.760728
169> H	4.287341	-0.240572	11.196237
170>O	2.497869	0.553966	10.883652
171>H	2.532224	1.358908	11.121070
172> O	8.345979	3.660598	10.373249
173>O	9.693214	3.475942	12.125927
174> C	8.583030	3.777633	11.622673
175>C	7.494258	4.291287	12.545396
176> H	6.696866	4.512353	12.019409
177> H	7.810217	5.093628	13.011249
178>H	7.269820	3.599480	13.201917
179>O	7.961535	4.137191	7.473631
180> H	7.708749	3.667100	6.880543
181>H	8.752684	4.096229	7.535048
182>*			
183>			
184>	*	****END O	F INPUT****

Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S7 Anisotropy Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski,

Ján Titiš, Beáta Vranovičová, Roman Boča

AC susceptibility data

Figure S5. Temperature dependence of the AC susceptibility components for **1** for frequencies f = 0.1, 0.16, 0.25, 0.40, 0.63, 1.01, 1.58, 2.51, 3.98, 6.31, 10.01, 15.86, 25.11, 39.81, 63.09, 100.1, 158.4, 251.3, 398.9, 629.2, 997.3 and 1488 Hz.

Two-set Debye model for AC susceptibility: a) in phase susceptibility

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}}$$

b) out of phase susceptibility

 $\chi''(\omega) = (\chi_{T1} - \chi_S) \frac{(\omega\tau_1)^{1-\alpha_1} \cos(\pi\alpha_1/2)}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin(\pi\alpha_1/2) + (\omega\tau_1)^{2-2\alpha_1}} + (\chi_{T2} - \chi_{T1}) \frac{(\omega\tau_2)^{1-\alpha_2} \cos(\pi\alpha_2/2)}{1 + 2(\omega\tau_2)^{1-\alpha_2} \sin(\pi\alpha_2/2) + (\omega\tau_2)^{2-2\alpha_2}}$ for $\omega = 2\pi f$. α - the distribution parameter ($\alpha = 0$ for an ideal system). χ_{T1}, χ_{T2} - isothermal (low-frequency) susceptibilities. χ_S - adiabatic (high-frequency) susceptibility = 0 in the present case.

Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative S8 Anisotropy

Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Andrew Ozarowski, Ján Titiš, Beáta Vranovičová, Roman Boča

Table S2 . Result of the fitting procedure for AC susceptibility components of 1								
$\frac{a}{T/V}$	$\frac{DC - 0.11}{DC}$		Debye com	ponent		(1.0-3	_	
1/K	$R(\chi)/\%$	$R(\chi^{\prime})/\%$	χ_s	χ_{T1}	α_1	$\tau_1 / 10^{\circ} \text{ s}$		
1.9	1.6	5.9	1.39(8)	13.68(6)	0.25(1)	5.40(13)		
2.1	1.3	5.3	1.23(7)	12.37(4)	0.25(1)	3.74(8)		
2.3	1.2	4.8	1.11(7)	11.42(4)	0.25(1)	2.76(5)		
2.5	0.85	3.9	0.97(5)	10.51(2)	0.25(1)	2.01(3)		
2.7	0.77	3.4	0.95(5)	9.75(2)	0.24(1)	1.51(2)		
2.9	0.56	2.5	0.86(4)	9.08(1)	0.23(1)	1.13(1)		
3.1	0.33	1.8	0.77(2)	8.52(1)	0.23(1)	0.879(7)		
3.3	0.32	1.9	0.74(3)	8.02(1)	0.22(1)	0.688(6)		
3.5	0.41	2.0	0.69(3)	7.58(1)	0.21(1)	0.543(6)		
3.7	0.47	2.3	0.73(4)	7.18(1)	0.20(1)	0.444(5)		
4.1	0.55	2.8	0.77(5)	6.51(1)	0.16(1)	0.298(5)		
4.5	0.67	3.6	0.79(8)	5.94(1)	0.13(1)	0.195(5)		
4.9	0.36	3.6	1.00(7)	5.48(1)	0.09(1)	0.146(3)		
5.5	0.30	2.6	1.00(8)	4.90(1)	0.05(1)	0.085(2)		
61	0.24	2.4	0.93(12)	4 43(1)	0.03(1)	0.051(2)		
b) at B_1	$rac{0.2}{0.2}$ T	with two-set	Debye mod	el	0.05(1)	0.001(2)	-	
<i>T</i> /K	$R(\gamma^2)/\%$	$R(\gamma')/\%$	γ_{T1}	α_1	$\tau_1 / 10^{-3} \text{ s}$	γ_{T2}	α_{2}	$\tau_2 / 10^{-3} \text{ s}$
19	12	51	742(117)	0.29(3)	239(44)	1328(6)	0.32(3)	1 37(39)
21	0.82	3.8	5.00(51)	0.22(3)	24 1(26)	11.99(5)	0.32(3) 0.29(2)	1.37(37) 1.33(14)
2.1	0.02	37	4.16(59)	0.22(3) 0.28(4)	21.1(20)	11.75(5)	0.29(2) 0.28(2)	1.03(14)
2.5	0.51	28	$\frac{4.10(37)}{3.24(30)}$	0.20(4) 0.25(3)	17.8(21)	10.31(3)	0.26(2)	0.803(16)
2.5	0.53	2.0	2.24(30)	0.23(3)	17.0(21) 15 5(30)	0.57(3)	0.20(1) 0.25(1)	0.603(+0)
2.7	0.33	2.0	2.30(32)	0.31(3) 0.29(4)	13.3(30) 14.7(42)	9.37(3)	0.23(1) 0.25(1)	0.004(34)
2.9	0.42	2.1	1.80(30) 1.25(20)	0.38(4)	14.7(43) 12.8(20)	8.97(3)	0.23(1)	0.303(22)
3.1	0.26	0.95	1.35(20)	0.42(3)	12.8(39)	8.42(2)	0.25(1)	0.4/3(10)
3.3 a	0.36	1.6	1.3/(56)	0.50(6)	/.50(/62)	7.94(3)	0.23(2)	0.36/(9)
3.3 b	0.34	1.5	1.30(49)	0.50(6)	8.38(780)	7.94(3)	0.23(2)	0.370(9)
3.3 c	0.35	1.5	1.71(55)	0.53(2)	4.15(328)	7.95(2)	0.21(2)	0.366(7)
3.5	0.35	1.9	1.38(28)	0.63(3)	2.00(126)	7.54(3)	0.21(1)	0.330(5)
3.7	0.53	2.7	1.72(47)	0.61(6)	0.510(218)	7.12(4)	0.17(2)	0.275(7)
4.1	0.72	3.5	-	-	-	6.33(1)	0.22(1)	0.184(2)
4.5	0.70	3.3	-	-	-	5.81(1)	0.19(1)	0.124(1)
4.9	0.53	4.3	-	-	-	5.36(1)	0.15(1)	0.0878(10)
5.5	0.26	5.5	-	-	-	4.81(1)	0.09(1)	0.0550(7)
6.1	0.37	5.5	-	-	-	4.35(1)	0.06(1)	0.0347(5)
c) at $B_{\rm I}$	$_{\rm DC} = 0.4 {\rm T}$ v	with two-set	Debye mod	el				
T/K	$R(\chi')/\%$	R(\chi'')/%	χ_{T1}	$\alpha_{\rm l}$	$\tau_1 / 10^{-3} \text{ s}$	X T2	α_2	$\tau_2 / 10^{-3} \text{ s}$
1.9	1.7	5.6	9.37(27)	0.34(2)	60.5(28)	11.84(11)	0.28(6)	0.182(28)
2.1	1.7	5.7	8.49(26)	0.37(2)	51.3(28)	11.19(11)	0.22(5)	0.166(19)
2.3	1.3	4.9	7.35(22)	0.38(2)	46.8(24)	10.57(8)	0.25(4)	0.172(14)
2.5	1.2	5.1	5.91(18)	0.35(2)	42.2(23)	9.76(7)	0.26(3)	0.175(12)
2.7	1.0	4.5	5.09(18)	0.38(2)	37.6(23)	9.24(6)	0.26(2)	0.159(9)
2.9	0.74	3.9	4.23(13)	0.38(2)	31.8(18)	8.64(4)	0.24(2)	0.140(5)
3.1	0.66	3.5	3.29(11)	0.38(2)	35.2(21)	8.15(4)	0.25(1)	0.135(4)
33	0.52	2.5	2.70(8)	0.20(2)	42.1(24)	7 78(3)	0.25(1)	0.118(2)
3 5	0.60	3 3	1 91(8)	0.38(3)	61 6(46)	7 38(4)	0.27(1)	0.115(2)
37	0.46	2.5	1 40(5)	0.34(2)	77 4(46)	6 95(3)	0.27(1)	0.0987(13)
Δ1	0.48	17	0.80(3)	0.37(2) 0.28(3)	110(8)	6 32(2)	0.27(1) 0.26(1)	0.0727(8)
т. 1 Л 5	0.40	2.6	0.00(3)	0.20(3)	135(12)	5.32(2) 5.81(2)	0.20(1)	0.0727(0) 0.0513(11)
4.5 10	0.37	2.0 1 3	0.30(3)	0.27(4) 0.25(1)	1/2(22)	5.01(2) 5.35(2)	0.23(1) 0.10(1)	0.0313(11) 0.0301(6)
4.7	0.50	4.3 1 1	0.31(3) 0.17(2)	0.23(1) 0.25(12)	142(23)	3.33(2)	0.19(1) 0.15(1)	0.0391(0)
J.J 6 1	0.30	+.1 2 1	0.1/(3)	0.23(12)	200(01)	+.00(2)	0.13(1)	0.0200(0)
0.1	0.23	3.1	0.098(12)	0.23(9)	∠00(47)	4.3/(1)	0.12(1)	0.0109(0)